

NEW SYLLABUS MATHEMATICS 8th Edition

Workbook Full Solutions

Challenge Myself!

9.

2	250	
5	125	
5	25	
5	5	
	1	

 $250 = 2 \times 5^3$

(a) $2 \times 125 = 250$

False. Since p = 2 in this case, it is possible for either p or q to be a prime number.

(b) True. The largest possible value of p + q is 1 + 250 = 251, which is a prime number.

Worksheet 1B Square roots and cube roots

(a) $\sqrt{400} = \sqrt{2^4 \times 5^2}$ 1. $= 2^2 \times 5$ = 20 **(b)** $\sqrt{3969} = \sqrt{3^4 \times 7^2}$ $= 3^2 \times 7$ = 63 (c) $\sqrt{5625} = \sqrt{3^2 \times 5^4}$ $= 3 \times 5^2$ = 75 (d) $\sqrt{48400} = \sqrt{2^4 \times 5^2 \times 11^2}$ $= 2^2 \times 5 \times 11$ = 220 $\sqrt[3]{91\ 125} = \sqrt[3]{3^6 \times 5^3}$ 2. $= 3^2 \times 5$ = 45 (a) $784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ 3. $= 2^4 \times 7^2$ $\therefore \sqrt{784} = \sqrt{2^4 \times 7^2}$ $= 2^2 \times 7$ = 28(b) $1600 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5$ $= 2^6 \times 5^2$ $\therefore \sqrt{1600} = \sqrt{2^6 \times 5^2}$ $= 2^3 \times 5$ = 40 $= 2^{9}$ $\therefore \sqrt[3]{512} = \sqrt[3]{2^9}$ $= 2^{3}$ = 8 (d) $3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5$ $= 3^3 \times 5^3$ $\therefore \sqrt[3]{3375} = \sqrt[3]{3^3 \times 5^3}$ $= 3 \times 5$ = 15

(i) $1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$ 4. $= 2^6 \times 3^3$ (ii) $\sqrt[3]{1728} = \sqrt[3]{2^6} \times 3^3$ $= 2^2 \times 3$ = 12 ... The radius is **12 cm**. (a) $16^2 + 5^3 - \sqrt{784} = 353$ 5. **(b)** $\left(\frac{3}{5}\right)^2 - \left(\frac{1}{4}\right)^3 + \left(\frac{1}{9}\right)^2 = 0.3567 \text{ (to 4 d.p.)}$ (c) $7.7 \times \sqrt[3]{30} \div \sqrt{6} = 9.7676$ (to 4 d.p.) (d) $\frac{6\sqrt{970}}{5\sqrt[3]{84}} = 8.5338 \text{ (to 4 d.p.)}$ (e) $\frac{4^3 + \sqrt[3]{12}}{4^3 + \sqrt{15}} = 1.1025$ (to 4 d.p.) (f) $\sqrt{100 + \sqrt[3]{100}} = 10.2294$ (to 4 d.p.) Radius of circle = $\sqrt{\frac{57}{2\pi}}$ 6. = 3.01 cm (to 2 d.p.)Length of field = $\sqrt{650}$ m 7. Perimeter of field = $4 \times \sqrt{650}$ = 102.0 m (to 1 d.p.) Length of frame = $\sqrt{5.8}$ 8. = 2.408 m (to 3 d.p.) Yes. Since the length of the frame is greater than that of the painting, the frame is large enough. 9 $n = (3^2 \times 5)^2$ $= 3^4 \times 5^2$ 10. $n = (2^2 \times 7)^3$ $= 2^6 \times 7^3$ **11.** (i) $1225 = 5 \times 5 \times 7 \times 7$ $= 5^2 \times 7^2$ $=(5 \times 7)^{2}$: 1225 is a perfect square. (shown) (ii) $\sqrt{1225} = 5 \times 7$ = 35 **12.** (i) $140 = 2 \times 2 \times 5 \times 7$ $= 2^2 \times 5 \times 7$ (ii) For 140k to be a perfect square, smallest positive integer value of $k = 5 \times 7 = 35$. 13. For $\frac{600}{k}$ to be a perfect square, smallest positive integer value of $k = 2 \times 3 = 6$. 14. (i) For 540k to be a perfect cube, smallest positive integer value of $k = 2 \times 5^2 = 50$. (ii) $\bigoplus_{A} \frac{h}{4} \times 540 = \frac{h}{4} \times (2^2 \times 3^3 \times 5)$ $= h \times 3^3 \times 5$ A possible positive integer value of *h* is $5^2 = 25$. **15.** (i) For 130 977*a* to be a perfect square, smallest positive integer value of $a = 3 \times 11 = 33$. (ii) For 130 977*b* to be a perfect cube, smallest positive integer value of $b = 3 \times 7 \times 11^2 = 2541$. (iii) (iii) A possible positive integer value of *c* is $3^5 \times 7^2 = 11907$.

16. (i) $\sqrt[3]{A} = \sqrt[3]{2^3 \times 3^3}$ $= 2 \times 3$ = 6 (ii) $\sqrt{B} = \sqrt{2^2 \times 3^2 \times 5^2}$ $= 2 \times 3 \times 5$ = 30(iii) For *kC* to be a perfect square, smallest positive integer value of $k = 2 \times 3 = 6$. 17. (i) 216 000 $= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$ $= 2^6 \times 3^3 \times 5^3$ (ii) $\sqrt[3]{216\,000} = \sqrt[3]{2^6} \times 3^3 \times 5^3$ $= 2^2 \times 3 \times 5$ = 60 **18.** (i) $15\,092 = 2 \times 2 \times 7 \times 7 \times 7 \times 11$ $= 2^2 \times 7^3 \times 11$ $\therefore x = 3, y = 1$ (ii) 💮 For 15 092*k* to be a multiple of 21, two possible positive values of *k* are **3** and **9**. **19.** (i) $21952 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 7 \times 7$ $= 2^6 \times 7^3$ Length of each stick = $\sqrt[3]{21952}$ mm $= 2^2 \times 7 \text{ mm}$ = 28 mm (ii) Total length of sticks = 12×28 mm = 336 mm **20.** (i) For $p \times a$ to be a perfect square, smallest positive integer value of $a = 3 \times 7 = 21$. (ii) For $\frac{q}{h}$ to be a perfect cube, largest positive integer value of $b = 2^2 \times 3 \times 5^3 = 1500$. (iii) $p \times q \times r = (2^4 \times 3^2 \times 7) \times (2^2 \times 3 \times 5^3) \times (2^2 \times 3^2 \times 7^2)$ $= 2^9 \times 3^6 \times 5^3 \times 7^3$ $= (2^3 \times 3^2 \times 5 \times 7)^3$ \therefore **Yes**. $p \times q \times r$ is a perfect cube. **21.** (i) $2704 = 2 \times 2 \times 2 \times 2 \times 13 \times 13$ $= 2^4 \times 13^2$ (ii) $2704 = (2^2 \times 13)^2$.:. 2704 is a perfect square. (iii) For $2704 \times \frac{m}{m}$ to be a perfect cube, m = 13 and n = 2. Worksheet 1C Highest common factor and lowest common multiple (a) 3 1. 18, 45 3 6, 9 2, 3 \therefore HCF of 18 and 45 = 3 × 3 = 9 (**b**) 11 55, 132 5, 12 : HCF of 55 and 132 = 11

(c) 19 95, 361 5, 19 : HCF of 95 and 361 = 19 (**d**) 2 | 378, 1050 3 189, 525 7 63, 175 9. 25 \therefore HCF of 378 and 1050 = 2 × 3 × 7 = 42 **2.** (a) 3 | 15, 90, 225 5 5, 30, 75 6, 15 1, :. HCF of 15, 90 and 225 = 3 × 5 = 15 **(b)** 2 98, 126, 238 7 49, 63, 119 7, 9, 17 : HCF of 98, 126 and 238 = 2 × 7 = 14 (c) 3 | 147, 189, 231 7 49, 77 63, 7, 9, 11 .:. HCF of 147, 189 and 231 = 3 × 7 = 21 (**d**) 3 165, 198, 429 11 143 55, 66, 13 5, 6, ∴ HCF of 165, 198 and 429 = 3 × 11 = 33 3. (a) HCF = $2^2 \times 3 \times 5$ (b) HCF = $3^2 \times 11^2$ 4. (a) 5 20, 25 4, 5 \therefore LCM of 20 and 25 = 5 × 4 × 5 = 100(b) 2 54, 72 3 27, 36 3 9, 12 3, 4 \therefore LCM of 54 and 72 = 2 × 3² × 3 × 4 = 216 (c) 2 104, 130 13 65 52, 5 4, \therefore LCM of 104 and 130 = 2 × 13 × 4 × 5 = 520

(d)
$$\frac{2}{2}$$
 168, 224
 $\frac{2}{2}$ 84, 112
 $\frac{2}{2}$ 42, 56
 7 21, 28
 $3, 4$
 \therefore LCM of 168 and 224 = 2³ × 7 × 3 × 4
= 672
5. (a) $\frac{2}{32}$ 88, 242
 $\frac{2}{1}$ 16, 44, 121
 $\frac{2}{1}$ 8, 22, 121
 11 4, 11, 121
 $\frac{1}{4}$, 1, 11
 \therefore LCM of 32, 88 and 242 = 2³ × 11 × 4 × 11
= 3872
(b) $\frac{3}{4}$ 63, 105, 315
 $\frac{7}{2}$ 21, 35, 105
 $\frac{5}{3}$ 3, 5, 15
 $\frac{3}{3}$ 3, 1, 3
 $1, 1, 1$
 \therefore LCM of 63, 105 and 315 = 3 × 7 × 5 × 3
= 315
(c) $\frac{2}{2}$ 110, 132, 176
 $\frac{11}{55}$ 66, 88
 $\frac{2}{5}$ 5, $\frac{6}{3}$ 8
 2 5, $\frac{6}{6}$ 88
 $\frac{2}{5}$ 5, $\frac{6}{3}$ 8
 2 5, $\frac{6}{6}$ 88
 $\frac{2}{5}$ 5, $\frac{6}{3}$ 8
 2 34, 51, 68
 17 17, 51, 34
 $1, 3, 2$
 \therefore LCM of 136, 204 and 272 = 2³ × 17 × 3 × 2
= 816
6. (a) LCM = 2⁴ × 3³ × 5³
(b) LCM = 2 × 3³ × 5³ × 7 × 11
7. 15 × 13 = 195
 $15 \times 14 = 210$
 \therefore The largest possible number is 195.
8. 28 × 10 = 280
28 × 11 = 308
 \therefore The smallest possible number is 308.
9. $\frac{69}{12}$ 12 = 2² × 3
16 = 2⁴
Since 300 = 2² × 3 × 5³ is a multiple of 10 and 12, is not a multiple
of 16 and not a factor of 1000, then this number could be 300.
10. (a) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(b) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(c) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(b) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(b) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(c) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(b) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(b) Yes. A lumber is prime if it has only 2 factors — 1 and itseff.
(c) Yes. A number is prime if it has only 2 factors — 1 and itseff.
(b) Yes. A light effect sugares have and dumber of factors as one of these factors, when multiplied by itself, gives the number.

number to be an odd number. 11. (a) $390 = 2 \times 3 \times 5 \times 13$ **(b)** $234 = 2 \times 3 \times 3 \times 13$ $= 2 \times 3^2 \times 13$ \therefore HCF of 390 and 234 = 2 × 3 × 13 = 78 **12.** (i) HCF of 1200 and $1960 = 2^3 \times 5$ = 40 (ii) LCM of 1200 and $1960 = 2^4 \times 3 \times 5^2 \times 7^2$ = 58 800 **13.** (a) $540 = 2 \times 2 \times 3 \times 3 \times 3 \times 5$ $= 2^2 \times 3^3 \times 5$ (b) (i) HCF of 504 and $540 = 2^2 \times 3^2$ = 36 (ii) LCM of 504 and $540 = 2^3 \times 3^3 \times 5 \times 7$ = 7560 14. (a) $440 = 2 \times 2 \times 2 \times 5 \times 11$ $= 2^3 \times 5 \times 11$ (b) (i) LCM of 4356 and $440 = 2^3 \times 3^2 \times 5 \times 11^2$ (ii) HCF of 4356 and $44 = 2^2 \times 11$ = 44 15. (i) $\sqrt{A} = \sqrt{2^2}$ ×3 $= 2 \times 3^{2}$ = 18 (ii) LCM of A, B and $C = 2^3 \times 3^4 \times 5^2 \times 7$ (iii) HCF of *A*, *B* and $C = 2 \times 3^2$ = 18 **16.** (a) $1224 = 2 \times 2 \times 2 \times 3 \times 3 \times 17$ $= 2^3 \times 3^2 \times 17$ (b) (i) p = 2, q = 3, r = 2(ii) $A = 2^2 \times 3 \times 17$ $B = 2^3 \times 3^2 \times 17$ HCF of *A* and $B = 2^2 \times 3 \times 17$ = 204 **17.** (a) $180 = 2 \times 2 \times 3 \times 3 \times 5$ $= 2^2 \times 3^2 \times 5$ **(b)** $48 = 2 \times 2 \times 2 \times 2 \times 3$ $= 2^4 \times 3$ \therefore HCF of 180 and 48 = $2^2 \times 3$ = 12 (c) LCM of 180 and $48 = 2^4 \times 3^2 \times 5$ = 720 720 \therefore Least number of packs of toothpicks = 180 = 4 **18.** (i) Number of boys left = 214 - 4= 210 Number of girls left = 230 - 6= 224 $210 = 2 \times 3 \times 5 \times 7$ $224 = 2 \times 2 \times 2 \times 2 \times 2 \times 7$ $= 2^5 \times 7$ HCF of 210 and $224 = 2 \times 7$ = 14 ... The greatest number of groups that can be formed is 14.

(c) Insufficient information to conclude. It is possible for the

and itself.

210(ii) Number of boys in each group = 14 = 15 224 Number of girls in each group = 14 = 16

Challenge Myself!

19. $6 = 2 \times 3$ $18 = 2 \times 3 \times 3$ $= 2 \times 3^2$ Factors of the number are 1, 2, 3, 2^2 , 2×3 , 3^2 , $2^2 \times 3$, 2×3^2 and 2² × 3², i.e. 1, 2, 3, 4, 6, 9, 12, 18 and 36.

Review Exercise 1

1. $\sqrt{2660} = 51.6$ (to 1 d.p.) ∴ The largest prime factor of 2660 is 19. $1 \times (1 + 42) = 1 \times 43$ 2. = 43 \therefore The prime number is **43**. 3. (i) For 550k to be a perfect square, smallest positive integer value of $k = 2 \times 11 = 22$. (ii) For $\frac{550}{k}$ to be a perfect square, smallest positive integer value of $k = 2 \times 11 = 22$. (a) $882 = 2 \times 3 \times 3 \times 7 \times 7$ 4. $= 2 \times 3^2 \times 7^2$ **(b)** $126 = 2 \times 3^2 \times 7$ $147 = 3 \times 7^2$: The numbers are 126 and 147. 5. (a) $360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5$ $= 2^3 \times 3^2 \times 5$ **(b)** $270 = 2 \times 3 \times 3 \times 3 \times 5$ $= 2 \times 3^3 \times 5$ \therefore LCM of 360 and 270 = $2^3 \times 3^3 \times 5$ = 1080 (c) A prime number has only 2 factors -1 and itself. 1 is not a prime number. A perfect square, say n^2 , where n > 0, has at least 3 factors — 1, *n* and n^2 . $63 = 3 \times 3 \times 7$ 6. $= 3^2 \times 7$ $81 = 3 \times 3 \times 3 \times 3$ $= 3^4$ $1134 = 2 \times 3 \times 3 \times 3 \times 3 \times 7$ $= 2 \times 3^4 \times 7$ \therefore A possible value of *p* is **2**. 7. (i) For 700*h* to be a multiple of 1050, smallest positive integer value of h = 3. (ii) For $\frac{1050}{k}$ to be a factor of 700, smallest positive integer value of k = 3. (a) $570 = 2 \times 3 \times 5 \times 19$ 8. (b) (i) LCM of 2660 and $570 = 2^2 \times 3 \times 5 \times 7 \times 19$ (ii) HCF of 2660 and 570 = $2 \times 5 \times 19$ = 190

9. (i)
$$\sqrt[3]{A} = \sqrt[3]{2^3 \times 5^3}$$

= 2 × 5
= 10
(ii) $\sqrt{C} = \sqrt{2^2 \times 5^2 \times 7^2}$
= 2 × 5 × 7
= 70
(iii) For k × B × C to be a perfect square,
smallest positive integer value of $k = 2 \times 3 \times 5 \times 7$
= 210.
10. (i) $\sqrt[3]{P} = \sqrt[3]{2^6 \times 3^3}$
= 2² × 3
= 12
(ii) LCM of p , q and $r = 2^6 \times 3^3 \times 5^3 \times 7 \times 11$
(iii) HCP of p , q and $r = 2 \times 3^3$
= 6
11. 18 = 2 × 3 × 3
= 2 × 3^2
30 = 2 × 3 × 5
LCM of 18 and 30 = 2 × 3^2 × 5
= 90
31 31 28
1° July $\frac{days}{days} = 1°$ September $\frac{days}{days} \ge 29^{th}$ September
 \therefore Both areas undergo a check together on 29th September.
12. 784 = 2 × 2 × 2 × 2 × 7 × 7
= 2 * π^2
Since the perimeter of the top of the cuboid is 30 cm, the dimensions
of the cuboid are 8 cm × 7 cm × 14 cm.
 \therefore The height of the cuboid is 14 cm.
13. 28 = 2 × 2 × 7
= 2² × 7
70 = 2 × 5 × 7
LCM of 28 and 70 = 2² × 5 × 7
= 140
10 minutes = 600 seconds
 \therefore Most number of times both cameras can scan the trophy cabinet
together
= $\frac{600}{140} + 1$
= 5 (round down to the nearest integer)
2
Fractions
1. (a) $\frac{6}{8} = \frac{3}{4}$ (b) $\frac{16}{20} = \frac{4}{5}$
(c) $\frac{14}{9} = \frac{2}{7}$ (d) $\frac{8}{24} = \frac{1}{2}$

۱

2.

(e) $\frac{28}{56} = \frac{1}{2}$

(a) $\frac{12}{5}$

(f) $\frac{45}{54} = \frac{5}{6}$

 $\frac{51}{8}$

(b)

	(c)	$\frac{66}{9} = 7\frac{1}{3}$	(d)	$\frac{138}{12} = 11\frac{1}{2}$
3.	(a)	$3\frac{1}{10} = \frac{33}{10}$	(b)	$4\frac{3}{4} = \frac{19}{4}$
	(c)	$39\frac{17}{34} = \frac{79}{2}$	(d)	$5\frac{10}{22} = \frac{60}{11}$
4.	(a)	$3\frac{5}{6} < 6\frac{3}{5}$	(b)	$1\frac{5}{8} > 1\frac{1}{2}$
	(c)	$\frac{10}{7} > \frac{11}{8}$	(d)	$\frac{44}{9} < 5\frac{1}{10}$
	(e)	$\frac{91}{6} = 15\frac{3}{18}$	(f)	$\frac{74}{11} > \frac{100}{15}$
5.	PER	(i) $\frac{5}{8}$ and $\frac{11}{16}$	(ii)	$\frac{5}{8} < \frac{11}{16}$

