PRIMARY MATHEMATICS

STUDENTS' COURSE BOOK

Consultant and Author:
Dr Foong Pui Yee

Authors:

Lim Li Gek Pearlyn Wong Oon Hua

ADDENDUM

ARMY PUBLIC SCHOOLS \& COLLEGES SYSTEM

Contents

Students' Learning Outcomes	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Read and write Roman numbers up to 12.	1
Round numbers to the nearest tens using different concrete objects and pictorial representations.	3
Recognise the position of objects and write it using ordinal numbers up to 20.	6
Estimate the answer to an addition and subtraction question. (using various approaches).	7
Recognise even and odd numbers.	9
Identify international currency and denominations (for instance, dollars).	12
Solve money problems involving addition and subtraction of Pakistani money and a few selected international currency notes. (for instance Dollars)	16
Multiply mentally and in written form using the multiplication tables that they know: 2-digit number by a 1-digit number using a multiplication grid.	21
Multiply a number with 0 and 1.	23
Recognise using concrete and pictorial representation that the division of one number by another cannot be done in any order.	24
Identify, name, and write; unit fractions, non-unit fractions, like fractions, unlike fractions of a discrete set of objects using pictorial representations.	25
Compare and order unit fractions and like fractions (with denominators up to 10) using $<,>$, and $=$ sign.	27
Add and subtract like fractions within 1 whole.	30
Know and recognise that tenths arise by dividing an object into ten equal parts and in dividing single digit numbers and quantities by ten (using concrete and pictorial representations).	35
Compare the lengths of different objects using standard units of length (metre and centimetre) using $<,>$, and $=$ signs.	36
Compare the mass of different objects using standard units of mass (kilogram and gram) using $<,>$, and $=$ signs.	39
Compare the capacity of different objects using standard units of capacity (litre and millilitre) using <, >, and $=$ signs.	41
Read and write temperature to the nearest appropriate unit i.e., (${ }^{\circ} \mathrm{C}$) using pictorial representations and relating temperature scale to number line.	42
Compare and order temperature using $<,>$, and $=$ signs.	42
Recognise perimeter and area.	44
Identify pairs of perpendicular and parallel lines.	46
Describe the position, direction and movement of an object including moving clockwise, anti-clockwise, quarter, half and three quarters turns using appropriate positional language (for instance: inside, outside, above, below, over, under, far, near, before, after, beside, between, left, right and in front of, quarter turn, half turn, three quarter turns, clockwise, anti-clockwise, behind etc).	52
Recognise turn as a rotation.	58
Read and interpret data using pictographs, bar graphs and tally charts and; represent data using tally charts (including real-world problems).	61
Describe the likelihood that everyday events will occur, using mathematical language (i.e., impossible, less likely, more likely, unlikely, and certain).	69

Students' Learning Outcome:

- Read and write Roman numbers up to 12.

ROMAN NUMERALS

IN \leftrightarrows FOCUS

What do the letters on the clock represent?

LET'S LEARN

1. The letters on the clock are Roman numerals.

Write the Roman numerals for 1 to 8 .

$I=1$
$I I=2$
$I I I=3$
---:
$V=5$
$V I=6$
$V I I=7$
$V I I I=8$

V is 5 . So I before V is 1 less than 5 .

2. Write the Roman numerals for 9 and 10 .

$$
\begin{aligned}
& I X=9 \\
& X=10
\end{aligned}
$$

X is 10. So I before X is 1 less than 10 .

3. Write the Roman numerals for 11 and 12.

$$
\begin{aligned}
\mathrm{XI} & =9 \\
\mathrm{XII} & =10
\end{aligned}
$$

X is 10 . So I after X is 1 more than 10 .

1. What numbers do these represent?
(a) $X=$
(b) $V=$
(c) $\mathrm{VII}=$
(d) $I X=$
(e) $\mathrm{XI}=$
(f) $\mathrm{IV}=$
2. Write the Roman numerals for these numbers.
(a)
$=9$
(b) $\quad=12$
(c) $=3$
(d) $\square 8$
3. Write the numbers given in question 2 in words.
(a)
(b)
(c)
(d)

Students' Learning Outcome:

- Round numbers to the nearest tens using different concrete objects and pictorial representations.

