MATH LAB
ACTIVITY HANDBOOK

SINGLE NATIONAL CURRICULUM

Oxford University Press
Math Lab Activity Handbook is designed to be a comprehensive supplementary resource for the Single National Curriculum 2020. The activities distributed amongst the five levels of primary directly correspond to the suggested activities and pedagogical approaches outlined in the SNC. These activities offer a hands-on, interactive approach to mathematics that allows students to be experimental in the process of understanding mathematical concepts. The students are encouraged to use manipulatives such as beads, counters, sticks, and dice, and to engage in open discussions and test out hypotheses – a wide variety of ways for the students to approach mathematics to strengthen and deepen their knowledge.

This curriculum-based handbook is organised to cater to the SNC strands that break down larger topics – such as data handling – into more specific areas of study – such as bar graphs, pie charts, etc. As opposed to dividing it in topical chapters, the handbook is instead an accumulation of activities that directly relate to specific learning objectives outlined in the SNC. Based on what topic has recently been covered in the classroom, the teacher can refer to the Contents page and select one of the handful of activities available. This way the book has no chronological order to follow, but rather one can use the activities as a supplementary resource in reinforcing the topics covered in the SNC. The cognitive domain table on the next page highlights the skills that the SNC considers essential at each level, and this handbook is designed with that table in mind.

Some activities will be found under more than one SLO on the content page. This is because a number of the activities are integrated in more than one area of the subject. Thus, encouraging critical thinking, application, and reasoning – skills that are highlighted in the cognitive domain table by the SNC. This helps deepen the student’s understanding as well as helps them use mathematics in their real-lives by engaging with it in a practical manner. The bottom of every page directly mentions exactly what unit and what SLO each activity encompasses, so that beside the content page, the teacher can keep cross-referencing with the SNC.

The top of every page also features a key on page (vi) that guides one on how to approach the activity. The key tells the teacher whether this is an individual activity, pair activity, group activity, or a whole class activity. It also outlines any extra manipulative or preparation that might be required before hand, that the teacher can include in his/her lesson plan. Finally, at the back of the book one will find a table that relates the topics covered in Math Lab Activity Handbook, to two other textbooks that are SNC aligned (Maths Wise and New Countdown) as well as corresponding suggested web links as extra resources for a teacher or parent to refer to for their own purposes.

Math Lab Activity Handbook aims to be an appropriate supplementary resource that is simplified to make it easily comprehensible and accessible to teachers, students, and parents alike. Thus, reinforcing the goals of the SNC for a wider demographic in an interactive, hands-on manner.
CONTENTS