Worksheet 2B	Adding and subtracting fractions and
	mixed numbers

3	(c) (a)	$\frac{66}{9} = 7\frac{1}{3}$ $3\frac{1}{3} - \frac{33}{3}$	(d) $\frac{138}{12} = 11\frac{1}{2}$ (b) $4\frac{3}{2} = \frac{19}{2}$	(k	$\frac{3}{5} + \frac{7}{12} = \frac{36}{60} + \frac{35}{60} - \frac{71}{12} = \frac{71}{12} = \frac{36}{12} + \frac{35}{60} + \frac{35}{60} = \frac{71}{12} = \frac{71}{12} = \frac{36}{12} + \frac{35}{12} = \frac{71}{12} = \frac{36}{12} + \frac{35}{12} = \frac{36}{12} + \frac{36}{12} = \frac{36}{12} = \frac{36}{12} = \frac{36}{1$
5.	(a) (c)	310 10 $39\frac{17}{34} = \frac{79}{2}$	(d) $5\frac{10}{22} = \frac{60}{11}$		$= \frac{1}{60}$ = 1 $\frac{11}{60}$
4.	(a)	$3\frac{5}{6} < 6\frac{3}{5}$	(b) $1\frac{5}{8} > 1\frac{1}{2}$	(1)	$\frac{4}{7} - \frac{2}{9} = \frac{36}{63} - \frac{14}{63}$
	(c)	$\frac{10}{7} > \frac{11}{8}$	(d) $\frac{44}{9} < 5\frac{1}{10}$		$=\frac{22}{63}$
	(e)	$\frac{91}{6} = 15\frac{5}{18}$	(f) $\frac{74}{11} > \frac{100}{15}$	2. (a	$7 + \frac{1}{2} = 7\frac{1}{2}$
5.	65	(i) $\frac{1}{8}$ and $\frac{1}{16}$	(ii) $\frac{1}{8} < \frac{1}{16}$	(b	$4 + 5\frac{1}{8} = 9\frac{1}{8}$
Wo	orksl	heet 2B Adding and mixed numl	subtracting fractions and pers	(C	$3 - \frac{1}{6} + 2 - \frac{1}{6} = 5 - \frac{1}{3}$
1.	(a)	$\frac{8}{17} + \frac{2}{17} = \frac{10}{17}$		(d	$9\frac{2}{15} + 3\frac{1}{5} = 9\frac{2}{15} + 3\frac{3}{15}$
	(b)	$\frac{9}{11} - \frac{3}{11} = \frac{6}{11}$			$= 12\frac{5}{15}$ = 12 $\frac{1}{15}$
	(c)	$\frac{5}{12} + \frac{4}{12} = \frac{9}{12}$		(e) $6\frac{5}{12} + 4\frac{14}{24} = 6\frac{5}{12} + 4\frac{7}{12}$
	(d)	$\frac{-\frac{7}{4}}{\frac{7}{10} - \frac{3}{10} = \frac{4}{10}}$			$= 10\frac{12}{12}$
		$=\frac{2}{5}$		(f	$= 11$ $8\frac{2}{9} + 1\frac{1}{2} = 8\frac{4}{18} + 1\frac{9}{18}$
	(e)	$\frac{5}{8} + \frac{1}{4} = \frac{5}{8} + \frac{2}{8}$			$=9\frac{13}{18}$
		$=\frac{7}{8}$		(g	$1\frac{2}{3} + 10\frac{5}{9} = 1\frac{6}{9} + 10\frac{5}{9}$
	(f)	$\frac{1}{6} - \frac{1}{48} = \frac{1}{48} - \frac{1}{48}$ = $\frac{3}{48}$		2	$= 11\frac{11}{9}$
		$=\frac{48}{16}$	44	(h	$= 12\frac{7}{9}$ a) $2\frac{9}{15} + 7\frac{7}{12} = 2\frac{27}{12} + 7\frac{28}{12}$
	(g)	$\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6}$	\bigcirc		$ \begin{array}{rcrcr} 16 & 12 & 48 & 48 \\ & & = 9\frac{55}{48} \end{array} $
		$=\frac{5}{6}$	\mathbf{V}		$= 10\frac{7}{48}$
	(h)	$\frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6}$	\mathbf{O}	(i)	$8\frac{4}{5} + 3\frac{3}{7} = 8\frac{28}{35} + 3\frac{15}{35}$
	(i)	$\frac{-\overline{6}}{6}$ $\frac{5}{10} + \frac{5}{10} = \frac{95}{212} + \frac{90}{212}$			$= 11\frac{3}{35}$ $= 12\frac{8}{35}$
		$ \begin{array}{r} 18 19 342 342 \\ = \frac{185}{342} \end{array} $		(j)	$6\frac{13}{20} + 8\frac{24}{25} = 6\frac{65}{100} + 8\frac{96}{100}$
	(j)	$\frac{11}{16} - \frac{11}{17} = \frac{187}{272} - \frac{176}{272}$			$= 14 \frac{161}{100}$
		$=\frac{11}{272}$			$=15\frac{61}{100}$

OXFORD

3. (a)
$$9\frac{7}{8} - 2 = 7\frac{7}{8}$$

(b) $5 - \frac{1}{3} - 4\frac{2}{3}$
(c) $7\frac{3}{10} - 1\frac{1}{10} = 6\frac{2}{10}$
 $= 6\frac{2}{5}$
(d) $6\frac{9}{10} - 5\frac{9}{10} = 1$
 $= 6\frac{2}{5}$
(e) $8\frac{8}{9} - 4\frac{1}{3} = 8\frac{9}{9} + 4\frac{3}{9}$
 $= 4\frac{5}{9}$
(f) $7\frac{2}{5} - 3\frac{11}{33} = 7\frac{2}{3} - 3\frac{1}{3}$
 $= 4\frac{4}{5}$
(g) $9\frac{7}{10} - 3\frac{1}{4} = 9\frac{120}{5} - 3\frac{5}{20}$
 $= 6\frac{20}{90}$
(h) $8\frac{1}{8} - 2\frac{1}{6} = 8\frac{23}{24} - 2\frac{4}{24}$
 $= 5\frac{22}{24}$
(i) $4\frac{4}{9} - 1\frac{9}{44} = 4\frac{56}{126} - 1\frac{81}{126}$
 $= 9\frac{122}{24} - 8\frac{23}{24}$
(j) $1\frac{4}{9} - 1\frac{9}{14} = 4\frac{56}{126} - 1\frac{81}{126}$
 $= 9\frac{120}{126} - 6\frac{77}{74}$
 $= 2\frac{13}{8}$
 $\frac{7}{4} - \frac{7}{8} - \frac{18}{8} - \frac{7}{8}$
(j) $\frac{15}{14} + \frac{7}{28} - \frac{4}{8} + \frac{7}{8}$
 $= -2\frac{13}{8}$
 $\frac{7}{4} - \frac{7}{8} - \frac{18}{8} - \frac{7}{8}$
 $\frac{7}{4} - \frac{18}{8} - \frac{7}{8}$
 $\frac{7}{8} - \frac{18}{8} - \frac{7}{8}$
 $\frac{7}{8} - \frac{18}{8} - \frac{7}{8}$
 $\frac{18}{8} - \frac{7}{8} - \frac{18}{8}$
 $\frac{18}{8} - \frac{18}{8} - \frac{7}{8} - \frac{18}{8}$
 $\frac{18}{8} - \frac{18}{8} - \frac{18}{8}$

(f)
$$12\frac{2}{15} - 4\frac{3}{10} + 5\frac{2}{3} = 12\frac{2}{15} + 5\frac{10}{15} - 4\frac{3}{10}$$

 $= 17\frac{12}{15} - 4\frac{3}{10}$
 $= 17\frac{4}{5} - 4\frac{3}{10}$
 $= 17\frac{4}{5} - 4\frac{3}{10}$
 $= 17\frac{8}{10} - 4\frac{3}{10}$
 $= 13\frac{5}{10}$
 $= 13\frac{1}{2}$
6. (a) $4\frac{9}{10}$ and $3\frac{1}{5}$
(a) $4\frac{9}{10} - 3\frac{1}{5} = 4\frac{9}{10} - 3\frac{2}{10}$
 $= 1\frac{7}{10}$
7. (b) $16\frac{1}{8}$ and $5\frac{1}{6}$
(c) $16\frac{1}{8} + 5\frac{1}{6} = 16\frac{3}{24} + 5\frac{4}{24}$
 $= 21\frac{7}{24}$

Worksheet 2C	Multiplying fractions and mixed numbers
--------------	---

1.	(a)	$\frac{1}{4} \times 60 = 15$	
	(b)	$\frac{3}{5} \times 45 = 27$	
	(c)	$\frac{7}{10} \times 2 = \frac{7}{5}$	
	(d)	$= 1\frac{2}{5}$ $\frac{4}{3} \times 10 = \frac{40}{3}$ $= 13\frac{1}{3}$	
	(e)	$42 \times \frac{6}{7} = 36$	
	(f)	$33 \times \frac{11}{9} = \frac{121}{3}$	
		$=40\frac{1}{3}$	
	(g)	$\frac{3}{10} \times \frac{20}{27} = \frac{2}{9}$	
	(h)	$\frac{4}{63} \times \frac{7}{8} = \frac{1}{18}$	
	(i)	$\frac{4}{5} \times 3\frac{1}{8} = \frac{4}{5} \times \frac{25}{8}$	
	(j)	$=\frac{5}{2}$ = $2\frac{1}{2}$ $3\frac{5}{9} \times \frac{3}{16} = \frac{32}{9} \times \frac{3}{16}$ = $\frac{2}{3}$	

(k)
$$4\frac{2}{7} \times 1\frac{5}{16} = \frac{30}{7} \times \frac{21}{16}$$

 $= \frac{45}{8}$
 $= 5\frac{5}{8}$
(l) $\frac{28}{15} \times 7\frac{1}{7} = \frac{28}{15} \times \frac{50}{7}$
 $= \frac{40}{3}$
 $= 13\frac{1}{3}$
2. (a) $\frac{1}{2} \times \frac{3}{4} \times \frac{8}{15} = \frac{1}{5}$
 (b) $\frac{7}{6} \times \frac{9}{10} \times \frac{48}{21} = \frac{12}{5}$
 $= 2\frac{2}{5}$
3. Fraction used to purchase goods $= 1 - (\frac{3}{8} + \frac{1}{3})$
 $= 1 - (\frac{9}{24} + \frac{8}{24})$
 $= 1 - \frac{17}{24}$
 $= \frac{7}{24}$
4. Fraction of land occupied by the club house
 $= \frac{1}{4} \times (1 - \frac{7}{10})$
 $= \frac{1}{4} \times \frac{3}{10}$
 $= \frac{3}{40}$
 \therefore Fraction of land not occupied by the club house

Worksheet 2D Dividing fractions and mixed numbers

1. (a)
$$\frac{14}{15} \div 2 = \frac{14}{15} \times \frac{1}{2}$$

 $= \frac{7}{15}$
(b) $\frac{3}{8} \div 8 = \frac{3}{8} \times \frac{1}{8}$
 $= \frac{3}{64}$
(c) $\frac{9}{5} \div 3 = \frac{9}{5} \times \frac{1}{3}$
 $= \frac{3}{5}$
(d) $\frac{6}{17} \div 10 = \frac{6}{17} \times \frac{1}{10}$
 $= \frac{3}{85}$
(e) $4 \div \frac{1}{2} = 4 \times 2$
 $= 8$

-

(i)
$$11 + \frac{1}{4} = 11 \times 4$$

(ii) $11 + \frac{1}{4} = 11 \times 4$
(iii) $11 + \frac{1}{4} = 11 \times 4$
(iv) $\frac{14}{15} + \frac{1}{2} + \frac{11}{15} \times 2$
 $= \frac{28}{15}$
 $= 1\frac{13}{5}$
(i) $\frac{4}{9} + \frac{3}{4} = \frac{4}{9} + \frac{4}{3}$
 $= \frac{15}{27}$
(i) $\frac{4}{9} + \frac{3}{4} = \frac{4}{9} + \frac{4}{3}$
 $= \frac{15}{27}$
(i) $\frac{76}{25} + \frac{57}{5} = \frac{76}{25} \times \frac{57}{57}$
 $= \frac{1}{15}$
(i) $\frac{311}{12} + 4 - \frac{17}{12} \times \frac{1}{4}$
 $= \frac{47}{48}$
(i) $\frac{311}{12} + \frac{4}{12} \times \frac{1}{28}$
(j) $\frac{8}{115} + 7\frac{3}{4} = \frac{111}{15} \times \frac{32}{3}$
(j) $\frac{8}{115} + 7\frac{3}{4} = \frac{111}{15} \times \frac{32}{3}$
(j) $\frac{8}{115} + 7\frac{3}{4} = \frac{111}{16}$
 $= \frac{1}{2}$
(j) $\frac{29}{12} + \frac{23}{2} \times \frac{6}{5} \times \frac{2}{15} \times \frac{15}{5} \times \frac{15}{48}$
(j) $\frac{29}{10} + \frac{52}{52} + \frac{8}{13} + \frac{1}{120} \times \frac{52}{52} \times \frac{45}{48}$
(i) $\frac{29}{12} \times \frac{2}{3} \times \frac{1}{3} \times \frac{1}{2} \times \frac{45}{15} \times \frac{45}{15} \times \frac{45}{18} \times \frac{1}{16} + \frac{3}{16} + \frac{3}{16} + \frac{3}{16} + \frac{1}{16} + \frac{3}{16} + \frac{1}{16} + \frac{2}{16} + \frac{3}{16} + \frac{2}{172} + \frac{1}{16} + \frac{3}{12} - \frac{1}{16} + \frac{3}{16} + \frac{1}{12} - \frac{1}{16} + \frac{1}$

(i) Fraction of fiction books $=\frac{3}{8}$ Fraction of assessment books $=\frac{1}{5} \times \frac{5}{8}$ $=\frac{1}{8}$ Fraction of magazines $=\frac{1}{4} \times \frac{5}{8}$ $=\frac{5}{32}$ Fraction of non-fiction books $=1 - \frac{3}{8} - \frac{1}{8} - \frac{5}{32}$ $=\frac{4}{8} - \frac{5}{32}$ $=\frac{16}{32} - \frac{5}{32}$ $=\frac{11}{32}$

(ii) Assessment books, magazines, non-fiction books, fiction books

(3

5.

Decimals

Wo	orks	heet 3A Decimals ar	nd fra	actions
1.	(a)	$\frac{1}{2} = 0.5$	(b)	$\frac{1}{4} = 0.25$
	(c)	$\frac{3}{4} = 0.75$	(d)	$\frac{5}{8} = 0.625$
	(e)	$\frac{7}{10} = 0.7$	(f)	$\frac{7}{100} = 0.07$
	(g)	$\frac{7}{50} = 0.14$	(h)	$\frac{11}{2000} = 0.0055$
	(i)	$1\frac{2}{5} = 1.4$	(j)	$6\frac{13}{20} = 6.65$
	(k)	$\frac{33}{10} = 3.3$	(1)	$\frac{53}{2} = 26.5$
2.	(a)	$0.1 = \frac{1}{10}$	(b)	$0.2 = \frac{1}{5}$
	(c)	$0.01 = \frac{1}{100}$	(d)	$0.097 = \frac{97}{1000}$
	(e)	$0.36 = \frac{9}{25}$	(f)	$4.36 = 4\frac{9}{25}$
	(g)	$0.036 = \frac{9}{250}$	(h)	$4.036 = 4\frac{9}{250}$
	(i)	$5.5 = 5\frac{1}{2}$	(j)	$8.08 = 8\frac{2}{25}$
	(k)	$7.004 = 7 \frac{1}{250}$	(1)	$10.942 = 10\frac{471}{500}$
3.	(a)	0.01 < 0.1	(b)	4.8 > 4.08
	(c)	7.35 > 7.305	(d)	$2.93 = \frac{293}{100}$
4.	(a)	$\frac{4}{5} = 0.8$	(b)	$\frac{4}{9} = 0.4$
	(c)	$\frac{10}{11} = 0.90$	(d)	$3\frac{2}{7} = 3.285714$

(a) Let
$$x = 0.8$$

 $10x - x = 8.8 - 0.8$
 $9x = 8$
 $x = \frac{8}{9}$
 $\therefore 0.8 = \frac{8}{9}$
(b) Let $x = 0.49$
 $100x - x = 49.49 - 0.49$
 $99x = 49$
 $x = \frac{49}{99}$
 $\therefore 0.49 = \frac{49}{99}$
(c) Let $x = 0.515$
 $1000x - x = 515.515 - 0.515$
 $999x = 515$
 $x = \frac{515}{999}$
 $\therefore 0.515 = \frac{515}{999}$
(d) Let $x = 0.049$
 $1000x - 10x = 49.49 - 0.49$
 $990x = 49$
 $\therefore 0.049 = \frac{49}{990}$

Challenge Myself!

6.

5.

(a)
$$9.8^{7} = 9.8 + 0.0^{7}$$

 $= 9\frac{4}{5} + 0.7^{7} \div 10$
 $= 9\frac{4}{5} + \frac{7}{9} \div 10$
 $= 9\frac{4}{5} + \frac{7}{90}$
 $= \frac{889}{90}$
(b) $3.456 = 3.4 + 0.056$
 $= 3\frac{2}{5} + 0.56^{5} \div 10$
 $= 3\frac{2}{5} + \frac{56}{990} \div 10$
 $= 3\frac{2}{5} + \frac{56}{990}$
 $= \frac{1711}{495}$

Worksheet 3B	Operations involving decimals
--------------	-------------------------------

1.	(a)	7.4 + 2.5 = 9.9	(b)	1.8 + 0.13 = 1.93
	(c)	9.02 + 4.61 = 13.63	(d)	3.56 + 4.28 = 7.84
	(e)	6.53 + 1.48 = 8.01	(f)	2.73 + 8.49 = 11.22
	(g)	8.8 - 6 = 2.8	(h)	12.9 – 2.5 = 10.4
	(i)	5.33 – 1.21 = 4.12	(j)	4.07 – 1.98 = 2.09
	(k)	10 - 3.75 = 6.25	(1)	16.15 – 3.76 = 12.39

2.	(a)	3.8
		$\frac{\times 2}{2}$
		7.6
	(b)	$3.8 \times 2 = 7.6$
	(D)	9.15 × 4
		$\frac{1}{36.60}$
		$\therefore 9.15 \times 4 = 36.6$
	(c)	2.67 × 10 = 26.7
	(d)	2.67
		<u>× 11</u>
		2 67
		$\frac{+20}{29.37}$
		∴ 2.67 × 11 = 29.3 7
	(e)	0.78
		$\frac{\times 5}{2}$
		3.90
	(f)	$0.78 \times 5 = 3.9$
	(1)	7.80 ×0.50
		$\frac{\times 0.50}{3.90}$
		$\therefore 7.8 \times 0.5 = 3.9$
	(g)	6.1
		<u>× 2.5</u>
		3 0 5
		$\frac{+12}{15.2}$ 5
		$\therefore 6.1 \times 2.5 = 15.25$
	(h)	0.61
		× 0.25
		3 05
		$\frac{+12}{0.15}$ 25
		$\therefore 0.61 \times 0.25 = 0.1525$
	(i)	7.00 4
		× 2.9
		6 3 03 6
		$\frac{+14}{20.3}$ $\frac{0}{11}$ $\frac{6}{6}$
		$\therefore 7.004 \times 2.9 = 20.3116$
	(j)	4 0 0.8
		× 0.3 6
		24 0 4 8
		120240 144.288
		$\therefore 400.8 \times 0.36 = 144.288$
	(k)	0.4
		<u>× 0.4</u>
		0.1 6
		$\therefore 0.4 \times 0.4 = 0.16$

(1) From part (k), $0.4 \times 0.4 \times 0.4 = 0.16 \times 0.4$ 0.1 6 × 0.4 $0.0 \ 6 \ 4$ $\therefore 0.4 \times 0.4 \times 0.4 = 0.064$ 3. (a) $486 \div 2 = 243$ $\therefore 4.86 \div 2 = 2.43$ **(b)** $308 \div 4 = 77$ ∴ 3.08 ÷ 4 = **0.77** (c) $717 \div 3 = 239$:. 7.17 ÷ 3 = 2.39 (d) $7.17 \div 3 = 2.39$ $\therefore 7.17 \div 30 = 2.39 \div 10$ = 0.239 (e) $0.59 \div 10 = 0.059$ (f) 0.405 6) 2.430 -2 400 30 -30 0 ∴ 2.43 ÷ 6 = **0.405** 0.69 (g) 15) 10.35 - 9 00 1 35 -1 35 0 ∴ 10.35 ÷ 15 = **0.69** (h) $10.35 \div 0.15 = 1035 \div 15$ 69 15) 1035 - 900 135 -135 0 $\therefore 10.35 \div 0.15 = 1035 \div 15$ = 69 (i) $21.6 \div 0.3 = 216 \div 3$ 72 3) 216 -21 6 -6 0 ∴ 21.6 ÷ 0.3 = **72** (j) $0.216 \div 0.3 = 2.16 \div 3$ 0.72 3) 2.16 -2 10 6 -6 0 ∴ 0.216 ÷ 0.3 = **0.72**

Wo		iengui, mas	s and volume
	orks	heet 3C Conversion	of units of measurement for
		$\therefore \frac{7.68}{0.24} = 32$	
		0	
		- 48	
		$\frac{-72}{48}$	
		24) 768	\leq
		0.24 24 32	
	(b)	$\frac{7.68}{0.24} = \frac{768}{24}$	
		$\therefore \frac{30.6}{0.15} = 204$	
		$\frac{\overline{0}}{20.6}$	
		<u>- 60</u>	
		$\frac{-30}{60}$	
		15) 3060	
5.	(a)	$\overline{0.15} = \overline{15}$	
5	(a)	= 28.08 <u>30.6</u> <u>3060</u>	
		$=\frac{23000}{1000}$	
	(0)	$10^{-1} 10^{$	
	(b)	$\therefore 43.2 \times 0.65 = 28.08$ $43.2 \times 0.65 = \frac{432}{2} \times \frac{65}{2}$	
		28.0 8 0	
		+25920	
		$\frac{\times 0.65}{21.60}$	
4.	(a)	43.2	
		$0 = 0.2496 \div 0.48 = 0.52$	
		- 96	
		$\frac{-24.00}{96}$	
		48) 24.96	
	(1)	$0.2496 \div 0.48 = 24.96 \div 4$	8
		$\therefore \frac{0}{17.01 \div 4.5} = 3.78$	
		<u>- 3 60</u>	
		$\frac{-31}{3}\frac{5}{60}$	
		$\frac{-133}{35}$ 1	
		45) 170.10	
	(K)	$17.01 \div 4.5 = 170.1 \div 45$ 3.78	
		1/01 - 45 - 1/01 - 2/5	