ROUNDING NUMBERS

IN FOCUS

Mrs Ali went shopping.
She bought a handbag for $\$ 58$, a pair of shoes for $\$ 73$ and a dress for $\$ 35$.
What is the cost of each item rounded to the nearest ten dollars?

LET'S LEARN

Rounding numbers to the nearest ten

1. The handbag cost $\$ 58$.

58 is between 50 and 60.
58 is nearer to 60 than to 50 .
We get 60 when we round 58 to the nearest ten.

58 is approximately equal to 60 .
$58 \approx 60$
The handbag cost about $\$ 60$.

The sign \approx means approximately equal to.

To round a number to the nearest ten, look at the digit in the ones place.
2. The pair of shoes cost $\$ 73$.

73 is between 70 and 80 .
73 is nearer to 70 than to 80 .
We get \quad when we round 73 to the nearest ten.
$73 \approx$
The shoes cost about \$
We round down a number when the digit in the ones
 place is less than 5.
3. The dress cost $\$ 35$.

35 is exactly halfway between 30 and 40.
We get 40 when we round 35 to the nearest ten.
$35 \approx 40$
The dress cost about $\$ 40$.

We round up a number when the digit in the ones place is 5 or greater.

4. Round 437 to the nearest ten.

437 is between 430 and 440 .
437 is nearer to than to
$437 \approx$
5. Round each number to the nearest ten.
(a) $63 \approx$
(b) $48 \approx$
(d) $591 \approx$
(c) $967 \approx$
(e) $324 \approx$
(f) $655 \approx$
6. A number rounded to the nearest ten is 50. What could the original number be?
(a) What are the possible answers?
(b) What is the smallest answer?
(c) What is the greatest answer?

Use the number line to help you.

Round each number to the nearest ten.
(a) 93
(b) 26
(c) 125
(d) 897
(e) 435
(f) 955

Students' Learning Outcome:

- Recognise the position of objects and write it using ordinal numbers up to 20.

Let the students fill in the missing values in the victory ribbons. Then have the students arrange themselves by their birth month, giving the youngest student first position, and so on. Change the attribute to make the activity more interesting.

Students' Learning Outcome:

- Estimate the answer to an addition and subtraction question. (using various approaches).

ESTIMATION

LET'S LEARN

1. 521 adults and 785 children attended a carnival. Find the total number of people at the carnival. Estimate to check if your answer is reasonable.

$$
521+785=1306
$$

Method 1

$$
\begin{aligned}
521 & \approx 500 \\
785 & \approx 800 \\
521+785 & \approx 500+800 \\
& =1300
\end{aligned}
$$

1306 is close to 1300 , so the answer is reasonable.

Method 2

$$
\begin{aligned}
521 & \approx 520 \\
785 & \approx 790 \\
521+785 & \approx 520+790 \\
& =1310
\end{aligned}
$$

1306 is close to 1310 , so the answer is reasonable.

There were 1306 people at the carnival.
2. Find the value of $469-78$.

Estimate to check if your answer is reasonable.

$$
469-78=391
$$

Method 1

$$
\begin{aligned}
469 & \approx 500 \\
78 & \approx 100 \\
469-78 & \approx 500-100 \\
& =400
\end{aligned}
$$

391 is close to 400 , so the answer is reasonable.

Method 2

$$
\begin{aligned}
469 & \approx 470 \\
78 & \approx 80 \\
469-78 & \approx 470-80 \\
& \approx 390
\end{aligned}
$$

391 is close to 390 , so the answer is reasonable.
3. Estimate and find the value of each of the following.
(a) $642+568$
(b) 264-13

Can you estimate in more than one way to check the reasonableness of your answers?

Students' Learning Outcome:

- Recognise even and odd numbers.