<table>
<thead>
<tr>
<th>SNC SLO Strand & Corresponding Activities</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Whole Numbers and Operations</td>
<td></td>
</tr>
<tr>
<td>• Place Value and Value</td>
<td>2</td>
</tr>
<tr>
<td>• Place Value Chart</td>
<td>3 – 4</td>
</tr>
<tr>
<td>• Number Discs</td>
<td>5 – 6</td>
</tr>
<tr>
<td>• Numeral Cards</td>
<td>7 – 16</td>
</tr>
<tr>
<td>• Missing Numbers</td>
<td>17</td>
</tr>
<tr>
<td>• Pattern Chart</td>
<td>19</td>
</tr>
<tr>
<td>• Let’s Operate</td>
<td>20</td>
</tr>
<tr>
<td>• Pascal’s Triangle</td>
<td>21</td>
</tr>
<tr>
<td>2. HCF and LCM</td>
<td></td>
</tr>
<tr>
<td>• Matching HCF and LCM</td>
<td>22</td>
</tr>
<tr>
<td>• ACF and... Sums</td>
<td>23 – 24</td>
</tr>
<tr>
<td>3. Fractions</td>
<td></td>
</tr>
<tr>
<td>• Fraction Number Line</td>
<td>25</td>
</tr>
<tr>
<td>• Add and Subtract</td>
<td>26</td>
</tr>
<tr>
<td>• Multiplying Fractions</td>
<td>27</td>
</tr>
<tr>
<td>• Dividing Fractions</td>
<td>28</td>
</tr>
<tr>
<td>4. Decimal Numbers and Percentage</td>
<td></td>
</tr>
<tr>
<td>• Division of a Decimal Number by a Decimal Number</td>
<td>29</td>
</tr>
<tr>
<td>• Fraction Number Line</td>
<td>30</td>
</tr>
<tr>
<td>• Making Changes</td>
<td>31</td>
</tr>
<tr>
<td>• How to Operate with Decimals</td>
<td>32</td>
</tr>
<tr>
<td>• Ascending/Descending Order</td>
<td>33</td>
</tr>
<tr>
<td>• Rounding Off</td>
<td>34 – 35</td>
</tr>
<tr>
<td>• Design your own mural</td>
<td>36</td>
</tr>
<tr>
<td>5. Distance and Time</td>
<td></td>
</tr>
<tr>
<td>• Number Lines</td>
<td>39</td>
</tr>
<tr>
<td>• Converting Units</td>
<td>40</td>
</tr>
<tr>
<td>6. Unitary Method</td>
<td></td>
</tr>
<tr>
<td>• The Word ‘Unit’ Means One</td>
<td>41</td>
</tr>
<tr>
<td>• Real-life Story Sums</td>
<td>42</td>
</tr>
</tbody>
</table>
7. Geometry
- Know Your Angles 43
- Adjacent, Complementary, and Supplementary Angles 44
- Constructing Angles 45
- What a Name 46
- Measuring Angles 47
- Know Your Triangles 48–49
- Constructing Triangles 50
- Interior Angles of a Triangle 51
- Know Your Quadrilaterals 52
- Cut-out of Quadrilaterals 53–54
- Constructing Quadrilaterals 55–56
- Point of Rotation and Order of Rotational Drawings of Cubes and Cuboids on a Grid 57
- Drawing Cubes and Cuboids 58
- Nets of Cubes and Cuboids 59–60
- 61

8. Perimeter and Area
- Perimeter and Area 62
- Architect for a Day 63

9. Bar Graphs
- Classroom Data 64
- Favourite Ice-cream 65

Index 68
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑‍中小学生</td>
<td>Individual Activity</td>
</tr>
<tr>
<td>👫</td>
<td>Pair Activity</td>
</tr>
<tr>
<td>👫</td>
<td>Group Activity</td>
</tr>
<tr>
<td>📚📝</td>
<td>Whole Class Activity</td>
</tr>
<tr>
<td>🧲√</td>
<td>Manipulative Required</td>
</tr>
<tr>
<td>🎨🖌️</td>
<td>Colouring/Shading Activity</td>
</tr>
<tr>
<td>🔪issors</td>
<td>Photocopiable Cut-outs which can be Laminated</td>
</tr>
</tbody>
</table>

SNC Cognitive Domains Table

<table>
<thead>
<tr>
<th>Cognitive Domains/ Skills</th>
<th>Percentage Weightage</th>
<th>Action Verbs</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowing</td>
<td>40%</td>
<td>Recall</td>
<td>Recall definition, terminology, unit of measurement, geometric shapes, and notations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recognise</td>
<td>Recognise numbers, expressions, quantities, and shapes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classify/order</td>
<td>Classify numbers, expression, quantity, and shapes by common properties</td>
</tr>
</tbody>
</table>

(Images of symbols and text related to educational activities and cognitive domains are included.)
Compute

Carry out algorithmic procedure for $+$, $-$, \times, and \div, or combination of these with numbers, fractions, decimal, and carry out straight – forward expressions