2. (a) 4.8 m = 480 cm(b) 2.05 m = 205 cm (c) 0.71 m = 71 cm(d) 0.9 m = 90 cm(e) 6.3 km = 6300 m (f) 1.17 km = 1170 m (g) 0.86 km = 860 m (h) 0.4053 km = 405.3 m (i) 2.5 km = 250 000 cm (i) 0.31 km = 31 000 cm(a) 15 cm = 0.15 m(b) 640 cm = 6.4 m 3. (c) 3700 cm = 37 m(d) 9.2 cm = 0.092 m (e) 4375 m = 4.375 km (f) 816 m = 0.816 km (g) 20 m = 0.02 km (h) 50.3 m = 0.0503 km (i) $168\ 000\ \mathrm{cm} = 1.68\ \mathrm{km}$ (i) 7500 cm = 0.075 km(a) 1 kg = 1000 g(b) 1 g = 0.001 kg4. (c) 1 tonne = 1000 kg (d) 1 kg = 0.001 tonnes(e) 1 tonne = 1 000 000 g (f) 1 g = 0.000 001 tonnes 5. (a) 5.2 kg = 5200 g(b) 1.77 kg = 1770 g (c) 0.843 kg = 843 g(d) 0.9 kg = 900 g(e) 2.7 tonnes = 2700 kg(f) 6.81 tonnes = 6810 kg (g) 0.16 tonnes = **160 kg** (h) 0.0503 tonnes = 50.3 kg (j) $0.02 \text{ tonnes} = 20\ 000 \text{ g}$ (i) $4.7 \text{ tonnes} = 4\,700\,000 \text{ g}$ (a) 746 g = 0.746 kg6. (b) 39 g = 0.039 kg(c) 2010 g = 2.01 kg(d) 8.5 g = 0.0085 kg(e) 4115 kg = 4.115 tonnes(f) 156 kg = 0.156 tonnes (g) 73 kg = **0.073 tonnes** (h) 61.2 kg = 0.0612 tonnes $508\ 000\ g = 0.508\ tonnes$ (j) 4930 g = **0.004 93 tonnes** (i) 7. (a) 1 l = 1000 ml(b) 1 ml = 0.001 *l* 8. (a) 2.9 l = 2900 ml(b) 0.84 l = 840 ml(c) 1.06 l = 1060 ml(d) 0.075 l = 75 ml(e) 3290 ml = 3.29 l (f) 801 ml = 0.801 l (g) 430 ml = 0.43 l(h) 20 ml = 0.02 l $5.05 \text{ kg} = 5\frac{5}{90} \text{ kg}$ 9. $\frac{5}{999}$ tonnes = $5\frac{5}{999}$ kg 5050 g = 5.05 kg ∴ 5.05 kg, 5050 g, $\frac{5}{999}$ tonnes **10.** (a) 5.7 cm = 0.057 m (b) 4.2 tonnes = 4200 kg (c) 330 ml = 0.33 *l* **Review Exercise 3** 1. (a) Terminating decimals: $\frac{5}{8}, \frac{9}{2}, 0, \frac{10}{1}$ (b) Recurring decimals: $4\frac{1}{2}$, $6\frac{3}{7}$ 2. (a) $\frac{4}{5} = 0.8$ **(b)** $\frac{3}{8} = 0.375$ (c) $\frac{29}{25} = 1.16$ (d) $\frac{97}{10} = 9.7$ **(b)** $0.19 = \frac{19}{100}$ 3. (a) $0.6 = \frac{3}{5}$ (c) $0.385 = \frac{385}{1000}$ (d) $4.52 = 4\frac{52}{100}$ $\frac{77}{200}$ $=4\frac{13}{25}$ (a) $0.4 = \frac{4}{9}$ 4. **(b)** $0.75 = \frac{75}{99}$ $=\frac{25}{33}$

(c)
$$0.631 = \frac{631}{999}$$

(d) $9.08 = 9 + \frac{8}{90}$
 $= 9\frac{4}{45}$
5. (a) $7.28 + 1.63 = 8.91$
(b) $7.28 - 1.63 = 5.65$
(c) $4 \cdot 9$
 $\times \frac{4 \cdot 5}{2 \cdot 4 \cdot 5}$
 $\pm \frac{19 \cdot 6}{2 \cdot 2 \cdot 0 \cdot 5}$
 $\therefore 4.9 \times 4.5 = 22.05$
(d) $0 \cdot 462$
 $9) \frac{4 \cdot 4.5}{4 \cdot 158}$
 $= \frac{-3 \cdot 60}{55}$
 $= \frac{-5 \cdot 4}{18}$
 $= \frac{-1 \cdot 8}{0}$
 $\therefore 4.158 + 9 = 0.462$
(e) $3.409 + 8.82 = 12.229$
(f) $12.06 - 5.77 = 6.29$
(g) $0 \cdot 68$
 $\times \frac{0.09}{0.06 \cdot 12}$
 $\therefore 0.68 \times 0.09 = 0.0612$
(h) $13.86 + 0.15 = 1386 + 15$
 $\frac{92 \cdot 4}{15} \frac{13 \cdot 86 \cdot 0}{36}$
 $= \frac{-30}{60}$
 $\frac{-1350}{36}$
 $= \frac{-30}{60}$
(c) $4800 \text{ cm} = 48 \text{ m}$
(d) $2 \text{ tonnes} = 2000 \text{ kg}$
 $= 0.048 \text{ km}$
 $= 2000 00$
(e) $712 \text{ kg} = 0.712 \text{ tonnes}$
 $= 712 000 \text{ g}$
 $= 0.0009 \text{ tonn}$
(f) $900 \text{ g} = 0.9 \text{ kg}$
 $= 0.009 \text{ min}$
 $4 \frac{7}{10} l = 4700 \text{ min}$
 $\therefore 4007 \text{ ml} 4.07 l, 4\frac{7}{10} l$

= 31 900 cm

 $= 2\ 000\ 000\ g$

= 0.0009 tonnes

Worksheet 4B Addition and subtraction involving negative integers (a) 2 + 9 = 11**(b)** -2 + 9 = 71. (c) 2 + (-9) = 2 - 9(d) (-2) + (-9) = -2 - 9= -7= -112. (a) 4 - 7 = -3**(b)** -4 - 7 = -11(c) 4 - (-7) = 4 + 7(d) (-4) - (-7) = -4 + 7= 3 = 11 (a) 12 + (-15) = 12 - 153. = -3 **(b)** -80 + 70 = -10(c) 26 - 91 = -65(d) -28 - 28 = -56(e) 17 + (-53) = 17 - 53= -36 -49 + (-34) = -49 - 34(f)= -83 (g) 84 - (-20) = 84 + 20= 104 **(h)** -36 - (-36) = -36 + 36= 0(a) 6 + (-3) + (-2) = 6 - 3 - 24. = 1 **(b)** 40 - 90 - 30 = -50 - 30= -80 (c) 18 - (-25) + (-70) = 18 + 25 - 70= 43 - 70= -27 (d) 12 - (-31) - (-45) = 12 + 31 + 45= 88(e) -24 + 16 + (-10) = -24 + 16 - 10= -8 - 10= -18 -33 - 33 + (-87) = -33 - 33 - 87(f) = -153(g) -49 - (-21) + (-15) = -49 + 21 - 15= -43 (h) -27 - (-19) - (-24) = -27 + 19 + 24= -8 + 24= 16 (a) 8 + (-6) = 2**(b)** 19 + (-22) = -35. (c) -24 + 24 = 0(d) -17 + 2 = -15(e) 30 - 36 = -6(f) 42 - 52 = -10(g) -15 - 12 = -27(h) 21 - 22 = -1(a) -8 + 16 = 8**(b)** 24 + (-20) = 46. (c) -90 + 70 = -20(d) -54 + (-39) = -93(e) 52 - 54 = -2(f) -16 - (-16) = 0(g) -17 - (-31) = 14**(h)** -30 - (-18) = -12Temperature in the morning = -11 °C + 4 °C7. = −7 °C 8. Temperature increase = $-15 \,^{\circ}\text{C} - (-20 \,^{\circ}\text{C})$ = -15 °C + 20 °C= 5 °C

9. Take clockwise as positive. Final position = $48^{\circ} + (-25^{\circ}) + 33^{\circ}$ $=48^{\circ}-25^{\circ}+33^{\circ}$ $= 23^{\circ} + 33^{\circ}$ = 56° clockwise from the starting position 10. (i) Difference in altitude = 286 m - (-4 m)= 286 m + 4 m= 290 m (ii) Altitude of Baku = -4 m - 24 m= -28 m 11. 🖤 Bank balance in March = \$3000 + (-\$4750) + (-\$2200) = \$3000 - \$4750 - \$2200 = -\$1750 - \$2200 = -\$3950 Amount he could have deposited in April = \$600 - (-\$3950) = \$4550 Challenge Myself! 12. (a) Let x = -40 and y = -23. x + y = -40 + (-23)= -40 - 23= -63

:. A possible pair of numbers is x = -40 and y = -23. (b) $\stackrel{\text{(b)}}{\longrightarrow}$ Let x = -40 and y = -76.

$$y - x = -76 - (-40)$$
$$= -76 + 40$$

= -76 += -36

 \therefore A possible pair of numbers is x = -40 and y = -76.

Worksheet 4C Multiplication, division and combined operations involving negative integers

_				
1.	(a)	7 × 8 = 56	(b)	$(-7) \times 8 = -56$
	(c)	$7 \times (-8) = -56$	(d)	$(-7) \times (-8) = 56$
2.	(a)	$24 \div 4 = 6$	(b)	$(-24) \div 4 = -6$
	(c)	$24 \div (-4) = -6$	(d)	$(-24) \div (-4) = 6$
3.	(a)	15 × (-6) = -90	(b)	$(-12) \times (-10) = 120$
	(c)	$(-1) \times (-84) = 84$	(d)	$(-99) \times 0 = 0$
	(e)	$\frac{-34}{2} = -17$	(f)	$\frac{75}{-5} = -15$
	(g)	$\frac{0}{-73} = 0$	(h)	$\frac{-96}{-4} = 24$
4.	(a)	$4 = 1 \times 4$		
		$= 2 \times 2$		
		The positive and negati	ive fa	ctors of 4 are ± 1 , ± 2 and ± 4 .
	(b)	$20 = 1 \times 20$		
	. ,	$= 2 \times 10$		
		$= 4 \times 5$		
		• The positive and negati	ive fa	ctors of 20 are +1, +2, +4, +5.
		+10 and +20		
	(c)	$15 - 1 \times 15$		
	(C)	$13 = 1 \times 13$ = 3 × 5		
		- J × J • The positive and result	wo fa	store of 15 are +1 +2 +5 and
		The positive and negati	vena	$1018 01 - 15 \text{ are } \pm 1, \pm 3, \pm 3 \text{ and}$
		±15.		

(d) $1 = 1 \times 1$ \therefore The positive and negative factors of -1 are ±1. (a) A positive multiple is 12. 5. A negative multiple is **-9**. (b) 💮 A positive multiple is 60. A negative multiple is -36. (c) A positive multiple is 25. A negative multiple is -10. (d) 🐑 A positive multiple is 44. A negative multiple is -33. (a) $(-1)^2 = 1$ **(b)** $(-1)^3 = -1$ 6 (c) $(-8)^2 = 64$ (d) $(-8)^3 = -512$ (e) $\sqrt{64} = 8$ (f) $\sqrt[3]{64} = 4$ (g) $-\sqrt{25} = -5$ (h) $\sqrt[3]{-125} = -5$ 7. (a) $4 \times (-3) \times (-1) = (-12) \times (-1)$ = 12 **(b)** $(-10) \times (-2) \times (-4) = 20 \times (-4)$ = -80 (c) $5 \times (-6) \div (-2) = (-30) \div (-2)$ = 15 (d) $28 \div (-7) \times 9 = (-4) \times 9$ = -36 $(-60) \div (-5) \div (-3) = 12 \div (-3)$ (e) = -4 $(-9)^2 \times (-1) = 81 \times (-1)$ (f) = -81 (g) $(-6)^3 \div (-1)^2 = (-216) \div 1$ = -216 (h) $(-4) \div (-2)^2 \div (-1)^3 = (-4) \div 4 \div (-1)$ $= (-1) \div (-1)$ = 1 (a) $7 \times (-5) = -35$ **(b)** $(-23) \times 4 = -92$ 8. (c) $(-6) \times 9 = -54$ (d) $(-7) \times (-4) = 28$ (e) $80 \div (-5) = -16$ (f) $(-76) \div 4 = -19$ (g) $100 \div (-5) = -20$ (h) $(-90) \div (-6) = 15$ 9. (a) $6 \times (-3)^2 + (-10) = 6 \times 9 - 10$ = 54 - 10 = 44 **(b)** $(-7-5) \div (-7+4) = (-12) \div (-3)$ = 4 (c) $-19 + (-2) \times (-5) \div (-1) = -19 + 10 \div (-1)$ = -19 - 10= -29 (d) $[(-8) + (-3)] \times (-2)^3 = (-11) \times (-8)$ = 88 (e) $(-4) \times 25 - 3^2 \times (-4) = -100 - 9 \times (-4)$ = -100 + 36= -64 25+5 29 + 8 - 7+(-7)30 30 = 1 (g) $(5^3 - 5^2) \div \sqrt{100} = (125 - 25) \div 10$ $= 100 \div 10$ = 10

(**h**) $\sqrt[3]{4^3} + (-8^2) = \sqrt[3]{64 - 64}$ $= \sqrt[3]{0}$ = 0 (i) $(-5) \times \left[(-4) + \sqrt[3]{-216} \right] = (-5) \times (-4 - 6)$ $= (-5) \times (-10)$ = 50 $\sqrt{79 + (-3) \times (-7)} - 0 \times 123^2 = \sqrt{79 + 21} - 0$ $=\sqrt{100}$ = 10 10. (i) Amount he spends in 20 days = $20 \times \$7$ = \$140 (ii) Amount he has borrowed = \$140 - \$80= \$60 (iii) Number of days he has enough money $=\frac{\$80}{\$7}$ = 11 (round down to the nearest integer) ... He does not have enough money on the 12th day. 11. Prime numbers: 2, 3 and 5 Sarah's score $= -(3 \times 1) + (0 \times 2) + (7 \times 3) - (0 \times 4) + (4 \times 5) - (1 \times 6)$ = -3 + 0 + 21 - 0 + 20 - 6= 32 12. (a) Amount of profit or loss = $4 \times \$6 - 3 \times \$3 - 5 \times \$4$ = -\$5 :. She makes a loss of \$5. **(b)** $\bigotimes 5 \times \$6 - 7 \times \$3 - 7 \times \$4 = -\19 :. She could have sold 5 blouses, 7 scarves and 7 skirts.

Worksheet 4D Negative fractions and mixed numbers

(a)
$$\frac{1}{4} + \frac{1}{3} = \frac{3}{12} + \frac{4}{12}$$

 $= \frac{7}{12}$
(b) $\frac{5}{14} - \frac{1}{2} = \frac{5}{14} - \frac{7}{14}$
 $= -\frac{2}{14}$
(c) $-\frac{4}{5} + \frac{3}{10} = -\frac{8}{10} + \frac{3}{10}$
 $= -\frac{5}{10}$
 $= -\frac{1}{2}$
(d) $-\frac{2}{3} - \frac{1}{12} = -\frac{8}{12} - \frac{1}{12}$
 $= -\frac{9}{12}$
 $= -\frac{3}{4}$

$$\begin{array}{lll} (c) & \frac{6}{7} + \left(-\frac{3}{14}\right) = \frac{6}{7} - \frac{3}{14} \\ & = \frac{12}{14} - \frac{3}{14} \\ & = \frac{9}{14} \\ (0) & -\frac{4}{5} + \left(-\frac{3}{2}\right) = -\frac{4}{5} - \frac{3}{20} \\ & = -\frac{18}{20} \\ & = -\frac{19}{20} \\ & = -\frac{11}{3} \\ & = -\frac{1}{15} \\ & = -\frac{6}{15} \\ & = -\frac{6}{15} \\ & = -\frac{6}{15} \\ & = -\frac{6}{15} \\ & = -\frac{2}{5} \\ & = -\frac{1}{4} \\ & = -\frac{1}{$$

2.

(e)
$$8 + \left(\frac{4}{15} - 1\frac{1}{5}\right) \div \left(\frac{1}{2} \times 1\frac{3}{4}\right)$$
$$= 8 + \left(\frac{4}{15} - \frac{18}{15}\right) \div \left(\frac{1}{2} \times \frac{7}{4}\right)$$
$$= 8 + \left(-\frac{14}{15}\right) \div \frac{7}{8}$$
$$= 8 + \left(-\frac{14}{15}\right) \times \frac{8}{7}$$
$$= 8 - \frac{16}{15}$$
$$= 8 - 1\frac{1}{15}$$
$$= 6\frac{14}{15}$$
(f)
$$\sqrt{\left(-\frac{91}{23}\right) \div \left(-\frac{13}{46}\right) + \frac{16}{3} \times \frac{2^2 - 1}{2^3}}$$
$$= \sqrt{\left(-\frac{91}{23}\right) \times \left(-\frac{46}{13}\right) + \frac{16}{3} \times \frac{3}{8}}$$
$$= \sqrt{14 + 2}$$
$$= \sqrt{16}$$
$$= 4$$

Worksheet 4E Negative decimals

1. (a) 23.8 + 5.49 = 29.29(b) 10.1 - 7.64 = 2.46

- (c) 9 4.6 = 4.4 $\therefore 4.6 - 9 = -4.4$
- (d) 3.25 + (-8.1) = 3.25 8.18.1 - 3.25 = 4.85 $\therefore 3.25 + (-8.1) = -4.85$
- (e) 3.07 + (-4.18) = 3.07 4.184.18 - 3.07 = 1.11 $\therefore 3.07 + (-4.18) = -1.11$
- (f) 6.2 3.49 = 2.71 $\therefore -6.2 + 3.49 = -2.71$ (g) -0.92 + (-1.5) = -0.92 - 1.5
- 0.92 + 1.5 = 2.42 $\therefore -0.92 + (-1.5) = -2.42$
- (h) -8.8 (-0.12) = -8.8 + 0.12 8.8 - 0.12 = 8.68∴ -8.8 - (-0.12) = -8.68
- **2.** (a) $3.5 \times 4 = 14$
 - $\therefore -3.5 \times 4 = -14$
 - (b) $0.16 \times 12 = 1.92$ $\therefore -0.16 \times 12 = -1.92$
 - (c) $9.8 \times 3.2 = 31.36$
 - $\therefore -9.8 \times 3.2 = -31.36$ (d) $7.75 \times 0.8 = 6.2$
 - ∴ $-7.75 \times (-0.8) = 6.2$ (e) $20 \div 0.5 = 20 \div \frac{1}{-1}$

$$= 20 \times 2$$

= 40

$$\therefore 20 \div (-0.5) = -40$$

(f)
$$0.95 \div 1.9 = \frac{0.95}{1.9}$$

 $= \frac{9.5}{1.9}$
 $= \frac{1}{2}$
 $\therefore 0.95 \div (-1.9) = -0.5$
(g) $121.8 \div 2.1 = 58$
 $\therefore -121.8 \div (-2.1) = 58$
(h) $13.34 \div 4.6 = 2.9$
 $\therefore -13.34 \div (-4.6) = 2.9$
3. (a) $4.56 + (-6.78) - (-8.09) = 4.56 - 6.78 + 8.09$
 $= 5.87$
(b) $-2.2 - (-1)^{99} \times [7.4 - (-3.6)] = -2.2 - (-1) \times (7.4 + 3.6)$
 $= -2.2 + 11$
 $= 8.8$
(c) $5.95 + 0.33 - (-4.27) \times (-2) = 5.95 + 0.33 - 8.54$
 $= -2.26$
(d) $-0.9 - (-0.9)^2 \times (-1)^3 = -0.9 - 0.81 \times (-1)$
 $= -0.99 + 0.81$
 $= -0.09$
(e) $0.1^2 \times [(-7.6) \div (-0.4)] = 0.01 \times 19$
 $= 0.19$
(f) $\sqrt[3]{(-0.6)^2 + (-0.8)^2} = \sqrt[3]{0.36 + 0.64}$
 $= \sqrt[3]{1}$
 $= 1$

Worksheet 4F Rational, irrational and real numbers

1. (a) Rational numbers:
$$-5.1, \frac{22}{7}, 0, -3\frac{2}{9}, \sqrt[3]{-64}$$

(b) Irrational numbers: $\sqrt{85}, \pi$
2. $-\frac{5}{6}, 4.06, \sqrt[3]{-1000}, 1\frac{7}{9}, -0.2$
3. (a) $\left(\frac{3}{4}\right)^2 + \left(-5\frac{5}{6}\right)^3 - \left(-\frac{9}{8}\right) = -196.808 \text{ (to 3 d.p.)}$
(b) $-11.7 + (-0.16)^2 \times \pi = -11.620 \text{ (to 3 d.p.)}$
(c) $\left(\frac{\sqrt{15}}{10 + \sqrt[3]{25}}\right)^3 = 0.027 \text{ (to 3 d.p.)}$
(d) $\frac{22}{7} \times 1.5^2 - 2 \times \pi \times 1.5 \times \sqrt{\frac{44}{9}} = -13.768 \text{ (to 3 d.p.)}$
(e) $\sqrt[3]{\frac{14}{15} \times \left(\frac{7}{3^2} + 6 \div \frac{5}{23}\right)} = 2.981 \text{ (to 3 d.p.)}$
(f) $\frac{4.5^2 + (-5.5)^2}{\sqrt{9^2 - 8^2}} = 12.248 \text{ (to 3 d.p.)}$
Review Exercise 4
1. (a) $-9 + (-12) = -9 - 12$

$$(a) -9 + (-12) = -9 - 12$$

= -21
$$4 - (-20) = 4 + 20$$

= 24
$$\therefore -9 + (-12) < 4 - (-20)$$

(b)
$$5 \times (-3) = -15$$

 $(-17) \times 3 = -51$
 $\therefore 5 \times (-3) > (-17) \times 3$
(c) $\frac{3}{4} \times 2\frac{5}{6} = \frac{3}{4} \times \frac{17}{6}$
 $= 2\frac{1}{8}$
 $2\frac{5}{6} + \frac{8}{9} = \frac{17}{6} \times \frac{9}{8}$
 $= 3\frac{3}{16}$
 $\therefore \frac{3}{4} \times 2\frac{5}{6} < 2\frac{5}{6} + \frac{8}{9}$
(d) $(-2)^3 - (-2) \times (-2)^2 = -8 - (-2) \times 4$
 $= -8 - (-8)$
 $= -8 + 8$
 $= 0$
 $4.8 + (-1.2) = -4$
 $\therefore (-2)^2 - (-2) \times (-2)^3 > 4.8 + (-1.2)$
2. $p = \frac{5}{7}, q = 0.75, r = \frac{15}{7}, s = \frac{3\pi}{4}$
3. (i) $-\frac{12}{11} - 0.6 - 0.6^2$
 $3\frac{8}{9}$
 $-\frac{1}{-2} - \frac{1}{10}$
 $\frac{1}{10} - \frac{12}{11} - \frac{1}{2} - \frac{3}{3} + \frac{4}{5} - \frac{5}{6}$
(ii) $6, 3\frac{8}{9}, 0.6^2, -0.6, -\frac{12}{11}$
4. (a) $\frac{12.7 \times 4}{8.1 - 4.9} = 15.875$
(b) $\sqrt{3.5^2 + 4.5} = 4.1$ (to 1 d.p.)
5. (a) $\frac{5}{6}$ is greater.
(b) Consider the difference between each fraction and 1.
Since $1 - \frac{4}{5} = \frac{1}{5}, 1 - \frac{5}{6} = \frac{1}{6}$ and $1 - \frac{100}{101} = \frac{1}{101}$, then
 $\frac{100}{101}$ is the greatest.
(c) \bigcirc Since $\frac{4}{5} = \frac{90}{120}$ and $\frac{5}{6} = \frac{100}{120}$,
two possible rational numbers are $\frac{97}{120}$ and $\frac{33}{40}$.
(d) There are an infinite number of rational numbers between $\frac{4}{5}$
 $and \frac{5}{6}$.
6. (i) Fraction of non-fiction books = $\left(1 - \frac{1}{5} - \frac{1}{4}\right) \times \frac{5}{8}$
 $= \frac{11}{20} \times \frac{5}{8}$
 $= \frac{11}{32}$
(ii) Non-fiction books, magazines, assessment books, fiction
books
7. (a) $-1.7 m$
(b) Increase $= 1.5 m - (-1.7 m)$
 $= 1.5 m + 1.7 m$
 $= 3.2 m$