ODD AND EVEN NUMBERS

IN \int FOCUS

Compare the boxes of cupcakes in Sets A and B.
What do you notice?

LET'S LEARN

1.

Are the cupcakes in the other boxes in Set A evenly paired?

The cupcakes in a tray from Set A are evenly paired. The number 4 is an even number.

5 cupcakes

The cupcakes from Set B are not evenly paired.
One cupcake is the odd one out.
The number 5 is an odd number.

Do you know other odd and even numbers?

2.

-	1	Odd
-	2	Even
00°	3	Odd
	4	Even
Wun ini	5	Odd
	6	Even
!um	7	Odd
	8	Even
- 0 -	9	Odd
	10	Even

What do you notice about even and odd numbers?
3. How do you find out if 11 is an odd or even number?

For odd numbers, the number in the ones place
 can be 1,3,5, 7 or 9 .

For even numbers, the number in the ones place can be $0,2,4,6$ or 8 .

1 is an odd number.
So 11 is an odd number.
4.

| 12 | 13 | 14 | 15 | 16 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |, \square

and
are odd numbers.

- , and are even numbers.

1. Look at the numbers given. Which are even numbers? Which are odd numbers?

54
109 625

$$
\begin{array}{lllll}
21 & 12 & 96 & 210 & 887
\end{array}
$$

Even numbers: \square \square, \square

Odd numbers: \square , \square
\square

Students' Learning Outcome:

- Identify international currency and denominations (for instance, dollars).

How much money is Bina giving to the cashier?

RECOGNISING OUR COINS AND NOTES

IN \leftrightarrows FOCUS

Bina is holding one hundred rupees. We write it as Rs 100.

LET'S LEARN

1. Here are some Pakistani coins and notes. Coins

Notes

Re stands for rupee.
Rs stands for rupees.

2. Here are some of the coins and notes that are used in the United States of America.

5\$ five cents

\$ stands for cents. \$ stands for dollars.
Dollars and cents are also used in countries such as Canada and Singapore.

Work in pairs.
(1) Name the coin. Tell your partner what you can buy with each coin from a bookshop.

What you need:

2 Name the note. Tell your partner what you can buy with each note from a supermarket.

1. Count.

| Re 1 coins | Rs 2 coins | Rs 5 coin |
| :--- | :--- | :--- | :--- |
| Rs 10 notes | Rs 20 notes | Rs 50 notes |

2. Count.

Students' Learning Outcome:

Solve money problems involving addition and subtraction of Pakistani money and a few selected international currency notes. (for instance Dollars)

SOLVING WORD PROBLEMS

In 8 focus

What is the total cost of the sandwich and the toy?

LET'S LEARN

1. Ahmed buys a sandwich for $\$ 3$. He also buys a toy for $\$ 9$. How much does Ahmed pay in all?

Ahmed pays \$12 in all.
How can we check our answer?

Our answer is right!

2. Anum saves Rs 40 on Monday.

She saves Rs 50 on Tuesday.
She saves Rs 30 on Wednesday.
(a) How much does Anum save on Monday and Tuesday?
(b) How much does Anum save on the three days?
(a)

Rs $40+$ Rs $50=$ Rs 90
Anum saves Rs on Monday and Tuesday.
(b)

Rs $90+$ Rs $30=$ Rs 120
Anum saves Rs on the three days.
3. Bala has $\$ 270$.

He buys a cake which costs $\$ 50$.
He buys a pair of shoes which costs $\$ 160$. How much money does he have left?

Bala spends \$ altogether.
First, we should find how much money Bala spends altogether.

Bala has \$ left.
4. Nora buys a pair of scissors for Rs 50 .

She buys a ruler for Rs 30.
She gives the cashier Rs 100.
How much change does Nora get?

$$
\mathrm{Rs} \bigcirc \text { Rs } \square=R s
$$

Nora spends Rs in all.
'Change' is the amount of money

$$
\mathrm{Rs} \square \bigcirc \mathrm{Rs} \square=\mathrm{Rs}
$$

Nora gets back.