<table>
<thead>
<tr>
<th>Applying</th>
<th>40%</th>
<th>Determine</th>
<th>Determine appropriate operations, strategies, and tools for solving situations for which there are commonly used methods of solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Represent/model</td>
<td>Display data in tables or graphs; create equations, inequalities, geometric figures, or diagrams that model situations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apply</td>
<td>Apply strategies and operations to solve situations involving mathematical concepts and procedures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reasoning</th>
<th>20%</th>
<th>Analyse</th>
<th>Determine, describe, or use relationships among numbers, expressions, quantities, and shapes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synthesise/integrate</td>
<td>Link different elements of knowledge, related representations, and procedures to solve situations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluate</td>
<td>Evaluate alternative problem-solving strategies and solutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generalise</td>
<td>Make statements that represent relationships in more general and more widely applicable terms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Justify</td>
<td>Provide mathematical arguments to support a strategy or solution</td>
<td></td>
</tr>
</tbody>
</table>
Name: ____________________
Date:______________________

Place and Place Value

<table>
<thead>
<tr>
<th>Number</th>
<th>Place (of the ringed digit)</th>
<th>Place Value (of the ringed digit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>③5</td>
<td>Tens</td>
<td>30</td>
</tr>
<tr>
<td>28⑧</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑨37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6⑦54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2⑨302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17⑤48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>④8936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7③754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>902⑨6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Base ten blocks can be used to enhance the place value activity.
Make groups of 6 students each. Give dice to each group. Each member rolls the dice and writes the number in the chart above to make different combinations of 6-digit numbers.

Unit 1: 1.1
Place Value Chart

<table>
<thead>
<tr>
<th>Million</th>
<th>Hundred Thousand</th>
<th>Ten Thousand</th>
<th>Thousand</th>
<th>Hundred</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit 1: 1.1
Show these cards randomly and ask students to identify the number and the name in words.

Note: Use these cards to help pupils learn to read and write numbers up to 1,000,000.
Numeral Cards

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>00</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>000</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
</tr>
<tr>
<td>800</td>
<td>900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cut out all the numeral cards, and jumble them up in different bowls; one for **ones**, one for **tens**, and so on. Have students pick a chit from each bowl and then write the number correctly in the place value chart.

Note: Use these cards to help pupils learn to read and write numbers up to 1,000,000.
Use these cards to help pupils learn to read and write numbers up to 1,000,000.
Use these cards to help pupils learn to read and write numbers up to 1,000,000.
Use these cards to help pupils learn to read and write numbers up to 1,000,000.

Unit 1: 1.1
Use these cards to help pupils learn to read and write numbers up to 1,000,000.

Unit 1: 1.1
Fill in the boxes with an in between number of your choice to complete the chain.
The first line indicates a clue about what numbers to shade from 1 to 50 and then 51-100. Identify and describe the pattern of shading in this grid to complete it.
Let’s Operate

1. 583211 + 340000
2. 280600 + 108400
3. 900000 – 230050
4. 538200 – 200350
5. 920000 × 10
6. 361000 × 1000
7. 20520 × 300
8. 40000 ÷ 10
9. 35800 ÷ 100
10. 99000 ÷ 30
11. 12550 ÷ 25

Solve the above questions in pairs.

Unit 1: 1.2 and 1.3

Create 2 real-life story sums below, involving number operations, for your partner to solve.
The figure above shows Pascal’s triangle. Work out how the triangle is made then figure out what the next three rows would be, following the same pattern.

Unit 1: 1.4
Work in pairs to match the number pairs with corresponding HCF and LCM using the division method and the prime factorisation method. Colour the matching pairs the same colour.

<table>
<thead>
<tr>
<th>Number Pair</th>
<th>LCM</th>
<th>HCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 and 7</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>LCM 10</td>
<td>16</td>
<td>HCF 5</td>
</tr>
<tr>
<td>HCF 5</td>
<td>10</td>
<td>HCF 5</td>
</tr>
<tr>
<td>15 and 25</td>
<td>40</td>
<td>HCF 4</td>
</tr>
<tr>
<td>LCM 60</td>
<td>8</td>
<td>HCF 6</td>
</tr>
<tr>
<td>HCF 6</td>
<td>32</td>
<td>HCF 16</td>
</tr>
</tbody>
</table>