 $\frac{4}{5}$

8. (i) Difference = $32 \degree C - (-10 \degree C)$ $= 32 \circ C + 10 \circ C$ $= 42 \,^{\circ}\mathrm{C}$ (ii) 🐏 A possible value is –1 °C. 9. (i) Actual lifespan of battery D = 4 h + (-1.3 h)= 4 h – 1.3 h = 2.7 h(ii) Total lifespan $= \{ [4 + (-0.2)] + [4 + 1.4] + [4 + 0.8] + [4 + (-1.3)] \}$ + [4 + (-0.5)] h= 20.2 h 10. (a) (i) 9 a.m. on 5th January (ii) 11 p.m. on 4th January **(b)** 9.25 p.m. $\xrightarrow{5 \text{ h}}$ 2.25 p.m. The local time in Kenya is -5 hours relative to the local time in Singapore. Approximation and Estimation Worksheet 5A Rounding and significant figures (a) 50.7 = 51 (to the nearest integer) 1. (b) 398.4 = **398** (to the nearest integer) (a) 4279 = 4300 (to the nearest 100) 2. (b) 1605.5 = 1600 (to the nearest 100) (a) 63.184 = 63.2 (to 1 d.p.) 3. **(b)** 956.02 = **956.0** (to 1 d.p.) **4.** (a) 22.0536 = **22.05** (to 2 d.p.) **(b)** $0.197 \, 414 = 0.20$ (to 2 d.p.) (a) 15.2784 = 15.278 (to the nearest 0.001) 5. (b) $3.001\ 009 = 3.001$ (to the nearest 0.001) (a) 97.132 565 = 97.1326 (to the nearest ten thousandth) 6. (b) 0.406 081 = 0.4061 (to the nearest ten thousandth) 7. (a) 3916 = 4000 (to 1 s.f.) **(b)** 504 = 500 (to 1 s.f.) (c) 2.807 = 3 (to 1 s.f.) (d) 0.3099 = 0.3 (to 1 s.f.) (a) 71 448 = 71 000 (to 2 s.f.) 8 (b) 239 = 240 (to 2 s.f.) (c) 19.506 = 20 (to 2 s.f.) (d) 0.08075 = 0.081 (to 2 s.f.) 9. (a) 254.810 = 255 (to 3 s.f.) (b) 72 167 = 72 200 (to 3 s.f.) (c) 3.9986 = 4.00 (to 3 s.f.) (d) $0.580\ 339 = 0.580\ (to\ 3\ s.f.)$ 10. (a) 5 s.f. (b) 5 s.f. (c) 6 s.f. (d) 4 s.f. $\frac{207.10}{13.8 - 1.07^2} = 20 \text{ (to 1 s.f.)}$ 11. -12. (a) $\frac{5}{14} = 0.357 \, 142 \, 857 \, 1$ (b) 0.36 (to 2 s.f.) 0.9413 13. (a) = 0.041 639 387 77 7.026+15.58 (b) (i) 0.0416 (to 3 s.f.) (ii) 0.042 (to 3 d.p.)

- 14. (i) 524 000 has at least 3 significant figures.
 (ii) k = 3, 4, 5 or 6
- 15. We Examples of this number are 0.040 75, 0.040 80 and 0.040 818.
- **16.** 12 813 = **13 000** (to the nearest thousand)
- 17. The minimum mass of the baby is **3.35 kg**.
- 18. (a) (i) 19 386 499 (ii) 19 385 500
- (b) 🚭 Two possible values are 19 386 012 and 19 385 999.
- **19.** (i) **4 s.f.** (ii) 728.6 = 730 (to 2 s.f.)
- **20.** Area of the court = $23.77 \text{ m} \times 8.23 \text{ m}$ = **200 m**² (to 2 s.f.)

21. (i) Least possible mass = 49.5 g

- (ii) Greatest possible mass of 1 cm³ of metal = $\frac{50.5 \text{ g}}{12.5}$ = 4.04 g
- **22.** Amount payable using credit card = \$70.38 Amount payable in cash = \$70.40
 - \therefore The customer should use a **credit card** to pay.

Worksheet 5B Limits of accuracy

- 1. (a) 6 < x < 10
- (b) $0.5 \le y < 3$
 - (c) $17.2 \le z \le 18.1$
- 2.

· -	, _, , _ , _ , _ , _ , _ , _ , _ , _		
	number	lower bound	upper bound
(a)	10	9.5	10.5
(b)	4.5	4.45	4.55
(c)	8.8	8.75	8.85
(J)	6.07	6 065	6.075

(a) Upper bound of p + q = 7.5 + 4.353. = 11.85 Lower bound of p + q = 6.5 + 4.25= 10.75 (b) Upper bound of p - q = 7.5 - 4.25= 3.25 Lower bound of p - q = 6.5 - 4.35= 2.15 (c) Upper bound of $p \times q = 7.5 \times 4.35$ = 32.625Lower bound of $p \times q = 6.5 \times 4.25$ = 27.625 (d) Upper bound of $p \div q = 7.5 \div 4.25$ = 1.765 (to 3 d.p.) Lower bound of $p \div q = 6.5 \div 4.35$ = 1.494 (to 3 d.p.) 4. Upper bound = 28.5×28.5 = 812.25 cm² Lower bound = 27.5×27.5 = 756.25 cm² 7.35 5. Upper bound = 6.045 = 1.2 (to 2 s.f.) 7.25 Lower bound = 6.055 = 1.2 (to 2 s.f.)

Worksheet 5C Approximation and approximation errors in real-world contexts

1. (i) Length =
$$\sqrt{352}$$
 cm
= 18.8 cm (to 3 s.f.)
(ii) Perimeter = $4 \times \sqrt{352}$ cm
= 75.0 cm (to 3 s.f.)
2. (i) Radius = $\frac{248}{2\pi}$ cm
= 39.5 cm (to 3 s.f.)
(ii) Area = $\pi \left(\frac{248}{2\pi}\right)^2$ cm²
= 4890 cm² (to 3 s.f.)
3. (i) Greatest number of bags

$$= \frac{\$50}{\$3.95}$$

= 7 (round down to the nearest integer)
(ii) Amount Susie has left = $\$30 - 7 \times \3.95

Amount Susie has left =
$$30 - 7 \times 3.95$$

= 2.35

4. He should indicate it as **10 amperes** (round down to the nearest integer).

Indicating it as 11 amperes may be dangerous as a current between 10.52 amperes and 11 amperes continues to flow in the circuit.

5. (a) (i), (b) (i)

Finalist	Number of votes	Percentage of votes (to 1 d.p.)	Percentage of votes (to 2 d.p.)
Amazing ballerina	3551	38.0%	38.04%
Dance addict	2036	21.8%	21.81%
Young flamingo	3748	40.1%	40.15%
Total	9335	99.9%	100%

(a) (ii) The total percentage is not 100%.

- (b) (ii) The number of decimal places used in the intermediate steps in the fourth column is greater than that in the third column, hence it is more accurate.
- 6. In the calculation of the percentage of votes for each destination, the values were written to 1 decimal place instead of 2 decimal places.

Bintan:
$$\frac{24}{80} \times 100\% = 30.00\%$$

Phuket: $\frac{35}{80} \times 100\% = 43.75\%$
Sentosa: $\frac{21}{80} \times 100\% = 26.25\%$

Using 2 decimal places in the intermediate steps would yield a total percentage of 100%.

Worksheet 5D Estimation and estimation errors in real-world contexts

Challenge Myself!

Consider the Family Combo.

Price of 600 g
$$\approx$$
 \$10 ×

 \therefore The Family Combo is better value for money.

3

Review Exercise 5

2 significant
2 significant
× \$4

1. (a)
$$\frac{10.59^2}{16.33 - 2.24} = 7.9594$$
 (b) 8.0 (to 2 s.f.)
2. (a) Upper bound = 0.612 (to (3 s.f.)
Lower bound = 0.611 (to 3 s.f.)
(b) $\sqrt{\frac{4.26 \times 8.53}{97.1}} = \sqrt{\frac{4 \times 9}{100}}$
 $= \sqrt{\frac{9}{25}}$
 $= \frac{3}{5}$
3. (a) $\left(\frac{6}{7}\right)^3 = 0.629 737 609 3$
(b) (i) 0.6 (to 1 s.f.) (ii) 0.630 (to 3 s.f.)
4. The minimum mass of the jelly beans is 0.55 kg.
5. (i) $k = 3, 4 \text{ or 5}$
(ii) When $k = 3$,
Difference = 37 649 - 37 550 = 99
6. 8 kg
7. 13 m
8. 120 s
9. 100 yen \approx \$\$1
34 000 yen \approx \$\$340
 \therefore The price of the pair of in-ear headphones is about \$\$340.
10. (i) Rp1000 \approx \$\$80.09
Rp100 000 \approx \$\$81
 \therefore The price of the leather bag is \$\$81.
(ii) $\text{W} 1000 \approx$ \$\$81
 $\text{W} 90 000 \approx$ \$\$81
 $\text{W} 90 000 \approx$ \$\$81
(ii) $\text{W} 9000 \approx$ \$\$1
 $\text{W} 90 000 \approx$ \$\$1
 $\text{W} 90 000 \approx$ \$\$20
 \therefore The bag is more expensive in South Korea.
11. (i) 6 305 649 (ii) 6 305 550
12. (i) 1230 million dollars (to the nearest ten million dollars)
(ii) Average amount = $\frac{3664}{10}$ million dollars

ii) Average amount
$$=\frac{5004}{12}$$
 million dollars
= **310 million dollars** (to 2 s.f.)

(iii) Maximum amount = (13 440 + 980) million dollars **(b)** 5x - 3(7x + y) = 5(-4) - 3[7(-4) + 7]= 14 420 million dollars = -20 - 3(-28 + 7)= -20 - 3(-21)13. (i) 💮 \$28.9542 (ii) 💮 \$28.95 = -20 + 6314. Consider the Twin Pack. = 43 Price of 100 ml $\approx \frac{\$17}{}$ (c) $\frac{x}{5y} + \frac{y}{5x} = \frac{-4}{5(7)} + \frac{7}{5(-4)}$ 17 = \$1 $=-rac{4}{35}-rac{7}{20}$ Consider the Plus Pack. Price of 100 ml $\approx \frac{\$11}{}$ $-\frac{13}{28}$ 10 = \$1.10 (d) $x^2 + y^2 = (-4)^2 + 7^2$... The **Twin Pack** is better value for money. = 16 + 49= 65 (a) 3y - 2x = 38. - 2(-5) **Basic Algebra and Algebraic Manipulation** Worksheet 6A Basic algebraic concepts and notations (b) (b) 10y - 3x1. (a) 4x + 5y $\frac{7x}{9yz}$ (c) 16xyz (d) (e) \sqrt{xy} (f) $\sqrt[3]{3z}$ (a) 8x + 7y + 6z(b) 9y + 2z - 5x2. (d) 90yz (c) 15y - 4xx + 4y3 y (f) (e) 2x + 6z \boldsymbol{z} (a) sum of 6x and 11y21 3. (b) subtract 4y from 9x(c) product of x and the square of y (d) divide 5x by 8 (a) (x - 28) years (b) (x-3) years 4. 5. Area = $3x^2$ cm² Width = x cm (d) $\sqrt{-5xy} = \sqrt{-5(-5)\left(\frac{1}{4}\right)}$ Length = 3x cm 6. (a) 4x + 9y = 4(5) + 9(-2)= 20 - 18 = 2 **(b)** 4x - 9y = 4(5) - 9(-2)= 20 + 18= 38 (c) 3xy = 3(5)(-2)(a) $7 - 12xy = 7 - 12\left(\frac{1}{3}\right)\left(-\frac{1}{4}\right)$ = -30 9. (d) $\frac{xy}{3} = \frac{(5)(-2)}{3}$ = 7 + 1= 8 $\frac{10}{3}$ **(b)** $\frac{3}{x} + \frac{4}{y} - 6 = \frac{3}{\frac{1}{2}} + \frac{4}{-\frac{1}{2}} - 6$ $= -3\frac{1}{3}$ 3 = 9 - 16 - 6 7. (a) -11x - 2y = -11(-4) - 2(7)= -13 = 44 - 14= 30

(c)
$$5(x+2y) - 9x = 5\left[\frac{1}{3} + 2\left(-\frac{1}{4}\right)\right] - 9\left(\frac{1}{3}\right)$$

 $= 5\left(\frac{1}{3} - \frac{1}{2}\right) - 3$
 $= 5\left(-\frac{1}{6}\right) - 3$
 $= -3\frac{5}{6}$
(d) $\sqrt[3]{\frac{y}{2}} + \frac{3x}{2} = \sqrt[3]{\frac{-1}{4}} + \frac{3\left(\frac{1}{3}\right)}{2}$
 $= \sqrt[3]{\frac{-1}{8}} + \frac{1}{2}$
 $= -\frac{1}{2} + \frac{1}{2}$
 $= 0$
10. (a) $99xyz = 99\left(-\frac{1}{2}\right)(0)(4)$
 $= 0$
(b) $(x^2 - yz)^3 = \left[\left(-\frac{1}{2}\right)^2 - (0)(4)\right]^3$
 $= \left(\frac{1}{4}\right)^3$
 $= \frac{1}{64}$
(c) $\frac{x^2z}{5} - \frac{3z - y}{2x + z} = \frac{\left(-\frac{1}{2}\right)^2(4)}{5} - \frac{3(4) - 0}{2\left(-\frac{1}{2}\right) + 4}$
 $= \frac{\left(\frac{1}{4}\right)(4)}{5} - \frac{12}{-1 + 4}$
 $= \frac{1}{5} - 4$
 $= -3\frac{4}{5}$
(d) $(x + z)(z^2 - xz + z)^2 = \left(-\frac{1}{2} + 4\right)\left[4^2 - \left(-\frac{1}{2}\right)(4) + 4\right]^2$
 $= \left(\frac{7}{2}\right)(16 + 2 + 4)^2$
 $= \left(\frac{7}{2}\right)(21)^2$
 $= 1694$
11. (a) $xy - yz + xz = 3(-5) - (-5)\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)$
 $= -11$
(b) $(x + y - z)^2 = \left[\frac{3 + (-5) - \frac{1}{2}\right]^2$
 $= 6\frac{1}{4}$
(c) $\frac{x - y}{z} - \frac{y - z}{x} = \frac{3 - (-5)}{\frac{1}{2}} - \frac{-5 - \frac{1}{2}}{3}$
 $= 17\frac{5}{6}$

(d)
$$\frac{x+z}{y^2} \times 5xz = \frac{3+\frac{1}{2}}{(-5)^2} \times 5(3)\left(\frac{1}{2}\right)$$

= $1\frac{1}{20}$

12. 2x + 3y is equivalent to 3y + 2x, as the sum of 2x and 3y can be written in either way. 2x - 3y is not the same as 3y - 2x, just as 2 - 3 is not equal to 3 - 2.

Challenge Myself!

13. The product of *p* and 12*q*, the product of 6*p* and 2*q*, the product of 3*p* and 4*q*.

Worksheet 6B Addition and subtraction of linear terms

1. (a)
$$7x + 4x = 11x$$

(b) $5x - 2x = 3x$
(c) $8x + (-3x) = 8x - 3x$
 $= 5x$
(d) $-6x + x = -5x$
(e) $-2x - 9x = -11x$
(f) $-4x - (-5x) = -4x + 5x$
 $= x$
2. (a) $3x + 10 - 6x + 5 = 3x - 6x + 10 + 5$
 $= -3x + 15$
(b) $9x - 4 + (-x) - (-1) = 9x - 4 - x + 1$
 $= 8x - 3$
(c) $5x + 8y + 7x - y = 5x + 7x + 8y - y$
 $= 12x + 7y$
(d) $4y - 10x - 3y + 6x = 4y - 3y - 10x + 6x$
 $= y - 4x$
(e) $-9x - 2y + (-x) - (-2y) = -9x - 2y - x + 2y$
 $= -9x - x - 2y + 2y$
 $= -10x$
(f) $-8y + (-3x) - 5y + (-4x) = -8y - 3x - 5y - 4x$
 $= -8y - 5y - 3x - 4x$
 $= -13y - 7x$
(g) $4x - y + 12 + 5y - 9 - 9x = 4x - 9x - y + 5y + 12 - 9$
 $= -5x + 4y + 3$
(h) $3 - 6y + (-2x) - 8 - (-7y) + x$
 $= 3 - 6y - 2x - 8 + 7y + x$
 $= -2x + x - 6y + 7y + 3 - 8$
 $= -x + y - 5$
3. (a) $24x + 5y + y - 10x = 24x - 10x + 5y + y$
 $= 14x + 6y$
(b) $-7x - 15 + 2x - 3y + 9 = -7x + 2x - 3y - 15 + 9$
 $= -5x - 3y - 6$
4. (a) $(7yx + 5 - xy) - (6xy - 11) = (6xy + 5) - (6xy - 11)$
 $= 6xy + 5 - 6xy + 11$
 $= 16$
(b) $(7xy - 8yz + 3x) - (4x - 8yz)$
 $= 7xy - 8yz + 8yz + 3x - 4x$
 $= 7xy - x$

5. (a) Sum of the 3 integers = x + (x + 2) + (x + 4)= x + x + 2 + x + 4= x + x + 2 + 4= 3x + 6(b) Sum of the 3 integers = x + (x - 2) + (x - 4)= x + x - 2 + x - 4= x + x + x - 2 - 4

$$3x - 6$$

- 7. Cost of a roll of dental floss = \$2x
 Cost of an electric toothbrush = \$8x ≠ \$6x
 ∴ It is incorrect to conclude that the electric toothbrush costs six times as much as a tube of toothpaste.
- 8. (a) Total amount received = (x + 6y)
 - (b) Since y = 240, amount of commission for 7 vans = 7 × \$240 = \$1680