Nora gets Rs change.

Work in groups of 4 .
1 Choose one pupil to be the shopkeeper.

What you need:
$\$$
2 Look at the objects.

3 Choose two objects.
(4) Use ss to show the cost of each object.
(5. Add and tell how much the two objects cost altogether.

6 Use $\$ 100$ or 550 to pay for the objects.
Get change from the shopkeeper.
7. Ask your group members to check your answers.
(8) Repeat 1 to 7 .

Solve.

1. A snack costs 65థ.

A sweet costs $15 \$$ less than the snack. How much does the sweet cost?
2. Mr Saad bought a fan for $\$ 127$. He also bought a digital camera that costs $\$ 422$ more than the fan.
(a) What was the cost of the digital camera?
(b) How much did Mr Saad spend altogether?
3. A pair of slippers costs Rs 663. It costs Rs 43 more than a book.
(a) How much does the book cost?
(b) How much do the pair of slippers and book cost altogether?

Students' Learning Outcome:

- Multiply mentally and in written form using the multiplication tables that they know: 2-digit number by a 1-digit number using a multiplication grid.

MULTIPLICATION WITHOUT REGROUPING

IN \leftrightarrows FOCUS

How many puffs are there in the 4 boxes altogether?

LET'S LEARN

$2 \times 4=8$

$$
20 \times 4=80
$$

Multiply 2 tens by 4.

Multiply 2 hundreds by 4.

There are 800 puffs in the 4 boxes altogether.
2. Find the product of 12 and 4 .

10	1	1
10	1	1
10	1	1
10	1	1

Step 1 Multiply the ones by 4.

Step 2 Multiply the tens by 4.

$$
12 \times 4=48
$$

3. Multiply 43 by 2.

Step 1 Multiply the ones by 2.

Step 2 Multiply the tens by 2.

$$
43 \times 2=\square
$$

Students' Learning Outcome:

- Multiply a number with 0 and 1 .

MULTIPLY A NUMBER WITH 0 AND 1

1. Multiply.
$2 \times 2=\square 2 \times 1=\square$

Try to multiply other numbers by 0 .
What do you notice about each product?

2. Complete the following.
(a) $5 \times 1=$
(d) $4 \times 1=\square$
(b) $3 \times 0=$
(e) $5 \times 0=$
(c) $4 \times 0=$
(f) $3 \times 1=$

Students' Learning Outcome:

- Recognise using concrete and pictorial representation that the division of one number by another cannot be done in any order.

DIVISION OF ONE NUMBER BY ANOTHER CANNOT BE DONE IN ANY ORDER

1. Make 5 groups of these 10 apples.

How many apples are there in each group?

$$
10 \div 5=
$$

2. Can you make 10 groups of 5 apples?

Division of 1 number by another cannot be done in any order.

Students' Learning Outcome:

- Identify, name, and write;
- unit fractions
- non-unit fractions
- like fractions
- unlike fractions of a discrete set of objects using pictorial representations.

LIKE FRACTIONS AND UNLIKE FRACTIONS

1.

2. The fractions with different denominators are called unlike fractions

$\frac{7}{10}$

$\frac{2}{7}$

1. Write the fraction and choose the correct option.
(a)

like fractions/unlike fractions
(b)

like fractions/unlike fractions
(c)

like fractions/unlike fractions

Students' Learning Outcome:

- Compare and order unit fractions and like fractions (with denominators up to 10) using $<,>$, and $=$ sign

COMPARING AND ORDERING FRACTIONS

IN \leftrightarrows FOCUS

Saif and Farhan each has a cake of the same size. Saif eats 2 out of 5 equal parts of the cake.
Farhan eats 4 out of 5 equal parts of the cake.
Who eats more?

LET'S LEARN

1.

Saif

Farhan

$$
\frac{4}{5}>\frac{2}{5} .
$$

Farhan eats more than Saif.
2. Arrange the fractions in order. Start with the greatest.