Unit 2: 2.1, 2.2
1. Solve the following.

a) A shopkeeper has to pack 72 pens, 96 pencils, and 36 erasers equally in boxes, so that no item is left. What is the biggest possible number of boxes needed?

b) Nida wants to plant 42 rose plants and 35 jasmine plants in her garden. What is the greatest possible numbers of rows if each row has same number of rose plants and same number of jasmine plants?
2. Solve the following.

c) Kashif goes hiking every 12 days and swimming every 6 days. He did both kind of exercise today. How many days from now will he go both hiking and swimming again.

e) Ali, Ahsan, and Hamza cycle everyday along the circular path and take 8, 12, and 16 minutes respectively to complete a round. If all of them start together from the same place, after how much time will they meet at the same place again?
Arrange the following on a number line to represent the fractions in ascending order. Hint: Find equivalent fractions first.

Note: Fraction blocks can be used to find the equivalent fractions.
Add and Subtract

\[
\frac{3}{5} + \frac{3}{4}
\]

\[
\frac{4}{6} + \frac{3}{5}
\]

\[
\frac{2}{6} + \frac{1}{3}
\]

Draw figures to solve the given questions.

Unit 3: 3.1

Note: Fraction blocks can be used to find the equivalent fractions.
Multiplying Fractions

\[
\frac{9}{10} \times \frac{2}{1}
\]

\[
\frac{5}{3} \times \frac{3}{5}
\]

\[
\frac{12}{28} \times \frac{11}{14}
\]

Unit 3: 3.2
1. \[
\frac{3}{4} \div \frac{5}{6}
\]
2. \[
\frac{14}{18} \div \frac{7}{9}
\]
3. \[
\frac{5}{8} \div \frac{3}{6}
\]
4. If 6 people split a large bottle of soda, and only drank \(\frac{1}{2}\) of the bottle, how much did each person drinks, given they each had equal parts?
Division of a Decimal Number by a Decimal Number

Divide

a) \(2.72 \div 1.7\)

b) \(4.95 \div 4.5\)

c) \(9.36 \div 1.3\)

Hint: First convert divisor into a whole number and then divide.

To remove the decimal point of the divisor, multiply the numerator and the denominator by 10.
Using the example above, draw real-life examples to represent the fraction or decimal next to it and use them to help you arrange them in ascending order, after converting the fractions to decimals. Hint: Convert the decimal number into a mixed fraction.

Write <, >, or = in the boxes.

2.35 2.4 9.08 9.2 5.3 5.03

Note: Hundredth circle can be used for this activity.
In pairs, convert fractions in decimals, using division show your work.

Unit 4: 4.1
How to Operate with Decimals

Solve the following in pairs, and show your work.
1. 4.301 + 7.728
2. 3.452 – 3.009
3. 5.10 × 1000
4. 9.99 × 20
5. 6.52 × 10
6. 5.22 ÷ 10
7. 7.35 ÷ 11
8. 3.81 ÷ 1.1
9. Three friends go on a road trip. The total driving time is 13.61 hours. If each friend drives for the same amount of time as the other, how many hours will each of them drive?
Ask students to arrange any two sequences in ascending order and any two in descending order.

Unit 4: 4.1
1. List all possible decimal numbers that can be rounded off to 4. Use digits 1, 3, 8, and 4 to make the decimal number.

 3.8 4.1 4.3

2. List out all possible decimal numbers that can be rounded off to 8. Use digits 5, 9, 2, and 6 to make the decimal number.

3. List all possible decimal numbers that can be rounded off to 2. Use digits 2, 7, 6, and 1 to make the decimal number.

4. List all possible decimal numbers that can be rounded off to 10. Use digits 1, 4, 7, and 9 to make the decimal number.

Work out different combinations with the digits to form decimal numbers that answer the statement above.
5. List all possible decimal numbers that can be rounded off to 7. Use digits 6, 2, 8, and 7 to make the decimal number.