Worksheet 6C Expansion and factorisation of linear expressions

1.	(a)	5(x+7) = 5x + 35	(b)	6(x - 10) = 6x - 60
	(c)	4(3x+8) = 12x + 32	(d)	9(2x - 1) = 18x - 9
	(e)	-(x+12) = -x - 12	(f)	-2(x-7) = -2x + 14
	(g)	-6(2x+9) = -12x - 54	(h)	-4(5x - 3) = -20x + 12
	(i)	3(1+6x) = 3 + 18x	(j)	5(12 - 4x) = 60 - 20x
	(k)	-2(8-3x) = -16 + 6x	(1)	-9(9 - 10x) = -81 + 90x
	(m)	7(5x+4y) = 35x + 28y	(n)	8(3x - 8y) = 24x - 64y
	(o)	-3(6y + x) = -18y - 3x	(p)	-5(2y - 9x) = -10y + 45x
2.	(a)	$8 \times x \times y = 8x\mathbf{y}$	(b)	$11 \times x \times 2 \times y = 22xy$
	(c)	$3 \times x \times (-9) \times y = -27xy$	(d)	$4x \times 10y = 40xy$
	(e)	$5x \times (-6y) = -30xy$	(f)	$(-12x) \times (-12y) = \mathbf{144xy}$
	(g)	$6x \times y \times 7z = 42xyz$	(h)	$(-3x) \times 8y \times (-4z) = 96x\mathbf{y}$
3.	(a)	2a(9x+4y) = 18 ax + 8 ay		
	(b)	7a(8x-3y) = 56 ax - 21 ay	,	
	(c)	-a(5x+y) = -5ax - ay		
	(d)	-6a(x-10y) = -6ax + 60a	ıy	
	(e)	4bc(6y - 11x) = 24bcy - 44bc(6y - 11x) = 24bcy - 44bc(9y - 11x) = 24bc(9y - 11x) = 24bcy - 44bc(9y - 11x) = 24bc(9y	4bcx	
	(f)	-5bc(3y+16x) = -15bcy -	- 80ł	ocx
4.	(a)	12(3x+y) - 10y = 36x + 1	2 <i>y</i> –	10 <i>y</i>
		= 36x + 2	2 <i>y</i>	
	(b)	-(5x+7y) + 11x = -5x - 7	7y +	11 <i>x</i>
		= -5x + 3	11x -	- 7 <i>y</i>
		= 6x - 7y	V	
	(c)	8x + 3y - (3x + 8y) = 8x + 3x - (3x + 8x) = 8x + 3x - (3x + 8y) = 8x + 3x - (3x + 8x) = 8x + 3x + 3x + 3x + 3x + 3x = 8x + 3x + 3x + 3x = 8x + 3x + 3x = 8x	3 <i>y</i> –	3x - 8y
		= 8x -	3 <i>x</i> +	3y - 8y
		= 5x -	5y	
	(d)	-(4x - 9y) - 9y = -4x + 9y	' - 9j	,
		=-4x		
	(e)	6(2x - y) + 4(x - 5y) = 12x	c – 6j	y + 4x - 20y
		= 12x	c + 4:	x - 6y - 20y
		= 162	x – 20	бу
	(f)	3(3x+8y) - 2(4x-9y) = 9	$\partial x + i$	24y - 8x + 18y
		= 9	$\partial x - b$	8x + 24y + 18y
		ر =	x + 4	2 <i>y</i>

```
(g) 6x + 2(x - 3y + 2z) + 5y = 6x + 2x - 6y + 4z + 5y
                                 = 6x + 2x - 6y + 5y + 4z
                                 = 8x - y + 4z
    (h) -4x - 3(2x + 12y - 3z) - 9z = -4x - 6x - 36y + 9z - 9z
                                    = -10x - 36y
5. (a) -2\{5x - 6a[y - (14y + x)]\} = -2[5x - 6a(y - 14y - x)]
                                  = -2[5x - 6a(-13y - x)]
                                   = -2(5x + 78ay + 6ax)
                                  = -10x - 156ay - 12ax
    (b) 10{7y + (-3a)[8x - 3y - 2(x - 4y)]}
         = 10[7y - 3a(8x - 3y - 2x + 8y)]
         = 10[7y - 3a(8x - 2x - 3y + 8y)]
         = 10[7y - 3a(6x + 5y)]
         = 10(7y - 18ax - 15ay)
         = 70y - 180ax - 150ay
6. 4(2y - 9x + 11) + (7x - 3y + 5)
    = 8y - 36x + 44 + 7x - 3y + 5
    = 8y - 3y - 36x + 7x + 44 + 5
    =5y - 29x + 49
7. [7x + 2y + [-(4y - 10x)]] - (-6)[x - 5y + 2(3y - 4x)]
    = [7x + 2y - (4y - 10x)] + 6(x - 5y + 6y - 8x)
    = (7x + 2y - 4y + 10x) + 6(x - 8x - 5y + 6y)
     = (7x + 10x + 2y - 4y) + 6(-7x + y)
    = 17x - 2y - 42x + 6y
    = 17x - 42x - 2y + 6y
    = -25x + 4y
8
    (a) 16x + 12 = 4(4x + 3)
    (b) 9x - 45 = 9(x - 5)
    (c) 10 - 15x = 5(2 - 3x)
    (d) -33x - 44 = -11(3x + 4)
    (e) 14ax + 6ay = 2a(7x + 3y)
    (f) -21ax + 56ay = 7a(-3x + 8y)
                       = 7a(8y - 3x)
    (g) 24x - 27y + 3z = 3(8x - 9y + z)
    (h) -8ax + 10bx + 12cx = 2x(-4a + 5b + 6c)
    (a) 9x + 18x(a+b) = 9x[1+2(a+b)]
                        = 9x(1 + 2a + 2b)
    (b) 5ax - 20a(y - z) = 5a[x - 4(y - z)]
                         =5a(x-4y+4z)
    (c) -3x(4y+7z) - 12x = -3x[(4y+7z)+4]
                            = -3x(4y + 7z + 4)
    (d) -17x^2 - 34xy = -17x(x + 2y)
    (e) 7a(1-4x) + 3a(5x-6) = a[7(1-4x) + 3(5x-6)]
                                = a(7 - 28x + 15x - 18)
                                = a(7 - 18 - 28x + 15x)
                                = a(-11 - 13x)
                                = -a(11 + 13x)
    (f) -2x(9a+b) - 8x(3a-5b) = -2x[(9a+b) + 4(3a-5b)]
                                  = -2x(9a + b + 12a - 20b)
                                  = -2x(9a + 12a + b - 20b)
                                  = -2x(21a - 19b)
Challenge Myself!
```

10. $-34a^4bx^2 - 85a^3b^2x^2 - 68a^3bc^2x^2 = -17a^3bx^2(2a + 5b + 4c^2)$

Worksheet 6D Linear expressions with fractional coefficients	4. (a) $\frac{3x}{4} + \frac{7x}{12} = \frac{9x + 7x}{12}$
1. (a) $\frac{1}{5}x + \frac{1}{4}y + \frac{1}{7}x + \frac{1}{8}y = \frac{1}{5}x + \frac{1}{7}x + \frac{1}{4}y + \frac{1}{8}y$ = $\frac{12}{25}x + \frac{3}{2}y$	$= \frac{16x}{12}$ $= \frac{4x}{3}$
(b) $\frac{2}{3}x - \frac{1}{2}y - \frac{1}{6}x + \frac{2}{5}y = \frac{2}{3}x - \frac{1}{6}x - \frac{1}{2}y + \frac{2}{5}y = \frac{1}{2}x - \frac{1}{6}x - \frac{1}{2}y + \frac{2}{5}y$	(b) $\frac{2x}{3} - \frac{2x}{9} = \frac{6x - 2x}{9}$ = $\frac{4x}{9}$
(c) $3x - \frac{6}{7}y + \frac{4}{5}x - \frac{9}{14}y = 3x + \frac{4}{5}x - \frac{6}{7}y - \frac{9}{14}y = \frac{19}{7}x - \frac{3}{7}y - \frac{9}{14}y$	(c) $x + \frac{5x-3}{6} = \frac{6x+5x-3}{6} = \frac{11x-3}{6}$
$= \frac{1}{5}x - \frac{1}{2}y$ (d) $\frac{5}{6}x - \frac{3}{4}y + z + \frac{3}{4}x - 2y + \frac{1}{2}z$	(d) $\frac{1-5x}{8} - 6x = \frac{1-5x-48x}{8}$ = $\frac{1-53x}{8}$
$= \frac{3}{6}x + \frac{3}{4}x - \frac{3}{4}y - 2y + z + \frac{3}{2}z$ $= \frac{19}{12}x - \frac{11}{4}y + \frac{3}{2}z$	(e) $\frac{x}{8} + \frac{4x-1}{2} = \frac{x+16x-4}{8}$ 17x-4
2. (a) $\frac{4}{5} [2(11x+7) - 4 + 23x] = \frac{4}{5} (22x + 14 - 4 + 23x)$ = $\frac{4}{5} (22x + 23x + 14 - 4)$	(f) $\frac{3x}{5} - \frac{x+1}{4} = \frac{12x-5x-5}{20}$ 7x = 5
$=\frac{4}{5}(45x+10)$ $=36x+8$	$= \frac{7x-3}{20}$ (g) $-\frac{7-x}{2} - \frac{x}{10} = \frac{x-7}{2} - \frac{x}{10}$
(b) $\frac{1}{2} [7x - 3(4y - 5x)] = \frac{1}{2} (7x - 12y + 15x)$ = $\frac{1}{2} (7x + 15x - 12y)$	$= \frac{5x - 35 - x}{10} \\ = \frac{4x - 35}{10}$
$= \frac{1}{2} (22x - 12y)$ $= 11x - 6y$	(h) $\frac{7x-4}{9} + \frac{8x-3}{5} = \frac{35x-20+72x-27}{45}$ = $\frac{107x-47}{15}$
(c) $-\frac{1}{3}[6(2y-5x)-(-9y)] = -\frac{1}{3}(12y-30x+9y)$ = $-\frac{1}{3}(12y+9y-30x)$	(i) $\frac{9x+1}{6} - \frac{10x-3}{7} + \frac{1}{3} = \frac{63x+7-60x+18+14}{42}$ 3x+39
$= -\frac{1}{3}(21y - 30x)$ $= -7y + 10x$ $= 10x - 7y$	$= \frac{42}{42}$ $= \frac{x+13}{14}$
(d) $-\frac{3}{4}[(12x+28y)-8(7x-y)]$ = $-\frac{3}{2}(12x+28y-56x+8y)$	(j) $\frac{2x+5}{4} - \frac{x}{6} - \frac{7-6x}{8} = \frac{12x+30-4x-21+18x}{24}$ = $\frac{26x+9}{24}$
$= -\frac{3}{4}(12x - 56x + 28y + 8y)$	5. (a) $\frac{5x+y}{6} + \frac{4x+9y}{3} = \frac{5x+y+8x+18y}{6} = \frac{13x+19y}{6}$
$= -\frac{1}{4}(-44x + 36y)$ = 33x - 27y 3. (a) $1 + \frac{5x}{5} = \frac{14 + 5x}{5}$	(b) $\frac{10y}{7} + \frac{3x - 8y}{2} = \frac{20y + 21x - 56y}{14}$ = $\frac{21x - 36y}{14}$
(b) $\frac{6x}{11} - 3 = \frac{6x - 33}{11}$	(c) $\frac{3y-10x}{4} - \frac{x+2y}{5} = \frac{14}{\frac{15y-50x-4x-8y}{20}}$
(c) $\frac{1}{8} - x = \frac{1}{8}$ (d) $\frac{2}{9} + 4x = \frac{2 + 36x}{9}$	$=\frac{7y-34x}{20}$

(d)
$$\frac{7x}{8} - \frac{4y-5x}{3} = \frac{21x-32y+40x}{24}$$

 $= \frac{61x-32y}{24}$
(e) $\frac{9x+y}{6} + \frac{3x}{4} + \frac{2y-5x}{12}$
 $= \frac{18x+2y+9x+2y-5x}{12}$
 $= \frac{11x+2y}{12}$
 $= \frac{11x+2y}{6}$
(f) $\frac{5y-6x}{3} + \frac{9y}{2} - \frac{4x+y}{9}$
 $= \frac{30y-36x+81y-8x-2y}{18}$
 $= \frac{109y-44x}{18}$
(g) $x + \frac{7x-4y}{13} + \frac{10y+3x}{5}$
 $= \frac{15x+35x-20y+30y+9x}{15}$
 $= \frac{59x+10y}{15}$
(h) $4y - \frac{3x+2y}{7} + \frac{2x-3y}{4}$
 $= \frac{112y-12x-8y+14x-21y}{28}$
 $= \frac{2x+83y}{28}$
(i) $2x-y + \frac{6x-9y}{2} - \frac{5x+2y}{8}$
 $= \frac{16x-8y+24x-36y-5x-2y}{8}$
 $= \frac{35x-46y}{8}$
(j) $3y-x - \frac{4x-5y}{10} - \frac{7y+2x}{4}$
 $= \frac{60y-20x-8x+10y-35y-10x}{20}$
 $= \frac{35y-38x}{20}$
6. (a) $\frac{9(x+y)}{12} + \frac{2x-y}{4}$
 $= \frac{3(x+y)+2x-y}{4}$
 $= \frac{3(x+y)+2x-y}{4}$
 $= \frac{3(x+y)+2x-y}{4}$
 $= \frac{3(x+2y-y)}{4}$
(b) $\frac{7(4x-y)}{20} + \frac{2y}{5} = \frac{28x-7y+8y}{20}$
 $= \frac{28x+y}{20}$
(c) $\frac{6x}{7} - \frac{3(3x+5y)}{14} = \frac{12x-9x-15y}{14}$

(d)
$$\frac{8x+8y}{9} - \frac{2(6x-y)}{45} = \frac{40x+40y-12x+2y}{45}$$

$$= \frac{28x+42y}{45}$$
(e)
$$\frac{7(2x-3y)+2(4x+5y)}{5} + \frac{2(4x+5y)}{3}$$

$$= \frac{21(2x-3y)+10(4x+5y)}{15}$$

$$= \frac{42x-63y+40x+50y}{15}$$

$$= \frac{42x-63y+40x+50y}{15}$$
(f)
$$\frac{11(2y-x)}{6} - \frac{3(7x-4y)}{8}$$

$$= \frac{44(2y-x)-9(7x-4y)}{24}$$
(g)
$$\frac{y-x}{4} - \left[\frac{4(3x+2y)}{3} - \frac{3(x-9y)}{6}\right]$$

$$= \frac{3y-3x-48x-32y+6x-54y}{12}$$

$$= \frac{45x+83y}{12}$$
(h)
$$\frac{8(5y-4x)}{15} - \left[-\frac{3(x+7y)}{2} + 3x-4y\right]$$

$$= \frac{8(5y-4x)}{15} + \frac{3(x+7y)}{2} - 3x+4y$$

$$= \frac{16(5y-4x)+45(x+7y)-90x+120y}{30}$$

$$= \frac{80y-64x+45x+315y-90x+120y}{30}$$

$$= \frac{80y-64x+45x+315y-90x+120y}{30}$$

$$= \frac{515y-109x}{30}$$
7. ♥
$$\frac{1}{4}x + \frac{1}{5}y + \frac{h}{2}x + \frac{h}{10}y = \frac{1}{4}x + \frac{h}{2}x + \frac{1}{5}y + \frac{h}{10}y$$

$$= \frac{1+2h}{4}x + \frac{2+k}{10}y$$
Let *h* = 2. Then *p* = 1 + 2*h*

$$= 1 + 2(2)$$

$$= 5.$$
Let *k* = 7. Then *q* = 2 + *k*

$$= 2 + 7$$

$$= 9.$$
∴ A possible set of values is *h* = 2, *k* = 7, *p* = 5 and *q* = 9.

8.
$$\bigotimes \frac{ax+7y}{3} + \frac{y-bx}{12} = \frac{4ax+28y+y-bx}{12}$$
$$= \frac{4ax-bx+29y}{12}$$
$$= \frac{4ax-bx}{12} + \frac{29y}{12}$$
Let $a = 5$ and $b = 3$. Then $c = 4a - b$
$$= 4(5) - 3$$
$$= 17.$$

(ii)
$$\frac{19x+10y}{12} + \frac{4x-15y}{18} = \frac{57x+30y+8x-30y}{36}$$

= $\frac{65x}{36}$

 $\therefore a = 65, b = 0$

10. A mistake was made in the third line of the working, which should be $\frac{5(4x - y)}{6} - \frac{11(x - 2y) - 18(3y - 2x)}{21}$. Another mistake was made in the second last line of the working,

in which the wrong operation sign was used.

$$\frac{5(4x-y)}{6} - \frac{11(x-2y)}{21} + \frac{6(3y-2x)}{7}$$

$$= \frac{35(4x-y) - 22(x-2y) + 36(3y-2x)}{42}$$

$$= \frac{140x - 35y - 22x + 44y + 108y - 72x}{42}$$

$$= \frac{46x + 117y}{42}$$

Review Exercise 6

1. (a)
$$4x + 9y = 4(2) + 9\left(-\frac{1}{3}\right)$$

 $= 8 - 3$
 $= 5$
(b) $\frac{1}{x} - \frac{1}{y} = \frac{1}{2} - \frac{1}{-\frac{1}{3}}$
 $= \frac{1}{2} + 3$
 $= 3\frac{1}{2}$
(c) $\frac{xy}{x + y} = \frac{2\left(-\frac{1}{3}\right)}{2 + \left(-\frac{1}{3}\right)}$
 $= \frac{-\frac{2}{3}}{\frac{5}{3}}$
 $= -\frac{2}{5}$
(d) $(3x - y)^2 = \left[3(2) - \left(-\frac{1}{3}\right)\right]^2$
 $= \left(6 + \frac{1}{3}\right)^2$
 $= 40\frac{1}{9}$

2. (a)
$$-5(6x - 11y) + 2(x - 3y) = -30x + 55y + 2x - 6y$$

 $= -30x + 2x + 55y - 6y$
 $= -28x + 49y$
(b) $4[7y + 2(-5x)] - 3(8x - 9y) = 4(7y - 10x) - 24x + 27y$
 $= 28y - 40x - 24x + 27y$
 $= 28y + 27y - 40x - 24x$
 $= 55y - 64x$
3. (a) $3abxy - 12acx + 6ax = 3ax(by - 4cz + 2)$
(b) $-40ay - 56y - 24bcy = -8y(5a + 7 + 3bc)$
4. $-8\{-2(10x + 3y) + [-5(6y - 7x)]\}$
 $= -8(-20x - 6y - 30y + 35x)$
 $= -8(-5x - 36y)$
 $= -120x + 288y$
 $= 288y - 120x$
5. (a) $\frac{3(7x - y)}{5} - \frac{5(x + 9y)}{8}$
 $= \frac{24(7x - y) - 25(x + 9y)}{40}$
 $= \frac{168x - 24y - 25x - 225y}{40}$
 $= \frac{168x - 24y - 25x - 225y}{40}$
 $= \frac{143x - 249y}{40}$
(b) $4y - (\frac{6x + 5y}{7} - \frac{8x - 2y}{3})$
 $= 4y - \frac{6x + 5y}{7} - \frac{8x - 2y}{3}$
 $= \frac{84y - 3(6x + 5y) - 7(8x - 2y)}{21}$
 $= \frac{84y - 18x - 15y - 56x + 14y}{21}$
 $= \frac{83y - 74x}{21}$
6. (i) $3(v - 2) - 3u = 3v - 6 - 3u$
 $= 3(x + 3) - 6 - 3(2x - 1)$
 $= 3x + 9 - 6 - 6x + 3$
 $= 6 - 3x$
(ii) $\frac{u}{5} + \frac{v}{3} = \frac{2x - 1}{5} + \frac{x + 3}{3}$
 $= \frac{6x - 3 + 5x + 15}{15}$
 $= \frac{11x + 12}{15}$
7. (a) Let $x = 4$ and $y = 3$.
 $10x - 7y = 10(4) - 7(3)$
 $= 40 - 21$
 $= 19$
 $7y - 10x = 7(3) - 10(4)$
 $= 21 - 40$
 $= -19$
 $\therefore 10x - 7y$ is not always the same as $7y - 10x$.

(b) Yes. When x = 7 and y = 10, 10x - 7y = 10(7) - 7(10)= 70 - 70= 0and 7y - 10x = 7(10) - 10(7)= 70 - 70= 0. \therefore 10x – 7y can have the same value as 7y – 10x. (a) Sum of the 3 integers = x + (x + 2) + (x + 4)8. = x + x + 2 + x + 4= 3x + 6(b) Sum of the 3 integers = x + (x - 2) + (x - 4)= x + x - 2 + x - 4= 3x - 6(c) x - (x - 4) = x - x + 4= 4: The difference is always 4. (i) Breadth of rectangle 9. $=\frac{6x+12y-10-2(2x+4y-3)}{2}$ cm $=\frac{6x+12y-10-4x-8y+6}{2}$ cm $=\frac{2x+4y-4}{2}$ cm = (x + 2y - 2) cm (ii) When x = 5 and y = 1, Length of rectangle = [2(5) + 4(1) - 3] cm = 11 cm Breadth of rectangle = [5 + 2(1) - 2] cm = 5 cm \therefore Area of rectangle = 11 cm \times 5 cm $= 55 \text{ cm}^2$ 10. (i) Sum of heights = (2h + 4k) m (ii) Average height = $\frac{2h+4k}{\epsilon}$ m $=\frac{h+2k}{2}$ m 11. (a) (x - 30) years (b) $\frac{1}{2}(x-30)$ years (c) Sum of ages = $\left[x + (x - 30) + \frac{1}{2}(x - 30)\right]$ years $=\left(x+x-30+\frac{1}{2}x-15\right)$ years $=\left(\frac{5}{2}x-45\right)$ years 12. (a) Number of Japanese books = p - q(b) Total amount spent = [8q + 9(p - q)]= \$(8q + 9p - 9q) = \$(9p - q) **13.** (i) Total mass = $\left(\frac{120}{20}x + \frac{50}{10}y + 2\right)$ kg = (6x + 5y + 2) kg (ii) Assume that the mass of the bag is negligible.

14. (i) Cost of a lunch box = (x + 6)Total amount spent = [3x + 2(x + 6)]= (3x + 2(x + 6)]= (5x + 12)(ii) Let x = 16. Then the total amount spent = (5(16) + 12]= 92and the amount left = 100 - 92= 8 \therefore A water bottle could cost \$16.