$\frac{4}{7}$ is the greatest.
$\frac{2}{7}$ is the smallest.

$$
\frac{4}{7}>\frac{3}{7} \gg \frac{2}{7}
$$

3. Arrange the fractions in order. Start with the smallest.

is the greatest.
is the smallest.

smallest \longrightarrow greates \dagger
4. Compare.
(a)
\square $<\square$.

$\frac{7}{10}$
5. Arrange the fractions in order. Start with the greatest.
(a)

Students' Learning Outcome:

- Add and subtract like fractions within 1 whole.

ADDING AND SUBTRACTING LIKE FRACTIONS WITHIN 1 WHOLE

in focus

A pizza is cut into 4 slices of equal size.
What fraction of the pizza do Iman and Ali eat altogether?

LET'S LEARN

1. Iman ate $\frac{2}{4}$ of a pizza.

Ali ate $\frac{1}{4}$ of the pizza.

Add $\frac{1}{4}$ and $\frac{2}{4}$.
1 quarter +2 quarters
$=3$ quarters

Iman and Ali ate $\frac{3}{4}$ of the pizza altogether.
2. Add $\frac{1}{6}$ and $\frac{3}{6}$.

$$
\frac{1}{6}+\frac{3}{6}=\frac{4}{6} \quad 1 \text { sixth }+3 \text { sixths }=4 \text { sixths }
$$

Add.
(a)

$$
\frac{1}{6}+\frac{4}{6}=
$$

(b)

$$
\frac{1}{7}+\frac{5}{7}=
$$

LET'S LEARN

1. There is $\frac{5}{5}$ of a pizza on the table.

Saim eats $\frac{1}{5}$ of the pizza.
What fraction of the pizza is left?

$$
\text { Subtract } \frac{1}{5} \text { from } \frac{5}{5} \text {. }
$$

$$
\frac{5}{5}-\frac{1}{5}=\frac{4}{5}
$$

5 fifths - 1 fifth $=4$ fifths

$\frac{4}{5}$ of the pizza is left.
2. Subtract $\frac{2}{7}$ from $\frac{5}{7}$.

$\frac{5}{7}-\frac{2}{7}=\frac{3}{7}$
5 sevenths - 2 sevenths $=3$ sevenths

3. Subtract $\frac{3}{8}$ from $\frac{7}{8}$.

1 whole is the same as 8 eighths.

$\frac{7}{8}-\frac{3}{8}=\frac{4}{8} \quad 7$ eighths -3 eighths $=4$ eighths

Subtract.
(a)

$$
\frac{4}{5}-\frac{3}{5}=
$$

(b)

$$
\frac{6}{7}-\frac{4}{7}=
$$

MIND WORKOUT

Part A is $\frac{1}{6}$ of a figure. \quad A
Which of the following makes 1 whole with Part A?

MATHS JOURNAL

Add or subtract.
(a) $\frac{2}{7}+\frac{3}{7}=\square$
(b) $\frac{1}{5}+\frac{2}{5}=\square$
(c) $\frac{6}{9}-\frac{2}{9}=$
(d) $\frac{7}{8}-\frac{1}{8}=\square$

How do the numerators and the denominators change when you add or subtract?

You may use fraction discs to help you add or subtract.

Students' Learning Outcome:

- Know and recognise that tenths arise by dividing an object into ten equal parts and in dividing single digit numbers and quantities by ten (using concrete and pictorial representations).

TENTHS

1. We can divide and object or shape into ten equal parts.

Each part shows the tenth of the whole shape.

1 part out of 10 parts is shaded. one-tenth is shaded.
2.

Students' Learning Outcome:

- Compare the lengths of different objects using standard units of length (metre and centimetre) using $<,>$, and $=$ signs.

COMPARING LENGTHS

IN FOCUS

Which is the longest?

LET'S LEARN

1.

$$
11 \text { m > } 3 \text { m }
$$

The swimming pool is longer than the sand pit.

$$
11 \mathrm{~m}>8 \mathrm{~m}
$$

The swimming pool is longer than the playground.

$$
3 \mathrm{~m}<8 \mathrm{~m}
$$

The sand pit is shorter than the playground.
2. Compare the lengths of the objects.

