UNIVERSITY PRESS

PRIMARY MATHEMATICS STUDENTS' COURSE BOOK

 3Consultant and Author:
Dr Foong Pui Yee

Authors:

Lim Li Gek Pearlyn
Wong Oon Hua

ADDENDUM

ARMY PUBLIC SCHOOLS \& COLLEGES SYSTEM

Contents

Students' Learning Outcomes	Page No.
Estimate the answer to an addition and subtraction question. (using various approaches).	1
Reinforce through concrete and pictorial representation that the division of any two numbers cannot be done in any order (Commutative).	3
Divide a number by 1 and itself.	3
Recognise among: -proper fractions -improper fractions. -mixed numbers	4
Add and subtract like and unlike fractions (with denominators that are multiples of the same number).	7
Know and recognise that hundredths arise by dividing an object, single digit numbers and quantities into hundred equal parts.	11
Identify that tenths arise by dividing an object, single digit number and quantities into ten equal parts (e.g., $2 / 10=0.2$)	11
Find the missing number or operation in a number sentence (e.g., $20+w=100$).	15
Read and write temperature to the nearest appropriate unit i.e., $\left.{ }^{\circ} \mathrm{C}\right)$ using pictorial representations and relating temperature scale to number line.	16
Compare and order temperature using $<,>$, and $=$ signs.	16
Recognise and identify the units of measurement of area and perimeter and find the perimeter and area of 2-D figures (Squares and rectangles) and irregular figures (figures covers either $1 / 2$ or 1 square unit only) on a square grid.	17
Differentiate and classify polygons with respect to their attributes (pentagon, hexagon, octagon and decagon).	33
Identify and differentiate between prisms and pyramids with respect to their attributes.	34
Describe the movement of objects (i.e., slide and rotation).	35
Recognise and Identify quarter turns and identify quarter turns as right angles (and vice versa).	35
Identify half and 3-quarter turns (clockwise and anti-clockwise) as two and three right angles respectively.	35
Describe the likelihood that everyday events will occur, using mathematical language (i.e., impossible, possible, less likely, more likely, equally likely, unlikely and certain).	39

Students' Learning Outcome:

- Estimate the answer to an addition and subtraction question. (using various approaches).

ESTIMATION

LET'S LEARN

1. 5213 adults and 785 children attended a carnival.

Find the total number of people at the carnival.
Estimate to check if your answer is reasonable.

$$
5213+785=5998
$$

Method 1

$$
\begin{aligned}
5213 & \approx 5000 \\
785 & \approx 800 \\
5213+785 & \approx 5000+800 \\
& =5800
\end{aligned}
$$

5998 is close to 5800 , so the answer is reasonable.

Method 2

$$
\begin{aligned}
5213 & \approx 5200 \\
785 & \approx 800 \\
5213+785 & \approx 5200+800 \\
& =6000
\end{aligned}
$$

5998 is close to 6000, so the answer is reasonable.

There were 5998 people at the carnival.
2. Find the value of 4692-708.

Estimate to check if your answer is reasonable.

$$
4692-708=3984
$$

Method 1

$$
\begin{aligned}
4692 & \approx 5000 \\
708 & \approx 1000 \\
4692-708 & \approx 5000-1000 \\
& =4000
\end{aligned}
$$

3984 is close to 4000 , so the answer is reasonable.

Method 2

$$
\begin{aligned}
4692 & \approx 4700 \\
708 & \approx 700 \\
4692-708 & \approx 4700-700 \\
& =4000
\end{aligned}
$$

3984 is close to 4000 , so the answer is reasonable.
3. Estimate and find the value of each of the following.
(a) $6427+568$
(b) $2649-1398$

Can you estimate in more than one way to check the
 reasonableness of your answers?

Students' Learning Outcomes:

- Recognise using concrete and pictorial representation that the division of one number by another cannot be done in any order.
- Divide a number by 1 and itself.

DIVISION

Divide.

1. $4 \div 4$

$4 \div 4=$
2. $4 \div 1$

Try to divide other number by itself. What do you notice about each product?

Try to divide other numbers by 1.
What do you notice about each product?
3. $4 \div 2$

$4 \div 2=$

Can you divide the following?
$2 \div 4$

Division of one number by another cannot be done in any order.

Students' Learning Outcome:

- Recognise among: proper fractions, improper fractions, and mixed numbers.

How many pies are there?

MIXED NUMBERS

IN \leftrightarrows FOCUS

What is the fraction shown?