Linear Equations

Worksheet 7A Linear equations 1. (a) x + 4 = 15x + 4 - 4 = 15 - 4*x* = 11 x + 7 = -7(b) x + 7 - 7 = -7 - 7x = -14x - 6 = 10(c) x - 6 + 6 = 10 + 6*x* = 16 (d) x - 12 = -1x - 12 + 12 = -1 + 12x = 113x = 27(e) $\frac{3x}{3} = \frac{27}{3}$ *x* = 9 (f) 5x = -55 $\frac{5x}{5} = \frac{-55}{5}$ x = -11-2x = 42(g) $\frac{-2x}{-2} = \frac{42}{-2}$ x = -21(h) -6x = -84 $\frac{-6x}{-6} = \frac{-84}{-6}$ *x* = **14** (i) 9x + 1 = 829x + 1 - 1 = 82 - 19x = 81 $\frac{9x}{9} = \frac{81}{9}$ *x* = 9 (j) 4x - 3 = 254x - 3 + 3 = 25 + 34x = 28 $\frac{4x}{4} = \frac{28}{4}$ x = 7

(k)
$$7x + 10 = -4$$

 $7x + 10 - 10 = -4 - 10$
 $7x = -14$
 $\frac{7x}{7} = \frac{-14}{7}$
 $x = -2$
(l) $2x - 9 = -9$
 $2x - 9 + 9 = -9 + 9$
 $2x = 0$
 $\frac{2x}{2} = \frac{0}{2}$
 $x = 0$
(m) $2 - 5x = 67$
 $2 - 5x - 2 = 67 - 2$
 $-5x = 65$
 $\frac{-5x}{-5} = \frac{65}{-5}$
 $x = -13$
(n) $11 - 3x = -16$
 $11 - 3x = -17$
 $\frac{-3x}{-3} = \frac{-27}{-3}$
 $x = 9$
(o) $4x + 1 = -\frac{3}{5} - 1$
 $4x = -\frac{8}{5}$
 $\frac{4x}{4} = -\frac{\frac{8}{5}}{-5}$
(p) $8x - 0.7 = 4.9$
 $8x - 0.7 + 0.7 = 4.9 + 0.7$
 $8x = 5.6$
 $\frac{8x}{8} = \frac{5.6}{8}$
 $x = 0.7$
2. (a) $3x = 2x + 25$
 $3x - 2x = 2x + 25 - 2x$
 $x = 25$
(b) $7x = x + 12$
 $7x - x = x + 12 - x$
 $6x = 12$
 $\frac{6x}{6} = \frac{12}{6}$
 $x = 2$
(c) $9x - 14 = 2x$
 $9x - 14 - 2x = 2x - 2x$
 $7x - 14 = 0$
 $7x - 14 + 14 = 0 + 14$
 $7x = 14$
 $\frac{7x}{7} = \frac{14}{7}$
 $x = 2$

(d) 5x + 1 = 4x + 65x + 1 - 4x = 4x + 6 - 4xx + 1 = 6x + 1 - 1 = 6 - 1*x* = 5 (e) 10x - 3 = 8x - 1710x - 3 - 8x = 8x - 17 - 8x2x - 3 = -172x - 3 + 3 = -17 + 32x = -14 $\frac{2x}{2} = \frac{-14}{2}$ x = -7(f) 11 - 2x = 5 - 3x11 - 2x + 3x = 5 - 3x + 3x11 + x = 511 + x - 11 = 5 - 11*x* = -6 (g) 2(4x+1) = 16 $\frac{2(4x+1)}{2(4x+1)} = \frac{16}{10}$ 2 2 4x + 1 = 84x + 1 - 1 = 8 - 14x = 7 $\frac{4x}{4} = \frac{7}{4}$ $x = 1\frac{3}{4}$ (h) -6(x-1) = 18 $\frac{18}{-6}$ -6(x-1)-6 x - 1 = -3x - 1 + 1 = -3 + 1x = -2(i) 30=5(3x-2)5(3x-2) = 30 $\frac{5(3x-2)}{5} = \frac{30}{5}$ 3x-2=63x - 2 + 2 = 6 + 23x = 8 $\frac{3x}{3} = \frac{8}{3}$ $x=2\frac{2}{3}$ (j) 14 = -7(2x + 7)-7(2x+7) = 14 $\frac{-7(2x+7)}{-7} = \frac{14}{-7}$ 2x + 7 = -22x + 7 - 7 = -2 - 72x = -9 $\frac{2x}{2} = \frac{-9}{2}$ $x = -4\frac{1}{2}$

(b)
$$\frac{4(3x + 4) = 19x - 1}{36x + 16 - 18x - 1}$$

 $36x + 16 - 18x - 19x - 1$
 $17x + 16 - 1$
 $17x + 16 - 1 - 16$
 $17x + 1 - 16 - 1 - 16$
 $17x - 1 - 17$
 $\frac{17}{17} = \frac{1}{17}$
 $x = -1$
(0) $21x = 2(3x + 5)$
 $21x - 24x = 24x + 15$
 $21x - 24x = -5$
(a) $3(x + 1) = 8\left(x + \frac{1}{4}\right)$
 $3x + 3 = 8x - 2$
 $4x + 4 = 4 = 4$
 $4x + 4 = 4 = 4 = 4$
 $4x + 4 = 4 = 4 = 4$

<u>36</u> 5

= 0

 $= 0 \times 6$ = 0 = 0

= 0= 0 + 2= 2 $= \frac{2}{7}$

(h)
$$\frac{3x+7}{8} - \frac{2x+1}{5} = 0$$

$$\left(\frac{3x+7}{8} - \frac{2x+1}{5}\right) \times 40 = 0 \times 40$$

$$15x + 35 - 16x - 8 = 0$$

$$-x + 27 = 0$$

$$-x + 27 + x = 0 + x$$

$$27 = x$$

$$x = 27$$

(i)
$$1 - \frac{x}{4} = \frac{5x+8}{8}$$

$$\left(1 - \frac{x}{4}\right) \times 8 = \frac{5x+8}{8} \times 8$$

$$8 - 2x = 5x + 8$$

$$8 - 2x = 5x + 8 - 5x$$

$$8 - 7x = 8$$

$$8 - 7x - 8 = 8 - 8$$

$$-7x = 0$$

$$x = 0$$

(j)
$$\frac{9 - 2x}{4} + \frac{3(x+3)}{10} \times 20 = x \times 20$$

$$45 - 10x + 6x + 18 = 20x$$

$$63 - 4x = 4x = 20x + 4x$$

$$63 = 24x$$

$$24x = 63$$

$$x = 2\frac{5}{8}$$

(k)
$$\frac{7(x-1)}{2} - \frac{4(8x+1)}{9} \times 36 = 2\frac{1}{4} \times 36$$

$$126x - 126 - 128x - 16 = 81$$

$$-2x - 142 = 81 + 142$$

$$-2x = 223$$

$$x = -111\frac{1}{2}$$

(l)
$$2x + \frac{2 - 5x}{7} = \frac{20x - 9}{6} + 11$$

$$\left(2x + \frac{2 - 5x}{7}\right) \times 42 = \left(\frac{20x - 9}{6} + 11\right) \times 42$$

$$84x + 12 - 30x = 140x - 63 + 462$$

$$54x + 12 = 140x + 399$$

$$54x + 12 - 140x = 140x + 399 - 140x$$

$$-86x + 12 = 399$$

$$-86x + 387$$

$$x = -4\frac{1}{2}$$

3. (a)
$$\frac{10}{x+1} = 5$$
$$\frac{10}{x+1} \times (x+1) = 5 \times (x+1)$$
$$10 = 5x + 5$$
$$5x + 5 = 10$$
$$5x = 5$$
$$x = 1$$
(b)
$$\frac{32}{x-3} = 8$$
$$\frac{32}{x-3} \times (x-3) = 8 \times (x-3)$$
$$32 = 8x - 24$$
$$8x - 24 = 32$$
$$8x = 56$$
$$x = 7$$
(c)
$$\frac{21}{4x+6} = -7$$
$$\frac{21}{4x+6} \times (4x+6) = -7 \times (4x+6)$$
$$21 = -28x - 42$$
$$-28x - 42 = 21$$
$$-28x - 42 = 21$$
$$-28x - 42 = 21$$
$$-28x = 63$$
$$x = -2\frac{1}{4}$$
(d)
$$9 = \frac{45}{1-2x} \times (1-2x)$$
$$9 \times (1-2x) = \frac{45}{1-2x} \times (1-2x)$$
$$9 - 18x = 45$$
$$-18x = 36$$
$$x = -2$$
(e)
$$\frac{28}{5x+3} - 1 = \frac{3}{4}$$
$$\frac{28}{5x+3} = \frac{7}{4}$$
$$\frac{28}{5x+3} = \frac{7}{4}$$
$$\frac{28}{5x+3} = \frac{7}{4}$$
$$\frac{28}{5x+3} \times 4(5x+3) = \frac{7}{4} \times 4(5x+3)$$
$$112 = 35x + 21$$
$$35x + 21 = 112$$
$$35x = 91$$
$$x = 2\frac{3}{5}$$
(f)
$$\frac{6}{7} = \frac{1}{x+6} + 1$$
$$-\frac{1}{7} \times 7(x+6) = \frac{1}{x+6} \times 7(x+6)$$
$$-x-6 = 7$$
$$-x = 13$$
$$x = -13$$

(g)
$$\frac{x+7}{x+9} = \frac{15}{19}$$
$$\frac{x+7}{x+9} \times 19(x+9) = \frac{15}{19} \times 19(x+9)$$
$$19x+133 = 15x+135$$
$$4x = 2$$
$$x = \frac{1}{2}$$
(h)
$$\frac{3x-2}{4x+2} = 6$$
$$\frac{3x-2}{4x+2} \times (4x+2) = 6 \times (4x+2)$$
$$3x-2 = 24x+12$$
$$-21x = 14$$
$$x = -\frac{2}{3}$$
(i)
$$\frac{8}{x-3} = \frac{3}{x+4}$$
$$\frac{8}{x-3} \times (x-3)(x+4) = \frac{3}{x+4} \times (x-3)(x+4)$$
$$8x+32 = 3x-9$$
$$5x = -41$$
$$x = -8\frac{1}{5}$$
(j)
$$\frac{4}{5x+12} = \frac{2}{2x-11}$$
$$\frac{4}{5x+12} \times (5x+12)(2x-11)$$
$$8x-44 = 10x+24$$
$$-2x = 68$$
$$x = -34$$
(k)
$$\frac{5}{3x+10} + \frac{2}{x+1} = 0$$
$$\left(\frac{5}{3x+10} + \frac{2}{x+1}\right) \times (3x+10)(x+1)$$
$$= 0 \times (3x+10)(x+1)$$
$$5x+5+6x+20 = 0$$
$$11x = -25$$
$$x = -2\frac{3}{11}$$
(j)
$$\frac{12}{15x-14} = \frac{13}{15x-14} \times (15x-14)$$
$$12 = 13$$
$$\therefore$$
 The equation has no solution.
When $x = \frac{34}{75}$, LHS = $2\left(\frac{34}{75} + \frac{1}{5}\right) = \frac{98}{75}$
RHS = $\frac{3}{4}\left(\frac{34}{75}\right) - \frac{1}{6} = \frac{13}{75}$ is not the solution of the equation.

(i) Consider 3x + 8 = 20. 5. 3x = 12x = 4Consider 10 - x = 6. -x = -4x = 4 $\therefore x = 4$ (ii) 1 Two possible equations are 5x + 1 = 21 and 7 - x = 3. 6. (a) 5x + 2y = 3x + 8y2x = 6yx = 3y**No**. There are other possible solutions such as x = 3 and y = 1. (**b**) From x = 3y, $\frac{x}{-}=3$ $\frac{7}{9} = 3 \times \frac{7}{9}$ $\frac{x}{y} \times$ $\frac{7x}{9y} = 2\frac{1}{3}$ $\frac{1}{4}(7+3x) = 0.75x + 2.25$ 7 + 3x = 3x + 97 = 9... The equation has no solution. (shown) The possible equations are 5x + 17 = 7, $-\frac{2}{3}x - \frac{1}{3} = 1$ 8. and $\frac{5}{0.125x+1.5} = 4$.

Worksheet 7C Applications of linear equations in real-world contexts

Let the smallest integer be *x*. 1. x + (x + 1) + (x + 2) = 1383x + 3 = 1383x = 135x = 45: The integers are **45**, **46** and **47**. Let the smallest integer be *x*. 2. x + (x + 2) + (x + 4) = 1653x + 6 = 1653x = 159*x* = 53 ... The integers are **53**, **55** and **57**. 3. Let the smallest integer be *x*. Sum of 3 consecutive even integers = x + (x + 2) + (x + 4)= 3x + 6= 3(x + 2), which is a multiple of 3 4. Let Paul's mass now be *x* kg. $x=\frac{8}{9}(x+8)$ 9x = 8x + 64x = 64: His present mass is 64 kg.

4.

5. Let the number of \$10-notes be *x*. 10x + 50(x - 3) = 33010x + 50x - 150 = 33060x = 480x = 8... Wayne has 8 \$10-notes and 5 \$50-notes. 6. (i) (3x + 320)(ii) 3x + 320 + 6x = 860(iii) 9x = 540x = 60 \therefore Price of the dining table = [3(60) + 320]= \$500 7. (i) Let Kate's present age be x years. (x+6) + (3x+6) = 604x + 12 = 604x = 48x = 12:. Kate is 12 years old now. (ii) Mrs Wong's present age = 3(12) years = 36 years Mrs Wong's age when Kate was born = 36 - 12= 24 years (a) No. It is possible that more people used entrance C than D, 8. such as when x = 40. **(b)** x + 2x + 2x + 70 + 3x + 20 = 8508x + 90 = 8508x = 760x = 95: Number of people who used entrance C = 2(95) + 70= 260 9. (i) 12p + 3 = 7(p + 4) + 512p + 3 = 7p + 28 + 512p + 3 = 7p + 335p = 30p = 6(ii) Amount of money = [12(6) + 3]= \$75 (iii) Number of bowls she can buy $=\frac{\$75-5(\$12)}{12}$ = 2 (round down to the nearest integer) **10.** (i) Perimeter of $\triangle PQR = (5x + 2 + 3x - 1 + 8x - 3)$ cm = (16x - 2) cm (ii) 16x - 2 = 3016x = 32x = 2(iii) PQ = 5(2) + 2 = 12 cmPR = 8(2) - 3 = 13 cm : The length of the longest side is 13 cm. 11. (i) $5x - \frac{2}{3} - 3x = 3\frac{20}{60}$ $2x - \frac{2}{3} = 3\frac{1}{3}$ 2x = 4x = 2

(ii) Total flight time =
$$\left[5(2) - \frac{2}{3}\right] h$$

= $9\frac{1}{3}h$
= $9h 20 min$

Challenge Myself!

12. 🐑 A piece of chocolate weighs 8 grams more than a piece of candy. Seven pieces of candy weigh 10 grams more than five pieces of chocolate.

Worksheet 7D Mathematical formulae

1. When x = 56, $y = \frac{4}{7}(56) - 3$ When a = -2 and b = -32. $w = \frac{\left[-2 + (-3)\right]^2}{\left[-2 + (-3)\right]^2}$ $=2\frac{1}{2}$ A possible third number is 11. 3. $A = \frac{10 + 11 + 12}{10 + 11 + 12}$ 3 = 11 \therefore The corresponding average is **11**. (i) Let the smallest number be *x*. S = x + (x + 2) + (x + 4) + (x + 6)= 4x + 12(ii) When x = -22, Sum of four consecutive even numbers = 4(-22) + 12= -76 (a) When c = 35, f = 1.8(35) + 32= 95 :. 35 °C is 95 °F. (**b**) When f = 104, $c = \frac{5(104 - 32)}{2}$ = 40:. 104 °F is 40 °C. (a) When r = 6, 6. $C = 2\pi(6)$ $= 12\pi$ = 37.7 (to 3 s.f.) ... The circumference of the circle is **37.7 cm**. (**b**) When C = 24, $2\pi r = 24$ $r = \frac{1}{2\pi}$ 24 = 3.820 (to 3 d.p.) ... The radius of the circle is **3.820 cm**. 7. (a) When m = 0.2 and v = 0.3, $E = \frac{1}{2} \ (0.2)(0.3)^2$ = 0.009: Its kinetic energy is 0.009 joules.

(b) When v = 0.4 and E = 0.16, $0.16 = \frac{1}{2} m(0.4)^2$ = 0.08m0.08m = 0.16m = 2... The mass of the object is 2 kg. 8. (i) (7m + 5n) s (ii) When m = 24 and n = 10, Total time taken = [7(24) + 5(10)] s = 218 s= 3 min 38 s 9. (i) C = mx(ii) $\textcircled{8} \times \$6 = \48 : She could buy 8 plant pots. 10. (i) n + x + 3x = n + 4x(ii) Given that x = 28, n + 4(28) = 622n + 112 = 622n = 510**11.** (i) Total premium = \$[32 + 4(5)]= \$52 (ii) Total premium = [80 + 11(n - 3)]= \$(80 + 11*n* - 33) = \$(11*n* + 47) (iii) Consider the individual policy. Total premium = $3 \times [32 + 5(n - 3)]$ $= 3 \times (32 + 5n - 15)$ = \$(15*n* + 51) Let 15n + 51 = 11n + 474n = -4n = -1... It is not possible. Challenge Myself! 12. (a) Number of packets of fish required = $\frac{x}{2}$ Number of sacks of potatoes required = \therefore Total amount spent = $\left\{\frac{ax}{3} + \frac{bx}{8}\right\}$ (b) No. It only applies if x is a multiple of 24, so that there is an integer number of packets of fish and sacks of potatoes. **Review Exercise 7** (a) 4x + 21 = 51. 4x = -16x = -4**(b)** $1 - 3x = \frac{1}{4}$ $-3x = -\frac{3}{4}$ $x = \frac{1}{x}$

(c) -8(x-2) + 9 = 0-8x + 16 + 9 = 0-8x = -25 $x = 3\frac{1}{2}$ (d) 2(7x-3) = 6x + 1514x - 6 = 6x + 158x = 21 $x = 2\frac{5}{8}$ (e) $5 - \frac{2x}{3} = \frac{4x+1}{6}$ 30 - 4x = 4x + 1-8x = -29 $x = 3\frac{5}{2}$ (f) $\frac{2x+1}{3x-1}$ 14x + 7 = 12x - 42x = -11 $x = -5\frac{1}{2}$ When x = 1, 2. LHS = $\frac{1}{5}[4(1) - 1] = \frac{3}{5}$ RHS = $\frac{1}{2}(1) + \frac{1}{10} = \frac{3}{5}$ Since LHS = RHS, *x* = 1 is the solution of the equation. Two possible equations are 10x + 9 = 3 and 4 - x = 4.6. Let the number be *x*. 4. 3x = x + 322x = 32x = 16. The number is 16. Let the numbers be x and $\frac{3}{4}x$. 5. $x + \frac{3}{4}x = 49$ $\frac{7}{4}x = 49$ x = 28 \therefore Product of the numbers = $28 \times \frac{3}{4}$ (28) = 588 6. 4(x-7) = 8(40-x)4x - 28 = 320 - 8x12x = 348*x* = **29** 7. Let the original fraction be $\frac{x}{x+3}$. $\frac{x+7}{x+3+7} = \frac{6}{7}$ $\frac{x+7}{x+10} = \frac{6}{7}$ *x*+10 7x + 49 = 6x + 60x = 11 \therefore The original fraction is $\frac{11}{14}$.

8. (a)
$$4x - 7y = x + 3y$$

 $3x = 10y$
 $10y = 3x$
 $\frac{y}{x} = \frac{3}{10}$
 $\therefore \frac{y}{x} - \frac{1}{2} = \frac{3}{10} - \frac{1}{2}$
 $= -\frac{1}{5}$
(b) $\frac{y-1}{x-2}$ cannot be simplified.
 \therefore It is not possible to find the value.
9. (i) $QT = PQ - PT$
 $= [(7x + 3) - 2(2x - 1)] \text{ cm}$
 $= (7x + 3 - 4x + 2) \text{ cm}$
 $= (7x + 3 - 4x + 2) \text{ cm}$
 $= (7x + 3 - 4x + 2) \text{ cm}$
 $= (7x + 3 - 4x + 2) \text{ cm}$
 $= (3x + 5) \text{ cm}$
(ii) Given that $PQ = \frac{3}{2} QR$,
 $7x + 3 = \frac{3}{2} (5x + 1)$
 $14x + 6 = 15x + 3$
 $x = 3$
(iii) $PQ = 7(3) + 3$
 $= 24 \text{ cm}$
 $QR = 5(3) + 1$
 $= 16 \text{ cm}$
 \therefore Area of $PQRS = 24 \text{ cm} \times 16 \text{ cm} = 384 \text{ cm}^2$
10. When $r = 6$ and $h = 11$,
 $A = 2\pi(6)(6 + 11) \text{ cm}^2$
 $= 204\pi \text{ cm}^3$
 $= 641 \text{ cm}^4 (to 3 \text{ s.f.})$
11. (i) $\$(12m + 20n)$
(ii) When $m = 22$ and $n = 3$,
Total amount earned $= \$[12(22) + 20(3)]$
 $= \$324$
(iii) $\textcircled{12m + 20n = 460}$
 $3m + 5n = 115$
Two possible sets of values are $m = 10$ and $n = 17$, and $m = 30$
and $n = 5$.
 $\overbrace{Mid-year Checkpoint A}$
Section A
1. When $x = 5$, $y = 0$ and $z = -\frac{1}{2}$,
 $\frac{4xz}{y-1} = \frac{4(55\left(-\frac{1}{2}\right)}{0-1}$
 $= 10$ [1]
2. (a) Composite numbers: 16, 33, 49, 511, 1000 [1]
(b) Perfect cubes: 1, 1000 [1]
(c) (70 \text{ ml} = 0.071 [1]
4. (a) $\frac{(-14.8)^2}{23.56 \times 0.979} = 9.4965$ [1]
(b) 9.50 [1]

4

[1] [1] [1] [1] [1] [1] [1]