The comb is 8 cm long.
The crayon is 6 cm long.
The straw is 7 cm long.

$8 \mathrm{~cm} \quad 6 \mathrm{~cm}$

The comb is longer than the crayon.

$$
8 \mathrm{~cm} \int 7 \mathrm{~cm}
$$

The comb is longer than the straw.

1. Compare the lengths of the ropes.

Rope A is cm long.
Rope B is cm long.

Rope is longer.
2. Compare using $<_{,}>$, and $=$.
(a) $15 \mathrm{~cm} \quad 28 \mathrm{~cm}$
(b) $30 \mathrm{~cm} \square 17 \mathrm{~cm}$
(c) $62 \mathrm{~cm} \square 62 \mathrm{~cm}$
(d) $89 \mathrm{~cm} \square 35 \mathrm{~cm}$

Students' Learning Outcome:

- Compare the mass of different objects using standard units of mass (kilogram and gram) using <, $>$, and $=$ signs.

COMPARING MASSES

IN FOCUS

B

5 II 1

How can we tell which box is heavier?

LET'S LEARN

1. We can use a weighing scale to measure the mass of each box.

The mass of Box A is 5 kg .

$$
5 \mathrm{~kg}>2 \mathrm{~kg}
$$

Box A is heavier than Box B
2. The mass of sweets is usually measured in grams.

The mass of $<40 \mathrm{~g}$
The mass of $\quad>40 \mathrm{~g}$

Jelly beans is heavier than toffees.

$$
g>\quad g
$$

Lollipop is lighter than fruit gums.

$$
g<g
$$

Students' Learning Outcome:

- Compare the capacity of different objects using standard units of capacity (litre and millilitre) using $<,>$, and $=$ signs.

COMPARING CAPACITIES

1. Compare using < or >.
(a)

The capacity of tea in the cup
(b)

The pot contains
1ℓ of coffee.
(c)

$5 \ell 6 \ell$
The bottle has less capacity than the capacity of the bucket.
(d) 13 ml
5 ml
(e) 26 ml
28 ml

Students' Learning Outcome:

- Read and write temperature to the nearest appropriate unit i.e., $\left({ }^{\circ} \mathrm{C}\right)$ using pictorial representations and relating temperature scale to number line.
- Compare and order temperature using $<,>$, and $=$ signs.

TEMPERATURE

LET'S LEARN

The thermometer shows the temperature $60^{\circ} \mathrm{C}$.

Mark the temperature on number line.
1.

2.

3.

Compare using < or >.
(a) $20^{\circ} \mathrm{C}$
$85^{\circ} \mathrm{C}$
(c) $44^{\circ} \mathrm{C}$
$72^{\circ} \mathrm{C}$
(b) $63^{\circ} \mathrm{C}$
$36^{\circ} \mathrm{C}$
(d) $51^{\circ} \mathrm{C}$
$91^{\circ} \mathrm{C}$

Students' Learning Outcome:

- Recognise perimeter and area.

PERIMETER

IN \leftrightarrows FOCUS

Farwa uses yarn to outline each shape.
How can she find the length of yarn she needs for each shape?

LET'S LEARN

1.

Farwa needs to find the perimeter of each shape. The perimeter of each shape is the total length around it.

How can you find the perimeter of each figure?

AREA

IN $\ggg 1$ OCUS

You can use your textbook to measure the area of your desk.

What is the area of your desk?

LET'S LEARN

1.

The amount of surface taken up by a figure is the area.

What other objects can you use to measure the area of your desk with?

Students' Learning Outcome:

- Identify pairs of perpendicular and parallel lines.

PERPENDICULAR LINES

This is an example of a pair of perpendicular lines.
What do you notice about the lines?

LET'S LEARN

1. Look at the objects.

Can you identify the right angles?

We can use a right-angle tester or the corner of a ruler to identify right angles.