LET'S LEARN

1. This is 1 whole pie and 1 sixth of a similar pie.

We can represent 1 whole and 1 sixth as a mixed number.
There are $\begin{array}{r}1 \frac{1}{6} \\ \text { pies altogether. } \\ \hline\end{array}$

When we add a whole number to a fraction, we will get a mixed number.

There are 2 wholes and 5 sixths of a cake.
We can also represent 2 wholes and 5 sixths as a mixed number.

$$
2+\frac{5}{6}=2 \frac{5}{6}
$$

There are $2 \frac{5}{6}$ cakes altogether.
3. How many litres of water are there altogether?

$$
3+\frac{7}{10}=3 \frac{7}{10}
$$

There is $3 \frac{7}{10}$ litres of water altogether.
4. What are the mixed numbers shown?
(a)

3 wholes and 1 half is
(b)

$$
+\frac{\square}{=}
$$

2 wholes and 3
is

Students' Learning Outcome:

- Add and subtract like and unlike fractions (with denominators that are multiples of the same number).

ADDING FRACTIONS

IN FOCUS

Farhan had $\frac{3}{5}$ of a pie.
Waleed had $\frac{7}{10}$ of a similar pie.

How many pies did they have altogether?

LET'S LEARN

1. To add the two fractions, we need to find the equivalent fractions with the same denominator.

$$
\begin{aligned}
\frac{3}{5}+\frac{7}{10} & =\frac{6}{10}+\frac{7}{10} \\
& =\frac{13}{10}
\end{aligned}
$$

Farhan and Waleed had $\frac{13}{10}$ pies altogether.

2. Add $\frac{2}{3}$ and $\frac{5}{12}$.

Express the answer as a mixed number in its simplest form.

$$
\begin{aligned}
\frac{2}{3} & =\frac{8}{12} \\
\frac{2}{3}+\frac{5}{12} & =\frac{8}{12}+\frac{5}{12} \\
& =\frac{13}{12}
\end{aligned}
$$

$\frac{5}{12}$
3. Add the fractions using

Express each answer as a mixed number in its simplest form.
(a) $\frac{3}{4}+\frac{5}{8}$
(b) $\frac{4}{5}+\frac{3}{10}$
(c) $\frac{4}{6}+\frac{4}{18}$
(d) $\frac{3}{4}+\frac{3}{16}$

Add the following fractions.
(a) $\frac{2}{3}+\frac{5}{9}$
(b) $\frac{3}{5}+\frac{7}{10}$
(c) $\frac{11}{12}+\frac{1}{4}$
(d) $\frac{3}{4}+\frac{5}{16}$

SUBTRACTING FRACTIONS

IN \leftrightarrows FOCUS

Sara had 3 chocolate bars.
She gave $\frac{5}{12}$ of a chocolate bar to Ain . How much chocolate did Sara have left?

Sara
Ain

LET'S LEARN

1.

Subtract $\frac{5}{12}$ from 1 whole.

$$
1-\frac{5}{12}=\frac{7}{12}
$$

Then we add $\frac{7}{12}$ to the remaining 2 wholes.

$$
2+\frac{7}{12}=2 \frac{7}{12}
$$

$$
3-\frac{5}{12}=2 \frac{7}{12}
$$

Sara had $2 \frac{7}{12}$ chocolate bars left.
2. What is the difference between 3 and $\frac{2}{8}$?

Express your answer as a mixed number in its simplest form.

$$
3-\frac{2}{8}=
$$

Subtract the fractions using

3. Subtract and express each answer in its simplest form.
(a) $1-\frac{6}{11}$
(b) $4-\frac{3}{7}$
(c) $3-\frac{4}{6}$
(d) $9-\frac{2}{8}$

1. Subtract.

Express each answer as a mixed number in its simplest form.
(a) $3-\frac{2}{3}$
(b) $4-\frac{4}{5}$
(c) $7-\frac{4}{9}$
(d) $5-\frac{2}{4}$
(e) $1-\frac{6}{10}$
(f) $4-\frac{6}{12}$
2. Subtract and express each answer in its simplest form.
(a) $\frac{2}{5}-\frac{1}{10}$
(b) $\frac{1}{3}-\frac{2}{9}$
(c) $\frac{4}{5}-\frac{1}{20}$
(d) $\frac{15}{16}-\frac{3}{4}$

Students' Learning Outcomes:

- Know and recognise that hundredths arise by dividing an object, single digit numbers and quanti ties into hundred equal parts.
- Identify that tenths arise by dividing an object, single digit number and quantities into ten equal parts (e.g., $2 / 10=0.2$)

TENTHS

IN \leftrightarrows FOCUS
Look at the shaded parts in each figure.
1 whole

How do we express 1 part out of 10 parts as a decimal?