		Mid-year Checknoint A	35
		<i>x</i> = -3	[1]
		9x + 21 - 6 = 4x $5x = -15$	[1]
	12.	$\frac{1}{2} - 1 = \frac{1}{3}$ 3(3x + 7) - 6 = 2(2x)	[1]
	10	$\therefore \text{ The solution is } -11.$ $3x + 7 \qquad 2x$	[1]
		15x + 3 = 14x - 8 x = -11	
		$\frac{5x+1}{7x-4} = \frac{2}{3}$	
		denominators, such as in the case $\frac{1}{6} = \frac{1}{2}$, where $3 \neq 1$ and $\frac{1}{6}$	6 ≠ 2. [1]
	11.	It is incorrect to equate the respective numerators and $3 mtext{ 1}$	d the
)-`	= \$0.32 (to 2 d.p.) \therefore The large tin gives better value.	[1] [1]
	6	Price of 100 g = $\frac{$2.95}{925} \times 100$	
		= \$0.34 (to 2 d.p.) Consider the large tin.	
		Price of 100 g = $\frac{\$1.45}{425} \times 100$	
	10.	x 5 Consider the small tin.	[*]
		$5y = -3x$ $\frac{y}{2} = -\frac{3}{2}$	[1]
		10x + 2y = 7x - 3y	[1]
	9.	$\frac{5x+y}{7x-3y} = \frac{1}{2}$	
	8.	Upper bound = 10.5×10.5 = 110.25 cm ²	[1] [1]
		= 169 × 1000 = 169 000	[1]
		(b) $169 \times 1003 - 3 \times 169$ = $169 \times (1003 - 3)$	
	7.	(a) $12abc - 28abcx + 36acx$ = $4ac(3b - 7bx + 9x)$	[1]
		= 25x - 40xy + 60y - 10x = 15x - 40xy + 60y	[1]
		= 5(5x - 8xy + 6y + 6y) - 10x = 5(5x - 8xy + 12y) - 10x	[1]
	6.	$= 2\frac{1}{3}$ 5[5x - 2y(4x - 3) + 6y] - 10x	[1]
		$=5-2\frac{1}{3}$	1 -3
		$=5-\frac{2}{3}\times\frac{7}{8}\times\frac{4}{1}$	[1]
		$=5-\frac{2}{3}\times\frac{7}{8}\div\frac{1}{4}$	
	5.	$5 - \frac{2}{3} \times \frac{7}{8} \div \left(-\frac{1}{2}\right)$	
I		$2 7 (1)^2$	

13. (a)
$$\sqrt[9]{\sqrt{2}}, \pi$$
 [1]
(b) Let $x = 0.39$.
 $100x - x = 39.39 - 0.39$
 $99x = 39$
 $x = \frac{39}{99}$ [1]
 $-\frac{13}{2}$

$$= \frac{1}{33}$$

:. 0.39 = $\frac{13}{33}$ [1]

Section B

14. Fraction of land for roses $=\frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$ [1]

Fraction of land for tulips =
$$0.75 \times \left(1 - \frac{1}{5} - \frac{8}{15}\right) = \frac{1}{5}$$
 [2]

... Fraction of land not occupied by the flowers

$$= 1 - \left(\frac{1}{5} + \frac{8}{15} + \frac{1}{5}\right)$$
 [1]

$$=\frac{1}{15}$$
 [1]

15. (a)
$$68 \times 153 = (2 \times 2 \times 17) \times (3 \times 3 \times 17)$$
 [1]
= $2^2 \times 3^2 \times 17^2$ [1]
= $(2 \times 3 \times 17)^2$ [1]

(1)

$$\therefore 68 \times 153 \text{ is a perfect square.}$$

(b) For 68k to be a perfect cube,
Smallest positive integer value of $k = 2 \times 17^2 = 578$. [2]
(c) LCM of 68 and $153 = 2^2 \times 3^2 \times 17$ [1]
(d) $\frac{1}{3}(68 \times 108) = 68 \times 36$
 $= (2 \times 2 \times 17) \times (2 \times 2 \times 3 \times 3)$

$$= (2 × 2 × 17) × (2 × 2 × 3 × 3) = 24 × 32 × 17 ∴ x = 4, y = 2, z = 1$$
[2]

Mid-year Checkpoint B

Section A

1.
$$\left(\frac{3}{5}\right)^2$$
, $\frac{3}{5}$, 0.62, $\frac{3}{4}$ [1]
2. $\pi = 3.1416$ (to 5 s.f.) and $\frac{22}{7} = 3.1429$ (to 5 s.f.)
The numerical values of π , $\frac{22}{7}$ and 3.142 are **not identical**. [1]
3. When $a = 4, b = -2$,
 $p = -3^4 - (-2)^3$
 $= -81 - (-8)$ [1]
 $= -73$ [1]
4. $5(x + 6y) - 2[4(3y - x) + 7x]$
 $= 5x + 30y - 2(12y - 4x + 7x)$
 $= 5x + 30y - 2(12y + 3x)$
 $= 5x + 30y - 24y - 6x$ [1]
 $= 6y - x$ [1]

5.
$$\frac{hay}{5}(7a+kx) = \frac{7ha^2y}{5} + \frac{hkaxy}{5}$$
$$= \frac{hkaxy}{5} + \frac{7ha^2y}{5}$$
Comparing $\frac{hkaxy}{5} + \frac{7ha^2y}{5}$ with $-8axy + \frac{7a^2y}{5}$,
 $7h = 7$ and $\frac{hk}{5} = -8$
 $h = 1$ [1] $\frac{k}{5} = -8$
 $k = -40$ [1]
 $\therefore h = 1, k = -40$

6.
$$\frac{11}{15} = 0.73^{\circ}$$
 [1]
 \therefore It can be expressed as a recurring decimal. [1]

:. It can be expressed as a recurring decimal.

8. (a)
$$\frac{5}{1-3x} = \frac{7}{4(x+2)}$$
$$20(x+2) = 7(1-3x)$$
$$20x + 40 = 7 - 21x$$
$$41x = -33$$
[1]

$$-\frac{33}{41}$$
 [1]

(b)
$$e^{pey} 41x + 33 = 0$$
 [1]

Upper bound of
$$(p \times q) = 5.5 \times 6.95$$

= 38.225 [1]

Lower bound of
$$(p \div q) = 6.85 \div 5.5$$

= 1.245 45 (to 5 s.f.) [1]

Required difference = 38.225 - 1.245 45

$$= 37.0 \text{ (to 3 s.f.)}$$
[1]

10.
$$315 = 3 \times 3 \times 5 \times 7$$

= $3^2 \times 5 \times 7$ [1]

Since the perimeter of the top of the cuboid is 24 cm, the dimensions of the cuboid are 7 cm \times 5 cm \times 9 cm.

∴ The height of the cuboid is **9 cm**. [1]

Let the integer be x.

$$(4x - 23) \div 3 + 22 = 37$$
 [1]

$$\frac{4x-23}{3} = 15$$

$$4x - 23 = 45 4x = 68 x = 17$$
 [1]

12. $\frac{1}{4}a \times (-6b) + 3ba - \left(-\frac{1}{2}b\right) \div \left(-\frac{1}{7a}\right)$

11.

=

$$= -\frac{3}{2}ab + 3ab - \left(-\frac{b}{2}\right) \times \left(-\frac{7a}{1}\right)$$
[1]

$$\frac{3}{2}ab - \frac{7}{2}ab$$
 [1]

$$= -2ab$$
 [1]

13. (a)
$$198 = 2 \times 3 \times 3 \times 11$$

 $= 2 \times 3^2 \times 11$ [1]
(b) For 198k to be a perfect square,
smallest positive integer value of $k = 2 \times 11$
 $= 22$ [1]
(c) $33 = 3 \times 11$
Smallest possible value of $x = 3 \times 7 \times 11$ [1]
 $= 231$ [1]

Section B

14.
$$2\left[(x+1)+\left(\frac{5}{2}x-2\right)\right]+0.5$$

= $(2.8x+0.1)+(x+1.5)+(3x-2.5)$ [3]
 $2(3.5x-1)+0.5=6.8x-0.9$
 $7x-1.5=6.8x-0.9$ [1]
 $0.2x=0.6$

$$x = 3$$
(i) Cost of printing = $(x + 5y)$ cents
[1]

15. (i) Cost of printing =
$$(x + 5y)$$
 cents[1](ii) An example is 6.5 cents to print 4 pages in colour and 1.5 cents to print 4 pages in black.[1](iii) S\$0.20 \approx ¥1[1]S\$2.20 \approx ¥11[1] \therefore One newsletter costs about ¥11.[1](iv) Mass of the newsletter = $\frac{4+20}{2} \times 4.5$ g= 54 g

Worksheet 8A Percentage

Percentage

$100 = \frac{2}{5}$ (b) $105\% = \frac{105}{100}$ $= 1\frac{1}{20}$ (c) $37.5\% = \frac{37.5}{100}$ $= \frac{3}{8}$ (d) $66\frac{2}{3}\% = \frac{66\frac{2}{3}}{100}$ $= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ $= 0.86$ (b) $290\% = \frac{290}{100}$ $= 2.9$	
$= \frac{-5}{5}$ (b) $105\% = \frac{105}{100}$ $= 1 \frac{1}{20}$ (c) $37.5\% = \frac{37.5}{100}$ $= \frac{3}{8}$ (d) $66 \frac{2}{3}\% = \frac{66\frac{2}{3}}{100}$ $= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ $= 0.86$ (b) $290\% = \frac{290}{100}$ $= 2.9$	
(b) $105\% = \frac{105}{100}$ $= 1 \frac{1}{20}$ (c) $37.5\% = \frac{37.5}{100}$ $= \frac{3}{8}$ (d) $66\frac{2}{3}\% = \frac{66\frac{2}{3}}{100}$ $= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
$= 1 \frac{1}{20}$ $= 1 \frac{1}{20}$ (c) $37.5\% = \frac{37.5}{100}$ $= \frac{3}{8}$ (d) $66 \frac{2}{3} \% = \frac{66 \frac{2}{3}}{100}$ $= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ $= 0.86$ (b) $290\% = \frac{290}{100}$ $= 2.9$	
(c) $37.5\% = \frac{37.5}{100}$ $= \frac{3}{8}$ (d) $66\frac{2}{3}\% = \frac{66\frac{2}{3}}{100}$ $= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
(c) $37.5\% = \frac{37.5}{100}$ $= \frac{3}{8}$ (d) $66\frac{2}{3}\% = \frac{66\frac{2}{3}}{100}$ $= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
$= \frac{3}{8}$ (d) $66\frac{2}{3}\% = \frac{66\frac{2}{3}}{100}$ $= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ $= 0.86$ (b) $290\% = \frac{290}{100}$ $= 2.9$	
(d) $66\frac{2}{3}\% = \frac{66\frac{2}{3}}{100}$ = $\frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
(d) $66\frac{2}{3}\% = \frac{30}{100}$ = $\frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
$= \frac{2}{3}$ 2. (a) $86\% = \frac{86}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
3 2. (a) $86\% = \frac{86}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
2. (a) $86\% = \frac{100}{100}$ = 0.86 (b) $290\% = \frac{290}{100}$ = 2.9	
$= 0.86$ (b) 290% = $\frac{290}{100}$ = 2.9	
(b) $290\% = \frac{290}{100}$ = 2.9	
= 2.9	
(c) $14.3\% = \frac{14.3}{100}$	
= 0.143	
(4) 7^{1} $7^{\frac{1}{5}}$	
(a) $7\frac{1}{5}\% = \frac{1}{100}$	
= 0.0/2	
3. (a) $\frac{1}{20} = \frac{1}{20} \times 100\%$	
= 55%	

(b)
$$\frac{6}{7} = \frac{6}{7} \times 100\%$$

 $= 85\frac{5}{7}\%$
(c) $6\frac{3}{4} = 6\frac{3}{4} \times 100\%$
 $= 675\%$
(d) $5\frac{1}{9} = 5\frac{1}{9} \times 100\%$
 $= 511\frac{1}{9}\%$
4. (a) $0.27 = 0.27 \times 100\%$
 $= 27\%$
(b) $0.1 = 0.1 \times 100\%$
 $= 10\%$
(c) $9.34 = 9.34 \times 100\%$
 $= 934\%$
(d) $6.5 = 6.5 \times 100\%$
 $= 650\%$
5. (a) 35% of $80 \text{ cm} = \frac{35}{100} \text{ cm}$
 $= 28 \text{ cm}$
(b) 140% of $9.2 \text{ kg} = \frac{140}{100} \times 9.2 \text{ kg}$
 $= 12.88 \text{ kg}$
(c) 22.8% of $\$45 = \frac{22.8}{100} \times \45
 $= \$10.26$
(d) $12\frac{1}{2}\%$ of $360^\circ = \frac{12\frac{1}{2}}{100} \times 360^\circ$
 $= 45^\circ$

6 6

- 6. Percentage of students who do not live within 2 km of the school = 100% 75%
 - = 25%

Number of students who do not live within 2 km of the school = 25% of 1100

 $=\frac{25}{100} \times 1100$

- 7. 50%, or $\frac{1}{2}$, of 240 apples is 120 apples. Since 30% is less than 50%, then fewer than 120 apples are green.
- 8. 🚳 65% of the passengers are adults.

65% of 240 = 156

35% of 240 = 84

.: There could be **156 adults** and **84 children** on the cruise ship.

9. (a)
$$\frac{8 \text{ cm}}{4 \text{ m}} \times 100\% = \frac{8 \text{ cm}}{(4 \times 100) \text{ cm}} \times 100\%$$

 $= 2\%$
(b) $\frac{60 \text{ s}}{1 \text{ h}} \times 100\% = \frac{60 \text{ s}}{(60 \times 60) \text{ s}} \times 100\%$
 $= 1\frac{2}{3}\%$
(c) $\frac{90 \text{ cents}}{\$7.20} \times 100\% = \frac{90 \text{ cents}}{(7.20 \times 100) \text{ cents}} \times 100\%$
 $= 12.5\%$

(d)
$$\frac{5 \text{ kg}}{50 \text{ g}} \times 100\% = \frac{(5 \times 1000) \text{ g}}{50 \text{ g}} \times 100\%$$

= 10 000%

10. Smallest number as a percentage of the prime number $=\frac{24}{29} \times 100\%$

$$=$$
 82.8% (to 3 s.f.)

11. 5.8413 = 5.8 (to 2 s.f.)

Difference between the answers = $\frac{5.8413 - 5.8}{5.8413} \times 100\%$ = **0.707%** (to 3 s.f.)

12. Time taken by Chan = 125% of time taken by Kai $= \frac{5}{4} \text{ of time taken by Kai}$ Time taken by Kai = $\frac{4}{5}$ of time taken by Chan = 80% of time taken by Chan

: No. Yan is incorrect.

13. Percentage of students who did their internship locally in 2022

$$= \frac{93}{150} \times 100\%$$
$$= 63\frac{1}{3}\%$$

Percentage of students who did their internship locally in 2023

$$= \frac{155 - 55}{155} \times 100\%$$
$$= 64 \frac{16}{31}\%$$

: A higher percentage of students did their internship locally in **2023**.

14. Percentage of sugar in milk tea = $\frac{9.2 \text{ g}}{21 \text{ g}} \times 100\%$ = 43.8% (to 3 s.f.) Percentage of sugar in vanilla coffee = $\frac{27.4 \text{ g}}{40 \text{ g}} \times 100\%$

= 68.5%Percentage of sugar in hazelnut coffee $= \frac{18.4 \text{ g}}{38 \text{ g}} \times 100\%$ = 48.4% (to 3 s.f.)

Percentage of sugar in caramel coffee = $\frac{12 \text{ g}}{16 \text{ g}} \times 100\%$ = 75%

:. Caramel coffee, vanilla coffee, hazelnut coffee, milk tea 15. Initial amount of pineapple juice = $\frac{45}{100} \times 300$ ml

Let the volume of water that must be added be *x* ml.

$$\frac{135}{300+x} = \frac{40}{100}$$

100(135) = 40(300 + x)
13 500 = 12 000 + 40x
40x = 1500
x = 37.5
∴ 37.5 ml of water must be added.

Challenge Myself!

16. There are two machines in a factory. Machines A and B are switched on for 5 hours and 10 hours respectively each day. In one hour, machine A produces 500 more units than machine B.

Worksheet 8B Percentage

1. (a) New value =
$$(100\% + 45\%)$$
 of 90
= $\frac{145}{100} \times 90$
= 130.5
(b) New value = $(100\% + 0.7\%)$ of 5600
= $\frac{100.7}{100} \times 5600$
= 5639.2
(c) New value = $(100\% - 20\%)$ of 48
= $\frac{80}{100} \times 48$
= 38.4
(d) New value = $\left(100\% - 12\frac{1}{2}\%\right)$ of 100
= $\frac{87.2}{100} \times 100$
= 87.5
2. (a) 15% of the number = 90
1% of the number = $\frac{90}{15} \times 100$
= 600
(b) 280% of the number = $\frac{336}{280}$
100% of the number = $\frac{336}{280} \times 100$
= 120
(c) 140% of the number = $\frac{2.1}{140}$
100% of the number = $\frac{2.1}{140} \times 100$
= 1.5
(d) 75% of the number = $\frac{195}{75} \times 100$
= 260
3. When increased by 50%, the number becomes 150% of 3600
= $\frac{155}{100} \times 3600$

When decreased by 75%, the number becomes 25% of 5400 $=\frac{25}{100} \times 5400$ = 1350. .:. The final number is 1350. Percentage increase = $\frac{10.5 \text{ cm} - 8 \text{ cm}}{8 \text{ cm}} \times 100\%$ 4. $= 31 \frac{1}{4} \%$ Percentage decrease = $\frac{\$740 - \$680}{\$740} \times 100\%$ 5. = 8.11% (to 3 s.f.) (i) When t = 0, 6. $N = 500 \times 2^{\circ}$ = 500 :. 500 bacteria were introduced into the culture. (ii) When t = 1, $N = 500 \times 2^{1}$ = 1000Percentage increase = $\frac{1000 - 500}{500} \times 100\%$ = 100% Percentage of sheets that are blue = $\frac{5}{8} \times 100\%$ 7. = 62.5%Percentage of sheets that are pink = 30% of (100% - 62.5%) $=\frac{30}{100} \times 37.5\%$ = 11.25%Percentage of sheets that are green = 100% - 62.5% - 11.25%= 26.25% Total number of sheets of paper = $\frac{100\%}{26.25\%} \times 105$ = 400 8. 106.4% of the land area in 2017 = 76 600 hectares 1% of the land area in 2017 = $\frac{76\,600}{106\,4}$ hectares 100% of the land area in 2017 $=\frac{76\,600}{106.4}$ × 100 hectares = 71 990 hectares (to 4 s.f.) (i) New length of the rectangle = $\left(\frac{125}{100} \times 2p\right)$ cm 9. New breadth of the rectangle = $\left(\frac{75}{100} \times p\right)$ cm = 0.75p cmNew perimeter of the rectangle = 2(2.5p + 0.75p) cm = 6.5p cmOriginal perimeter of the rectangle = 2(2p + p) cm = 6p cmPercentage change in the perimeter $= \frac{6.5 \, p - 6 \, p}{6 \, p} \, \times 100\%$ $= 8 \frac{1}{2} \%$

(ii) New area of the rectangle = $2.5p \text{ cm} \times 0.75p \text{ cm}$ $= 1.875p^2$ cm² Original area of the rectangle = $2p \text{ cm} \times p \text{ cm}$ $=2p^2$ cm² Percentage change in the area $=\frac{1.875\,p^2-2\,p^2}{2\,p^2}\,\times 100\%$ $= -6\frac{1}{4}\%$ 10. New cost of materials = $\frac{110}{100} \times 250 New labour cost = $\frac{108}{100} \times \$120$ = \$129.60 New warehousing cost = $\frac{82}{100} \times 60 = \$49.20 New total cost = \$275 + \$129.60 + \$49.20 = \$453.80 Original total cost = \$250 + \$120 + \$60= \$430 Percentage change in the cost = $\frac{\$453.80 - \$430}{\$430} \times 100\%$ = 5.53% (to 3 s.f.) It is an increase. 11. Percentage increase in the number of supermarkets from $2001 \text{ to } 2011 = \frac{367 - 193}{193} \times 100\%$ = 90.2% (to 3 s.f.) Percentage increase in the number of supermarkets from $2011 \text{ to } 2021 = \frac{632 - 367}{367} \times 100\%$ = 72.2% (to 3 s.f.) Percentage increase in the number of supermarkets from 2001 to $2021 = \frac{632 - 193}{193} \times 100\%$ = 227% (to 3 s.f.) Only the first percentage increase is calculated correctly. 12. (i) The sales decreased by 10.3% from December 2021 (100%) to December 2022 (89.7%). (ii) Amount of sales = $\frac{100}{100 - 10.3} \times 400 million = **\$446 million** (to 3 s.f.) (iii) 🐏 There could be a lower Certificate of Entitlement (COE) quota in December 2022 as compared to in December 2021. **Review Exercise 8** Since *x* is 40% of *y*, 1. 2

then
$$x = \frac{1}{5}y$$
.
 $\frac{x}{y} = \frac{2}{5}$
 $\frac{x}{y} \times \frac{7}{8} = \frac{2}{5} \times \frac{7}{8}$
 $\frac{7x}{8y} = \frac{7}{20}$

2.
$$p\% \text{ of } q = \frac{p}{100} \times q = \frac{pq}{100}$$

 $q\% \text{ of } p = \frac{q}{100} \times p = \frac{pq}{100}$
 $\therefore \text{ They have the same value.}$
3. Population in 1960 = $\frac{100}{237} \times 1500\ 000$
 $= 633\ 000\ (\text{to } 3 \text{ s.f.})$
4. $p\% = \frac{\$22.40}{\$28} \times 100\%$
 $= 80\%$
 $\therefore p = 80$
5. Distance he drove in $2022 = \frac{100}{145} \times 20\ 822$
 $= 14\ 360\ \text{km}$
6. Let $\$x$ be the original price of a T-shirt.
 $x + \frac{85}{x} = 51.8$

$$+ \frac{85}{100} x = 51.8$$

1.85x = 51.8
x = 28

... The non-discounted price of each T-shirt is **\$28**.