Two straight lines that meet at a right angle are called perpendicular lines.
What are some perpendicular lines you can find around you?
2. Some lines are drawn on square grids as shown.

$A B$ and $C D$ meet each other at right angles.
$C D$ is perpendicular to $A B$.
We write $C D \perp A B$ or $A B \perp C D$.
\perp stands for
is perpendicular to.

Do EF and GF meet at a right angle? Is EF perpendicular to GF? Why?
3. Which pairs of lines are perpendicular?

JK is perpendicular to LM. $\mathrm{JK} \perp \mathrm{LM}$	PQ is not perpendic- ular to RS .

Use a right-angle tester to check for right angles.

1. Which pairs of lines are perpendicular?

PARALLEL LINES

IN \leftrightarrows FOCUS

These are examples of parallel lines. What do you notice about the lines?

LET'S LEARN

1.

Two straight lines, $A B$ and $C D$ will never meet, no matter how long they are drawn.

These lines are called parallel lines. $A B$ is parallel to CD. We write $A B / / C D$ or $C D / / A B$.
// stands for is parallel to.

Can you find
examples of parallel lines around you?

2. Some pairs of lines are drawn on square grids as shown. Are the lines parallel to each other?

Two lines perpendicular to the same line, JK, are parallel to each other.
EF // GH
We use arrowheads to show that the lines are parallel.

ST and UV are not parallel to each other.
3. Which pairs of lines are parallel?
LM is parallel to NO.

$\mathrm{LM} / / \mathrm{NO}$$\quad$| PQ and RS are not |
| :--- |
| parallel to each oth- |
| er. |\quad| TW is parallel to UV . |
| :--- |
| TW // UV |

4. Which pairs of lines are parallel? How do you tell?

$C \longrightarrow D$

PRACTICE

1. Which letters have parallel lines?

2. Which pairs of lines are parallel?

Students' Learning Outcome:

- Describe the position, direction and movement of an object including moving clockwise, an-ti-clockwise, quarter, half and three quarters turns using appropriate positional language (for instance: inside, outside, above, below, over, under, far, near, before, after, beside, between, left, right and in front of, quarter turn, half turn, three quarter turns, clockwise, anti-clockwise, behind etc).

CLOCKWISE AND ANTICLOCKWISE MOVEMENT

Look at the clock. How does the minute hand turn? How does the hour hand turn?
1.

The hands of a clock turn in a clockwise direction.
2. anticlockwise

You can turn the steering wheel of a car clockwise or anticlockwise.
3.

Whole clockwise turn
Three quarters of

half of a clockwise turn
a clockwise turn is the same as one quarter of an anticlockwise turn.

quarter of a clockwise turn

Four quarters
 give us one whole turn.
4.

ACTIVITY

 1 21 TIMELet us dance and learn.
1 4 children stand in a row facing the class. Let the music play.
(2) The first time the music stops, make a

What you need:
 quarter turn.

3 The second time the music stops, make another quarter turn.
(4) Count how many quarter turns you make until you face your class.

Repeat with clockwise and anticlockwise turns.

Look at the picture.

Complete the story. Use the words below to help you.
half quarter clockwise anticlockwise

Sam jogs to the park. He then makes turn.

Next, he walks to the shop.
He then makes turn to return to the park.
Finally, he makes turn to walk to the bus.
Is there more than one way to fill each blank?

Weiming is standing at a road junction in his neighbourhood. He is facing the bank now.

Weiming needs to make of a clockwise turn to face the post office.

Will Weiming also face the post office if he instead makes half an anticlockwise turn?

If not, where will he be facing after making the turn?

Look at the diagram above. Fill in the blanks below.
The red arrow is now pointing at the letter H .
Firstly, the arrow makes half of a clockwise turn to point at the letter

Next, it makes three quarters of an anticlockwise turn to point at the letter
Lastly, the arrow makes one whole anticlockwise turn to point at the letter

Students' Learning Outcome:

- Recognise turn as a rotation.

How many things around you, when rotated, still look the same?

ROTATION

IN \leftrightarrows FOCUS

What do you notice about the shapes?