LET'S LEARN

1. Divide 1 whole into 10 equal parts.

1 part out of 10 parts is $\frac{1}{10}$.

$$
\begin{aligned}
\frac{1}{10} & =1 \text { tenth } \\
& =0.1
\end{aligned}
$$

We read 0.1 as zero point one.
$\frac{1}{10}$ is $\mathbf{0 . 1}$ when written as a decimal.
The dot in a decimal is called the decimal point.

2. How many parts of each figure are shaded?

Express as fractions and decimals.
(a)

$$
\overline{10}=
$$

(b)

3. Express $3 \frac{2}{10}$ as a decimal.
$0.1 \quad 0.1$

Ones	Tenths
3	2

$$
\begin{aligned}
3 \frac{2}{10} & =3 \text { ones }+2 \text { tenths } \\
& =3+0.2 \\
& =3.2
\end{aligned}
$$

The digit 3 is in the ones place. The digit 2 stands for 0.2 .

We read 3.2 as three point two.

4. Express each of the following as a decimal. Use and to help you.
(a) $1 \frac{6}{10}$
(b) $2 \frac{4}{10}$
(c) $4 \frac{8}{10}$
(d) $10 \frac{1}{10}$
5. 1 tenth of this figure is shaded.

10 tenths of this figure are shaded.
What is 10 tenths?

$$
\begin{aligned}
10 \text { tenths } & =\frac{10}{10} \\
& =1.0
\end{aligned}
$$

10 tenths $=1$ one

We can also use and to exchange 10 tenths for 1 one.

Ones	Tenths
1	0

6. How many parts of each figure are shaded? Express your answer as a decimal.
(a)

(b)

HUNDREDTHS

IN \leftrightarrows FOCUS
Look at the shaded parts in each figure.
1 whole

We get 100 parts when we divide each tenth into 10 parts. ?

	-	T	-		-	,	,		

How do we express 1 part out of 100 parts as a decimal?

Students' Learning Outcome:

- Find the missing number or operation in a number sentence (e.g., $20+w=100$).

Choose the correct option.
(a) $40+\square=70$
(b) $\square+20=50$
$(20,30)$
(c) 10
$15=25$
(+, -)
(d) $75 \quad 5=70$
(+, -)
(e) $25+\square=85$
$(60,50)$
(f) $\square+75=100$
$(35,25)$
(g) 85
$5=90$
(+, -)
(h) $60 \square 40=20 \quad(+,-)$

Students' Learning Outcome:

- Read and write temperature to the nearest appropriate unit i.e., $\left({ }^{\circ} \mathrm{C}\right)$ using pictorial representations and relating temperature scale to number line.
- Compare and order temperature using \langle,$\rangle , and =$ signs.

TEMPERATURE

On a particular day, the temperatures in different cities were recorded as follows.

$$
\begin{array}{lll}
\text { Karachi } \rightarrow 21^{\circ} \mathrm{C} & \text { Hyderabad } \rightarrow 19^{\circ} \mathrm{C} & \text { Quefta } \rightarrow 11^{\circ} \mathrm{C} \\
\text { Lahore } \rightarrow 14^{\circ} \mathrm{C} & \text { Peshawar } \rightarrow 12^{\circ} \mathrm{C} &
\end{array}
$$

1. Arrange the names of the cities according to their temperature, from highest to lowest.
2. Complete the following using $<,>$, or $=$.

$$
27^{\circ} \mathrm{C} \square \text { Karachi's temperature }
$$

$13^{\circ} \mathrm{C} \quad$ Lahore's temperature
$11^{\circ} \mathrm{C} \square$ Quetta's temperature
$10^{\circ} \mathrm{C}$ \square Peshawar's temperature

Students' Learning Outcome:

- Recognise and identify the units of measurement of area and perimeter and find the perimeter and area of 2-D figures (Squares and rectangles) and irregular figures (figures covers either $1 / 2$ or 1 square unit only) on a square grid.

What does Farwa need to find to get the correct length of yarn for the shapes?