6. List all possible decimal numbers that can be rounded off to 8. Use digits 5, 8, 3, and 7 to make the decimal number.

7. List all possible decimal numbers that can be rounded off to 1. Use digits 2, 6, 0, and 1 to make the decimal number.

8. List all possible decimal numbers that can be rounded off to 3. Use digits 9, 2, 1, and 3 to make the decimal number.
Follow the instruction and colour in the grid appropriately. Check what percentage of squares will stay white.

Unit 4: 4.3
Equivalent Sets

 Colour equivalent sets the same colour.

Note: ‘Percent’ means over 100, so percentages are like fractions.
Complete the number line by filling in the missing values. Discuss possible examples of where each of these number lines might be used.
Convert measurements into given units.

From school to home is 5000 m. (km)

The length of a doll’s hair is 0.15 m. (cm)

My cat’s length is 375 mm. (cm)

My science book is 0.2 cm thick. (mm)

The wingspan of a butterfly is 0.03 cm. (mm)

Ahmed walks 0.9 km every day. (m)

Mother bought 300 cm of cloth. (m)

The swimming pool is 3000 l. (ml)

You can travel 10000 cm. (km)

The height of the wall is 500 cm. (mm)

He is 36 months old. (years)

Unit 5: 5.1 and 5.2
1. Use the unitary method to fill in the boxes.

 a. One pack of soap weighs 250 g, so 5 packs of soap will weigh ______ g.

 b. 9 pens cost Rs 810, so 1 pen will cost Rs. ______.

 c. 5 candies cost Rs 35, so 8 candies will cost Rs ______.

 d. Price of 7 flower pots = Rs. 700

 Price of 1 flower pot = Rs. ______

 Price of 9 flower pots = Rs. ______

Ask students to solve the above questions.
Real-life Story Sums:

1. Sana has to make 250 cookies for a party. She decides to put an almond on each cookie. After completing 197 cookies she runs out of almonds. How many more almonds does she need?

2. Ahsan goes to stationery shop to buy some notebooks. If 2 notebooks cost Rs.720. and he decides to buy 5 notebooks. How much should he pay?

3. Sarim pays Rs. 80,000 as rent for 4 months, and now, wants to pay 6 months rent altogether. How much will he pay?

Ask students to solve the above questions.
Know Your Angles

Identify each angle and write its name.

1. Acute angle
2.
3.
4.

How many right angles do you see in each digit?

1 2 3 4 5

6 7 8 9

Identify each angle and write its name.

Unit 7: 7.1

Note: Geo strips can be used for this activity.
Adjacent, Complementary, and Supplementary Angles

Choose the correct type of angles from the given word bank to fill in the boxes.

<table>
<thead>
<tr>
<th>adjacent</th>
<th>supplementary</th>
<th>complementary</th>
</tr>
</thead>
</table>

a) \(\angle AOB + \angle BOC = 90^\circ \)
\(\angle AOB \) and \(\angle BOC \) are \underline{complementary} angles.

b) In \(\angle AOB \) and \(\angle BOC \)
\(O \) is the common vertex.
\(OB \) is the common arm.
\(\angle AOB \) and \(\angle BOC \) are \underline{adjacent} angles.

c) \(\angle AOB + \angle BOC = 180^\circ \)
\(\angle AOB \) and \(\angle BOC \) are \underline{supplementary} angles.

Explain the terms ‘adjacent, supplementary, and complementary’ angles to the students. Ask them to make different combinations to form these angles.

Unit 7: 7.1
Use a protractor and ruler to construct right angles, straight angles, and reflex angles.

Unit 7: 7.1
Have the students write their names in large capital letters. Then find and name as many angles hidden in the letters as possible. Including adjacent, complementary, and supplementary angles.