LET'S LEARN

1. Turning an object about a point in a circle is called rotation.

Take a sticker $\bigcup^{\circlearrowleft}$. Make a quarter rotation in the clockwise
direction.

we get:

2. Make another quarter rotation in the clockwise direction.

we get:

This becomes half a rotation.
3. Make two more quarter rotations in the clockwise direction.

we get:

This becomes a whole rotation.
4. Take a sticker \because. Make three quarter rotations in the anticlockwise direction.

Complete the given shapes by drawing the quarter rotations 4 times until they become a whole turn.
1.

2.

3.

Students' Learning Outcome:

- Read and interpret data using pictographs, bar graphs and tally charts and; represent data using tally charts (including real-world problems).

READING PICTURE GRAPHS

1. The picture graph shows the number of beads of each colour on a bracelet.

Beads on a Bracelet

0 Red bead	Green bead	
Blue bead	Yellow bead	

We can use the information shown on the picture graph to answer the questions below.
(a) There are red beads.
(b) There are green beads.
(c) There are blue beads.
(d) There are yellow beads.
(e) There are more green beads than blue beads.
(f) There are green and blue beads on the bracelet altogether.

READING TALLY CHARTS

1. The tally chart shows the number of cookies eaten by each child.

Child	Tally Marks
	$\mathrm{HHH} \mathrm{HH} /$
	HH / I
	$\mathrm{HH} / / / /$
	Ali

Use tally chart to complete the following sentences.
(a) Asad ate cookies.
(b) Iman ate cookies.
(c) Ali ate cookies.
(d) Farwa ate cookies.
(e) Ali ate cookies more than Iman.
(f) The children ate cookies altogether.

READING BAR GRAPHS

IN \leftrightarrows FOCUS
Waleed draws a picture graph to show the number of each type of fruit.

LET'S LEARN

1. We can use a bar graph to show the number of each type of fruit.

Fruits We Have

There are 6 pears.
There are 2 more oranges than pears.
The number of strawberries is the greatest.
The number of fruits can be read from the scale. How many fruits does each marking stand for?

How many strawberries are there? How can you tell?

2. The bar graph shows the number of children who like different sports.

Favourite Sports

Three pupils are talking about the graph. Whose statements are all correct?

Most of the pupils like swimming.
The number of pupils who like football is the smallest.

Bina

Farhan

14 more pupils like swimming than badminton. Fewer than 40 pupils like tennis.

38 pupils like tennis.
More pupils like badminton than tennis.
3. The bar graph shows the number of pupils in a class who like to read different types of books.

Favourite Types of Books

1. The bar graph shows the colours of the cars in a school carpark.

(a) Complete the table.

Colour					
Number of cars					

(b) How many cars were there in the carpark in all?
2. The bar graph shows the number of children who like each type of food.

Look at the bar graph and answer the questions.
(a) Which type of food is the least popular?
(b) How many children like haleem?
(c) Do more children like biryani or karahi? How many more?
(d) The same number of children like
and
3. The bar graph shows the number of children who visited the library over five days.

Look at the bar graph.
(a) children visited the library on Thursday.
(b) The greatest number of children visited the library on
(c) 18 fewer children visited the library on than on Monday.
(d) Twice as many children visited the library on as on Wednesday.

Students' Learning Outcome:

- Describe the likelihood that everyday events will occur, using mathematical language (i.e., impossible, less likely, more likely, unlikely, and certain).

PROBABILITY

- If an event is sure to happen, then it has a certain probability.
- If an event is less likely to happen than not happen, then it has an unlikely probability.

PRACTICE

Choose the correct likelihood.

1. The chance of the Sun rising in the morning is \qquad . certain / impossible
2. The chance of seeing a flying elephant is \qquad . certain / impossible
3. It is \qquad to drink hot chocolate in cold season. less likely / more likely
4. It is \qquad to see a giraffe walking on the road. less likely / more likely
\qquad to see a giraffe walking on the road. certain / unlikely