PERIMETER

Farwa uses yarn to outline each shape.
How can she find the length of yarn she needs for each shape?

LET'S LEARN

1.

Farwa needs to find the perimeter of each shape.
The perimeter of each shape is the total length around it.
How can you find the perimeter of each figure?

2. A rectangle is drawn on a $1-\mathrm{cm}$ square grid. The perimeter of the rectangle is the total length of its sides.

The perimeter of the rectangle is 16 cm .
3.

The perimeter of Figure A is
The perimeter of Figure B is The perimeter of Figure C is
cm. cm. cm.
4. Figures A, B, C and D are drawn on a 1 -m square grid.

(a) Perimeter of Figure $\mathrm{A}=$ m
(b) Perimeter of Figure $B=\square m$
(c) Perimeter of Figure $\mathrm{C}=\square \mathrm{m}$
(d) Perimeter of Figure $\mathrm{D}=\square \mathrm{m}$
(e) Figure \square has the same perimeter as Figure
(f) Figure has the smallest perimeter.
(g) The perimeter of Figure is the largest.
5.

$24+13+24+13=$
The perimeter of the field is m.
6.

The perimeter of the vegetable plot is m.
7.
 \square
\square
\square

The perimeter of the flower bed is \square m.

1. Find the perimeter of each figure.

(a) Perimeter of Figure $P=$
(b) Perimeter of Figure $Q=$
(c) Perimeter of Figure $\mathrm{R}=$
2. Find the perimeter of each figure.
(a)

(b)

(c)

(d)

AREA IN SQUARE UNITS

IN FOCUS

What is the area of your desk?

LET'S LEARN

1.

The amount of surface taken up by a figure is the area.

What other objects can you use to measure the area of your desk with?
2.

Each \square is 1 square unit.

Figure D covers a surface of 6 square units.
The area of Figure D is 6 square units.
3.

Each is $\frac{1}{2}$ square unit or half a square unit.
There are 9 square units and 2 half square units.

The area of Figure E is square units.
4.

(a) Figure F has
square units and half square units. It has an area of square units.
*(b) Figure G has an area of square units.

Make sure you do not

 count a square more than once. Tick as you count the squares.

5. What is the area of the leaf?

The area of the leaf is about square units.

Work in groups of 3 .

Part A:

1 Use to make some figures.
What you need:

Use 10 for each figure.
2 Label each figure.
3. Record the area and perimeter of the figures.

Example

Figure 1

In your figures, make sure that the sides of the touch one another.

Figure	Area (square units)	Perimeter (units)
1	10	22

What do you notice about the area and perimeter of each figure?

Part B:

Figure A is a square. Each side has a length of 4 squares.
Figure B is a rectangle. The short side has a length of 3 squares. The long side has a length of 5 squares.

1 Use to make each figure.
2 Record the area and perimeter of each figure.
What do you notice about the area and perimeter of each figure?

What is the area of each figure?

(a) Area of Figure $\mathrm{A}=\quad$ square units
(b) Area of Figure $B=\square$ square units
(c) Area of Figure $\mathrm{C}=\square$ square units
(d) Area of Figure $D=\square$ square units
(e) Area of Figure $\mathrm{E}=\quad$ square units
(f) Area of Figure $\mathrm{F}=\square$ square units

AREA $\mathbb{N} \mathrm{cm}^{2}$ AND \mathbf{m}^{2}

IN FOCUS

This is a $1-\mathrm{cm}$ square grid.
How can you find the area of objects using the square grid?

LET'S LEARN

1.

This is a $1-\mathrm{cm}$ square.
The area of the square is 1 square centimetre ($\mathbf{c m}^{2}$).

The square centimetre is a unit of area.
We write cm^{2} for square centimetre.

2.

1 m

This is a l-m square.
The area of the square is 1 square metre (m^{2}).

The square metre is another unit of area. It is used to measure bigger areas. We write m^{2} for square metre.
3.

The area of the square is $4 \mathrm{~cm}^{2}$.
4.

The area of a $1-\mathrm{cm}$ square is $1 \mathrm{~cm}^{2}$. We can find the area by

The area of the rectangle is m^{2}.

Work in groups of 4.
1 Take \quad and .
Mark out a square with sides of 1 m on the classroom floor.
How many of your classmates can stand inside the square?

2. Cut off $1 \mathrm{~cm}^{2}$ from a piece of

Place it inside the 1-m square on the floor.
How many 1-cm squares do you think is needed to cover one 1-m square?
5.