Note: Students should recognise that two right angles are equal to a straight line.
For each triangle, measure the angles to name the triangles.
Know Your Triangles

According to sides

Triangle ABC: ________________________________
Triangle EFG: ________________________________
Triangle LMN: ________________________________
Triangle XYZ: ________________________________

Identify the types of triangles according to the sides.
Unit 7: 7.2
Know Your Triangles

According to angles

Triangle ABC: _______________________
Triangle EFG: _______________________
Triangle LMN: _______________________
Triangle XYZ: _______________________

Identify the types of triangles according to the angles.

Unit 7: 7.2
Each side of the square of the above grid are 1 cm.

• Draw a triangle such that the base is 4 cm shorter than your pencil, and the height is 1 cm more than the base, and it is a right-angled triangle.
• Draw a triangle with each side of 6 cm and each angle of 60°.
• Draw a triangle with two sides of 8 cm and included angle of 75°.

Unit 7: 7.2

Note: Geo boards and geo strips can be used to conduct this activity.
Interior Angles of a Triangle

\[\angle A = ______
\angle B = _____
\angle C = _____
\angle A + \angle B + \angle C = 180 ^\circ
\]

Ask the students to use protractor to measure the angles and find their sum. The sum of angles for each triangle should be 180°.
Use cut-outs of **quadrilaterals** to fill out the table appropriately, after completing the matching activity on page 53.

<table>
<thead>
<tr>
<th>Clue</th>
<th>Drawing</th>
<th>Name of Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two opposite sides are equal</td>
<td></td>
<td>Square, Rectangle, Parallelogram, Rhombus, Trapezium</td>
</tr>
<tr>
<td>All the sides are not equal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All angles are equal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has no right angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjacent sides are equal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has parallel side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opposite angles are obtuse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Match the quadrilaterals to their names.

- Square
- Rectangle
- Parallelogram
- Rhombus
- Kite
- Trapezium

Use cut-outs of quadrilaterals to fill out table.

Unit 7: 7.3

Note: Geo boards and geo strips can be used to conduct this activity.
Each small square in the above grid is of 1 cm.
- Construct a quadrilateral with side AB = 6 cm and BC = 3 cm.
- Construct a square with each side of 4 cm.
- Construct four squares and two rectangles of any measurement of your choice.
Do the following figures have rotational symmetry?
If yes, then mark their point of rotation and write the order
of rotational symmetry.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Order of Rotational Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td></td>
</tr>
<tr>
<td>g)</td>
<td></td>
</tr>
<tr>
<td>h)</td>
<td></td>
</tr>
<tr>
<td>i)</td>
<td></td>
</tr>
</tbody>
</table>

Ask pupils if they see the difference between reflective symmetry and rotational symmetries

Unit 7: 7.4
Drawings of Cubes and Cuboids

Square Grid

Isometric Grid

Unit 7: 7.5
Draw four cubes and four cuboids of your choice on this grid and shown on page 58.
Draw four cubes and four cuboids of your choice on this grid.
Draw nets of cubes and cuboids of your choice on this grid.

Note: Polydrons can be used for this activity.
Let students work in pairs. Tell them to draw squares and rectangles of any measurements and exchange the sheet with their partner.

Unit 7: 7.5

Note: Shapes not to scale.
Name: ________________
Date: ________________

Architect for a Day

CLASSROOM

<table>
<thead>
<tr>
<th>WIDTH</th>
<th>LENGTH</th>
<th>AREA</th>
<th>PERIMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BEDROOM

<table>
<thead>
<tr>
<th>WIDTH</th>
<th>LENGTH</th>
<th>AREA</th>
<th>PERIMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WIDTH | LENGTH | AREA | PERIMETER |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measure the dimensions of your classroom to fill the table. Then do the same at home with your bedroom and a room of your choice.

Unit 8: 8.1
Go around the classroom and collect this information from everyone including the teacher. Then present the data on a horizontal **bar graph** in the space provided above.

Unit 9: 9.2
Have the students conduct a survey in their class. Tell them to ask their classmate about their favourite ice-cream flavour. Ask them to complete the given table and show the result using a bar graph.