(a) The area of Figure A is cm^{2}.
(b) The area of Figure B is cm^{2}.
(c) The area of Figure C is cm^{2}.
(d) The area of Figure D is cm^{2}.
*(e) The area of Figure E is $\quad \mathrm{cm}^{2}$.
*(f) The area of Figure F is cm^{2}.
6.

(a) The area of Figure G is
m^{2}.
(b) The area of Figure H is m^{2}.
(c) The area of Figure 1 is m^{2}.
(d) The area of Figure J is m^{2}.
*(e) The area of Figure K is m^{2}.
*(f) The area of Figure L is m^{2}.

Work in pairs.
1 Draw squares and rectangles of different
sizes on a \qquad

What you need:
2
2. Find the areas of the squares and rectangles by counting the number of squares they cover.

3 Record the areas and lengths of each side of the rectangles and squares.

Example

Square	Length (cm)	Length (cm)	Area (cm ${ }^{\mathbf{2}}$)
A	2	2	4
B	3	3	9

Rectangle	Length (cm)	Length (cm)	Area (cm ${ }^{\mathbf{2}}$)
A	3	2	6
B	2	4	8

How are the area and the length of each side of each figure related?

Find the area of each figure in the $1-\mathrm{cm}$ square grid.

(a) Area of Figure $A=\quad \mathrm{cm}^{2}$
(b) Area of Figure $B=>\mathrm{cm}^{2}$
(c) Area of Figure $\mathrm{C}=\square \mathrm{cm}^{2}$
(d) Area of Figure $\mathrm{D}=\square \mathrm{cm}^{2}$
*(e) Area of Figure $\mathrm{E}=\square \mathrm{cm}^{2}$
*(f) Area of Figure F = \square cm^{2}

Students' Learning Outcome:

- Differentiate and classify polygons with respect to their attributes (pentagon, hexagon, octagon and decagon).

POLYGONS

A polygon is a closed 2-D shape with three or more straight sides.

Students' Learning Outcome:

- Identify and differentiate between prisms and pyramids with respect to their attributes.

PRISMS AND PYRAMIDS

The solids shown are prisms.
1.

What are the shapes of the faces in each prism shown?
2.

A pyramid has flat faces.
The base is a shape with straight edges.
The sides are triangles that meet at the top.

A pyramid is named after the shape of its base.

What are the similarities and differences between

Students' Learning Outcomes:

- Describe the movement of objects (i.e., slide and rotation).
- Recognise and Identify quarter turns and identify quarter turns as right angles (and vice versa).
- Identify half and 3-quarter turns (clockwise and anti-clockwise) as two and three right angles respectively.

MOVEMENT

Slide is a movement in which every point of the given shape or object moves or slides in this same direction and also by same this distance.

$$
\longrightarrow
$$

Rotation means circular movement of a shapes or object around a centre.

1. Write the correct movement for each of the following.

2.

The hands of a clock turn in a clockwise direction.
3. anticlockwise

You can turn the steering wheel of a car clockwise or anticlockwise.

Whole clockwise turn

half of a clockwise turn
5. quarter of a clockwise turn

A quarter of a clockwise turn is equal to a right angle.
6. half of a clockwise turn

Half of a clockwise turn is equal to 2 quarter turns.
Half of a clockwise turn is equal to 2 right angles.
6. three quarters of a clockwise turn

Three quarters of a clockwise turn is equal to 3 right angles.
Three quarters of a clockwise turn is the same as one quarter of an anticlockwise turn.

Students' Learning Outcome:

- Describe the likelihood that everyday events will occur, using mathematical language (i.e., impossible, less likely, more likely, equally likely, unlikely, and certain).

PROBABILITY

The chance of occurring an event is called probability. It is the likelihood of an outcome happening.

- If an event is sure to happen, then it has a certain probability.
- If an event is more likely to happen than not happen, then it has a likely probability.
- If the likelihood of two events happening is the same, then the two events are equally likely to happen.
- If an event is less likely to happen than not happen, then it has an unlikely probability.
- If an event is sure not happen, then it has an impossible probability.

Choose the correct likelihood.

1. You have one red and one blue pen in your bag. The chance of picking a red and the chance of picking blue pen is \qquad .
impossible / equally likely
2. The chance the a triangle has three sides is \qquad .
certain / impossible
3. The chance of getting an 8 on rolling a dice is \qquad .
certain / impossible