Unit 9: 9.2

<table>
<thead>
<tr>
<th>Ice-cream flavours</th>
<th>Chocolate</th>
<th>Vanilla</th>
<th>Strawberry</th>
<th>Mango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SNC Strands | Suggested Books | SNC Suggested WebLinks
---|---|---
1.3 – Place value | Unit 1 | Unit 2 |
| | | • http://www.free-training-tutorial.com/place-value/collecttheships.html
| | | • http://www.free-training-tutorial.com/place-value/airplanes.html
| | | • http://www.free-training-tutorial.com/place-value/createnumber.html
1.4 – Read and write numbers up to 10 000 | Unit 1 | Unit 2 |
1.5 – Number line | Unit 1 | Unit 2 |
1.6 – Comparing and ordering numbers | Unit 1 | Unit 2 |
1.7 – Estimation | Unit 4 | Unit 2 |
2.3 – Multiplication | Unit 2 | Unit 2 |
| | | • https://www.tes.co.uk/teachingresource/recognisemultiples-of-2-5-and-10-worksheet-6372812
| | | • https://www.homeschoolmath.net/teaching/md/zero_and_one.php
2.4 – Division | Unit 2 | Unit 2 |
3 – Fractions | Unit 3 | Unit 4 |
4.1 – Length | Unit 5 | Unit 6 |
| | | https://www.homeschoolmath.net/worksheets/measuring-metric.php
<table>
<thead>
<tr>
<th>Topic</th>
<th>Unit 5</th>
<th>Unit 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 – Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 – Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 – Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 – Geometrical shapes</td>
<td>Unit 7</td>
<td>Unit 8</td>
</tr>
<tr>
<td>6.2 – Symmetry</td>
<td>Unit 7</td>
<td>Unit 8</td>
</tr>
<tr>
<td>7.1 – Carroll diagram</td>
<td>Unit 9</td>
<td>Unit 10</td>
</tr>
<tr>
<td>8.1 – Perimeter and area</td>
<td>Unit 8</td>
<td>Unit 9</td>
</tr>
<tr>
<td>9.2 – Bar graphs</td>
<td>Unit 9</td>
<td>Unit 10</td>
</tr>
</tbody>
</table>

http://www.mathsisfun.com/geometry/symmetry-linearplane-shapes.html
http://academic.sun.ac.za/mathed/malati/3PrimDat.pdf
Don’t be Deceived

Book Piracy and Plagiarism are Crimes.

Buy Genuine Oxford Books

Look out for the new security label whenever you purchase an Oxford textbook or supplementary reader. Labels with the features shown below are proof of genuine Oxford books.

1. The image of Quaid’s Mausoleum changes colour from orange to green when viewed from different angles.
2. The labels have security cut marks to prevent them from being peeled off and reused.
3. The word ‘ORIGINAL’ appears when the area under ‘RUB HERE’ is rubbed with a coin.
4. ‘OUP’ written in very small print becomes visible when viewed through a magnifying glass.
5. Download free ‘FPQR Tasdiq’ app from App Store/Play Store on your smartphone.
6. Scan QR code on the security label to verify if you have purchased a genuine Oxford book.
7. The labels tear if peeled off from the book cover.

Pirated books can be recognised by:
- inferior production quality
- low-grade paper
- variations in texture and colour
- poor print quality
- blurred text and images
- poor binding and trimming
- substandard appearance of the book

Do not accept the book if the label is missing, has been torn or tampered with, the colour on the security label does not change, or the word ‘ORIGINAL’ does not appear upon rubbing the area with a coin.

If you suspect that you are being sold a pirated book without the security label, please contact:

Oxford University Press,
No. 38, Sector 15, Korangi Industrial Area, Karachi-74900, Pakistan.
Tel.: (92-21) 35071580-86 Fax: (92-21) 35055071-72
Toll-free No.: 0800-68775 (9 a.m. to 5 p.m.; Monday to Friday)
Email: central.marketing.pk@oup.com
Website: www.oup.com.pk Find us on: 📚 📝 📷