Ratio and Rate

Worksheet 9A Ratio

6. $x: y = \frac{1}{2} : \frac{1}{3} = 3:2$ $z: x = \frac{1}{4}: \frac{1}{3} = 3: 4$, i.e. x: z = 4: 3Since x : y = 3 : 2 = 12 : 8and x: z = 4: 3 = 12: 9, then *x* : *y* : *z* = **12 : 8 : 9**. 7. $6p: 6q \text{ and } \frac{1}{q}: \frac{1}{p} \text{ are equivalent to } p: q.$ 8. Fraction of girls in the choir = $\frac{4}{4+5}$ $=\frac{4}{9}$ Amount of vegetable broth = (2×1000) ml 9. = 2000 ml \therefore chicken stock : vegetable broth = 450 : 2000 = 9:40 10. Amount of money Tim had = $\frac{11}{9-4} \times \$100$ = \$220 11. Time taken by the fastest child = 24 minutes Time taken by the first child = $\frac{7}{6} \times 24$ minutes = 28 minutes 28 minutes after 16 50 is 17 18. Time taken by the second child = $\frac{9}{6} \times 24$ minutes = 36 minutes 36 minutes after 16 50 is 17 26. :. The other two children completed the homework at 17 18 and 17 26 respectively. 12. (i) Length of longer part of the rope = $\frac{6}{6+5} \times 33$ m = 18 m Length of shorter part of the rope = 33 m - 18 m= 15 m (ii) Let the length of the piece of rope that is removed be *x* m. $\frac{18-x}{15-x} = \frac{4}{3}$ 54 - 3x = 60 - 4xx = 6: Emma cuts 6 m from each part of the rope. 13. (a) Amount Zac pays = \$1560 - \$680= \$880 ∴ Ratio is 680 : 880 = 17 : 22 **(b)** Amount Bill paid = $\frac{3}{2} \times 596 = \$894 14. (a) (i) Amount of apple juice = $\frac{5}{7} \times 2.8$ litres (ii) Total amount of fruit drink = $\frac{5+3+7}{7} \times 2.8$ = 6 litres (b) Apple juice : pear juice = 3:5=9:15Pear juice : strawberry juice = 3:8 = 15:40: Apple juice : pear juice : strawberry juice = 9:15:40

15. (i) Number of boys = $\frac{5}{5+7} \times 60$ = 25

- (ii) Let the number of boys who joined the camp on the second day be *x*.
 - $\frac{25+x}{35} = \frac{6}{7}$ 175 + 7x = 210 7x = 35 x = 5

 \therefore 5 boys joined the camp.

- 16. Leo's share : Molly's share : Nick's share
 - = 25 000 : 37 500 : 87 500

= 2 : 3 : 7 Amount Leo received = $\frac{2}{2+2+7} \times $240\ 000 - $25\ 000$

$$2+3+7$$

= \$15 000

Amount Molly received

 $= \frac{3}{2+3+7} \times \$240\ 000 - \$37\ 500$ $= \$22\ 500$

Amount Nick received

 $= \frac{7}{2+3+7} \times \$240\ 000 - \$87\ 500$ $= \$52\ 500$

∴ They received **\$15 000**, **\$22 500** and **\$52 500** respectively.

17. Since 8:7 = 72:63 and 16:9 = 112:63, fraction not covered by the marketing collateral $= \frac{112 - 72}{112}$

$$\frac{5}{14}$$

Challenge Myself!

18. Et the two original numbers be 4*p* and 11*p*, where *p* is a positive integer, and the number that is to be added be *x*.

 $\frac{4p+x}{11p+x} = \frac{3}{5}$ 20p + 5x = 33p + 3x2x = 13px = 6.5p

Let p = 20, then the two original numbers are 80 and 220. \therefore The two positive integers could be **80** and **220**.

Worksheet 9B Rate

1. Output rate = $\frac{250 \text{ words}}{10 \text{ s}}$ = $\frac{25 \text{ words}}{1 \text{ s}}$ = $\frac{1500 \text{ words}}{60 \text{ s}}$ = 1500 words/min 2. (a) Number of characters created in 6 h = 12 × 6

= 72

- (b) $10 \text{ min} = \frac{1}{6} \text{ h}$ Number of characters created in $10 \text{ min} = 12 \times \frac{1}{6}$
- = 23. In 1 h, Julie can pack $\frac{18}{5}$ hampers. In 1 h, Kyle can pack $\frac{14}{4} = \frac{7}{2}$ hampers. In 1 h, Kyle can pack $\left(\frac{18}{5} + \frac{7}{2}\right)$ hampers = $\frac{71}{10}$ hampers. $\frac{71}{10}$ hampers take 1 h. 40 hampers take $\left(\frac{1}{\frac{71}{10}} \times 40\right)$ h = $5\frac{45}{71}$ h = **5 h 38 min** (to the nearest min). 4. Amount of electricity used = 20 822 × 0.20

= 4164.4 kWh Total amount paid for electricity consumption

 $= 4164.4 \times \$0.50$

= **\$2082** (to the nearest dollar)

5. OPEN

6

- (a) Although plan A (\$12) costs more than plan B (\$8), Keiko may choose plan A if she estimates that her daily usage exceeds 1.5 GB, but her total usage is not more than 100 GB.
- (b) Keiko may choose plan B if she is confident that her daily usage will not exceed 1.5 GB, hence she will pay less than for plan A.
- (a) 7.78 kr = 13.65 R

$$1 \text{ kr} = \frac{13.65}{7.78} \text{ R}$$

$$1 \text{ kr} = 1.75 \text{ R} (\text{to } 3 \text{ s.f.})$$

(b) Price of 1 kg of rice in South Africa

$$=\$\left(\frac{24}{13.65}\right)$$

= \$1.76 (to 2 d.p.) Price of 1 kg of rice in Sweden

$$=\$\left(\frac{30}{7.78}\right)$$

1

= \$3.86 (to 2 d.p.)

- \therefore Rice is the cheapest in South Africa and the most expensive in Sweden.
- 7. (a) 294 Singapore Dollars = 29 650 Japanese Yen

Singapore Dollar =
$$\frac{29\,650}{294}$$
 Japanese Yen

(b) 101 Japanese Yen = 1 Singapore Dollar

33 610 Japanese Yen =
$$\frac{33 610}{101}$$
 Singapore Dollars
= 333 Singapore Dollars (to the nearest

dollar)

Amount she will save

- = (333 294) Singapore Dollars
- = 39 Singapore Dollars
- ∴ She should buy the train pass from the **authorised agent** in **Singapore**, to save **\$39**.

8. Amount she gets if she changes in Singapore= (600 × 22.72)

= 13 632 Taiwan Dollars

Amount she gets if she changes in Taiwan

$$= \left(\frac{600}{4.39} \times 100\right)$$
Taiwan Dollars

= 13 667.43 Taiwan Dollars (to 2 d.p.) Difference in amounts = (13 667.43 – 13 632) Taiwan Dollars

= **35 Taiwan Dollars** (to the nearest dollar)

Worksheet 9C Speed

2 m (a) 2 m/s =1. 1 s $= \frac{(2 \div 1000) \,\mathrm{km}}{(1 \div 3600) \,\mathrm{h}}$ = 7.2 km/h **(b)** $66 \text{ km/h} = \frac{66 \text{ km}}{1000 \text{ km}}$ 1 h $= \frac{(66 \times 1000) \,\mathrm{m}}{(1 \times 3600) \,\mathrm{s}}$ $= 18 \frac{1}{3} \text{ m/s}$ Flight time = $\frac{\text{Distance}}{1}$ 2. Speed 6199 km 720 km/h = 8.6097 h (to 5 s.f.) = 8 h 37 min (to the nearest min) 3. Time taken = 20 min $=\frac{1}{3}h$ Distance = Speed × time = $40 \times \frac{1}{3}$ = 13.3 km (to 3 s.f.) Distance (i) Time taken to walk 1000 m =4. Speed 1000 m 4 km/h (1000 ÷ 1000) km 4 km/h $\frac{1}{4}$ h = = 15 min Distance (ii) Running speed = Time 2.2 km 10 min 2.2 km $(10 \div 60) h$ = 13.2 km/h

Total distance (iii) Average speed = Total time $= \frac{1\,km + 2.2\,km}{\frac{1}{4}\,h + \frac{1}{6}\,h}$ = 7.68 km/h Total distance = $\left(60 \times 2\frac{1}{2} + 55 \times 3\right)$ km 5. = 315 km Total time = $\left(2\frac{1}{2}+3\right)h$ $=5\frac{1}{2}$ h Average speed = $\frac{\text{Total distance}}{\text{Total time}}$ 315 5^{1} = 57.3 km/h (to 3 s.f.) (i) 7 h 55 min after 12.45 a.m. (Singapore time) is 8.40 a.m. 6. (Singapore time). 8.40 a.m. (Singapore time) is 11.40 a.m. (Sydney time). ... The plane arrived in Sydney at 11.40 a.m. local time. Total distance (ii) Average speed = Total time $=\frac{6300 \text{ km}}{7\frac{55}{60} \text{ h}}$ = 796 km/h (to 3 s.f.) 45 km (i) 45 km/h = 7. 1 h $\frac{(45\times1000)\,\mathrm{m}}{(1\times3600)\,\mathrm{s}}$ = 12.5 m/s(ii) Total distance = 4.9 km + 230 m= 4900 m + 230 m= 5130 m Total distance Time taken = Average speed 5130 m 12.5 m/s = 410.4 s= 6 min 50 s (to the nearest second) **Review Exercise 9** 1. 1 h = 60 min105 Number of posters = 60 = 1.75 $16 \,\mathrm{cm} - 12 \,\mathrm{cm}$ 2. (i) Rate of burning = 2 min = 2 cm/min12 cm Time taken to burn out completely = 2 cm/min

= 6 min

(ii) Assume that the candle burns at a constant rate.

3. Amount he pays = y dollars = 100 v cents Number of litres he buys = $\frac{100 y}{y}$ (i) Mei's age : Zhen's age = 8 : 104. = 4:5 (ii) Zhen's share = $\frac{5}{4} \times 32 = \$40 (iii) A year later, Mei is 9 years old and Zhen is 11 years old. Mei's share = $\frac{9}{9+11} \times$ \$60 = \$27 If the money had been divided equally, 5. A: B: C = 4: 4: 4.Total sum of money = $12 \times \$30$ = \$360 6. 5h = 1.8 panels/h 10 panels Rate at which Kris can paint = 6 h = 1.67 panels/h (to 3 s.f.) (30 - 9 - 10) panels Rate at which Lesley can paint = 8 h = 1.375 panels/h : Janice can paint at the fastest rate. 7. 1 = 26 baht $600 = (600 \times 26)$ baht = 15 600 baht Remaining amount = (15 600 - 12 538) baht = 3062 baht 25 baht = \$1 $3062 \text{ baht} = \$ \frac{3062}{2}$ 25 = \$122.48 :. She receives \$122.48. 36 kWh (i) Electricity consumption = 8. 180 km 0.2 kWh 1 km 20 kWh 100 km ... The electricity consumption of the car is 20 kWh per 100 km. (ii) (a) Distance he can travel = $\left(\frac{60}{7.8} \times 100\right)$ km = 769 km (to 3 s.f.)**(b)** Amount of petrol needed = $\left(\frac{140}{100} \times 7.8\right)l$ Cost of petrol = 2.55×10.92 = **\$27.85** (to the nearest cent)

9. Time taken = 7 h 40 min $= 7 \frac{2}{-}$ h Average speed = $\frac{\text{Total distance}}{1}$ 330 km $7\frac{2}{3}h$ = 43.0 km/h (to 3 s.f.) 10. Total distance = $\left(20 \times \frac{39}{60} + 7.5\right)$ km = 20.5 km Total distance Average speed = Total time 20.5 km $\left(\frac{39}{60}+0.5\right)h$ = 17.8 km/h (to 3 s.f.) 10 **Basic Geometry** Worksheet 10A Basic geometrical concepts and notations (a) $a^\circ = 63^\circ, b^\circ = 105^\circ$ 1. (b) $c^{\circ} = 132^{\circ}, d^{\circ} = 23^{\circ}$ $e^{\circ} = 142^{\circ}, f^{\circ} = 279^{\circ}$ (c)

(d) $g^{\circ} = 90^{\circ}, h^{\circ} = 264^{\circ}$ 2. $\angle a$ is an **acute** angle. (a) $\angle b$ is an **obtuse** angle. (b) $\angle c$ is an obtuse angle. $\angle d$ is an **acute** angle. (c) $\angle e$ is an **obtuse** angle. $\angle f$ is a **reflex** angle. (d) $\angle g$ is a **right** angle. $\angle h$ is a **reflex** angle. Complementary angle of $21^{\circ} = 90^{\circ} - 21^{\circ}$ (a) = **69**° (b) Complementary angle of $43^\circ = 90^\circ - 43^\circ$ = 47° Complementary angle of $67^{\circ} = 90^{\circ} - 67^{\circ}$ (c) = 23° (d) Complementary angle of $85^\circ = 90^\circ - 85^\circ$ = 5° 4. (a) Supplementary angle of $19^\circ = 180^\circ - 19^\circ$ = 161° (b) Supplementary angle of $30^\circ = 180^\circ - 30^\circ$ = 150° Supplementary angle of $145^\circ = 180^\circ - 145^\circ$ (c) = 35° (d) Supplementary angle of $172^\circ = 180^\circ - 172^\circ$ $= 8^{\circ}$

Worksheet 10B Properties of angles formed by intersecting lines

1. (a) $x^{\circ} + 45^{\circ} = 180^{\circ}$ (adj. ∠s on a str. line) $x^{\circ} = 135^{\circ}$ $\therefore x = 135$

(b) $35^{\circ} + x^{\circ} + 115^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $x^{\circ} + 150^{\circ} = 180^{\circ}$ $x^{\circ} = 30^{\circ}$ $\therefore x = 30$ (c) $7x^{\circ} + 90^{\circ} + 2x^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $9x^{\circ} + 90^{\circ} = 180^{\circ}$ $9x^{\circ} = 90^{\circ}$ $x^{o} = 10^{o}$ $\therefore x = 10$ (d) $(4x + 20)^{\circ} + (3x - 15)^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $4x^{\circ} + 20^{\circ} + 3x^{\circ} - 15^{\circ} = 180^{\circ}$ $7x^{\circ} + 5^{\circ} = 180^{\circ}$ $7x^{\circ} = 175^{\circ}$ $x^{\circ} = 25^{\circ}$ $\therefore x = 25$ (e) $2(x-1)^{\circ} + 80^{\circ} + (75-x)^{\circ} = 180^{\circ}$ (adj. $\angle s$ on a str. line) $2x^{\circ} - 2^{\circ} + 80^{\circ} + 75^{\circ} - x^{\circ} = 180^{\circ}$ $x^{\circ} + 153^{\circ} = 180^{\circ}$ $x^{o} = 27^{o}$ $\therefore x = 27$ (f) $90^{\circ} + \left(\frac{2}{3}x + 5\right)^{\circ} + \frac{1}{4}x^{\circ} + \frac{1}{2}x^{\circ} = 180^{\circ} \text{ (adj. } \angle s \text{ on a str line)}$ str. line) $90^{\circ} + \frac{2}{3}x^{\circ} + 5^{\circ} + \frac{1}{4}x^{\circ} + \frac{1}{2}x^{\circ} = 180^{\circ}$ $\frac{17}{12}x^\circ + 95^\circ = 180^\circ$ $\frac{17}{12}x^{\circ} = 85^{\circ}$ $x^{\circ} = 60^{\circ}$ $\therefore x = 60$ 2. (a) $114^{\circ} + 90^{\circ} + 3x^{\circ} = 360^{\circ} (\angle s \text{ at a pt.})$ $3x^{\circ} + 204^{\circ} = 360^{\circ}$ $3x^{\circ} = 156^{\circ}$ $x^{\circ} = 52^{\circ}$ $\therefore x = 52$ (b) $6x^{\circ} + 5x^{\circ} + 4x^{\circ} = 360^{\circ} (\angle s \text{ at a pt.})$ $15x^{\circ} = 360^{\circ}$ $x^{o} = 24^{o}$ $\therefore x = 24$ (c) $(x + 25)^{\circ} + (x - 13)^{\circ} + 108^{\circ} = 360^{\circ} (\angle s \text{ at a pt.})$ $x^{\circ} + 25^{\circ} + x^{\circ} - 13^{\circ} + 108^{\circ} = 360^{\circ}$ $2x^{\circ} + 120^{\circ} = 360^{\circ}$ $2x^{\circ} = 240^{\circ}$ $x^{\circ} = 120^{\circ}$ $\therefore x = 120$ (d) $2x^{\circ} + (3x - 35)^{\circ} + (2x - 5)^{\circ} + x^{\circ} = 360^{\circ} (\angle s \text{ at a pt.})$ $2x^{\circ} + 3x^{\circ} - 35^{\circ} + 2x^{\circ} - 5^{\circ} + x^{\circ} = 360^{\circ}$ $8x^{\circ} - 40^{\circ} = 360^{\circ}$ $8x^{\circ} = 400^{\circ}$ $x^{\circ} = 50^{\circ}$ $\therefore x = 50$ (e) $72^{\circ} + 90^{\circ} + (80 - x)^{\circ} + 90^{\circ} + (2x + 7)^{\circ} = 360^{\circ} (\angle s \text{ at})$ a pt.) $72^{\circ} + 90^{\circ} + 80^{\circ} - x^{\circ} + 90^{\circ} + 2x^{\circ} + 7^{\circ} = 360^{\circ}$ $x^{\circ} + 339^{\circ} = 360^{\circ}$ $x^{\circ} = 21^{\circ}$ $\therefore x = 21$

(f) $(6.5x-7)^{\circ} + (77-0.25x)^{\circ} + (3x-11)^{\circ} + 1.5x^{\circ}$ $= 360^{\circ} (\angle s \text{ at a pt.})$ $6.5x^{\circ} - 7^{\circ} + 77^{\circ} - 0.25x^{\circ} + 3x^{\circ} - 11^{\circ} + 1.5x^{\circ} = 360^{\circ}$ $10.75x^{\circ} + 59^{\circ} = 360^{\circ}$ $10.75x^{\circ} = 301^{\circ}$ $x^{\circ} = 28^{\circ}$ $\therefore x = 28$ 3. (a) $(x + 20)^\circ = 38^\circ$ (vert. opp. $\angle s$) $x^{\circ} + 20^{\circ} = 38^{\circ}$ $x^{\circ} = 18^{\circ}$ $\therefore x = 18$ **(b)** $2x^{\circ} + 57^{\circ} = 123^{\circ}$ (vert. opp. $\angle s$) $2x^{\circ} = 66^{\circ}$ $x^{\circ} = 33^{\circ}$ $\therefore x = 33$ 4. $\angle DOF = \angle COE$ (vert. opp. $\angle s$) $= 80^{\circ}$ $3x^{\circ} + 80^{\circ} + 2x^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $5x^{\circ} + 80^{\circ} = 180^{\circ}$ $5x^{\circ} = 100^{\circ}$ $x^{\circ} = 20^{\circ}$ $\angle AOF = \angle BOE$ (vert. opp. $\angle s$) $v^{\circ} = 3x^{\circ}$ $= 3(20^{\circ})$ $= 60^{\circ}$ $\therefore x = 20, y = 60$

Challenge Myself!

5.

Worksheet 10C Properties of angles formed by two parallel lines and transversal

2. (a) $(52 - 3x)^\circ = (9x + 4)^\circ$ (vert. opp. $\angle s$) (b) $52^{\circ} - 3x^{\circ} = 9x^{\circ} + 4^{\circ}$ 65° $-12x^{\circ} = -48^{\circ}$ $x^{\circ} = 4^{\circ}$ $8y^{\circ} = (52 - 3x)^{\circ} (alt. \angle s, AB // CD)$ 110° a $= 52^{\circ} - 3(4^{\circ})$ 0 Ε b° $= 40^{\circ}$ $y^{\circ} = 5^{\circ}$ $\therefore x = 4, y = 5$ (b) Let the point of intersection of *CD* and *PQ* be *N*. Then $\angle PNC = 70^{\circ}$. (corr. $\angle s$, *AB* // *CD*) \bar{C} $4x^{\circ} + 70^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $a^\circ = 65^\circ$ (alt. $\angle s$, AB // PQ) $4x^{\circ} = 110^{\circ}$ $a^{\circ} + b^{\circ} = 110^{\circ}$ $x^{\circ} = 27.5^{\circ}$ $65^{\circ} + b^{\circ} = 110^{\circ}$ $(120 - y)^\circ = 4x^\circ$ (vert. opp. $\angle s$) $b^{\circ} = 45^{\circ}$ $120^{\circ} - y^{\circ} = 110^{\circ}$ $x^{\circ} = b^{\circ}$ (alt. $\angle s, PQ // CD$) $-y^{\circ} = -10^{\circ}$ $= 45^{\circ}$ $v^{o} = 10^{o}$ $\therefore x = 45$ $\therefore x = 27.5, y = 10$ (c) 3. (a) $x^{\circ} = 82^{\circ}$ (alt. $\angle s$, AB //CD) Let the point of intersection of *AB* and *RS* be *N*. Then $\angle BNS = 100^{\circ}$. (vert. opp. $\angle s$) $y^{\circ} + 100^{\circ} = 180^{\circ}$ (int. $\angle s$, *AB* // *CD*) $y^{\circ} = 80^{\circ}$ $z^{\circ} = y^{\circ}$ (vert. opp. $\angle s$) $= 80^{\circ}$ $\therefore x = 82, y = 80, z = 80$ **(b)** $x^{\circ} + 106^{\circ} = 180^{\circ}$ (int. $\angle s$, *AB* // *CD*) $x^{o} = 74^{o}$ $y^{\circ} + 135^{\circ} = 180^{\circ}$ (int. $\angle s$, *AB* // *CD*) $v^{\circ} = 45^{\circ}$ Р Let the point of intersection of *AB*, *PQ* and *RS* be *N*. Α С Then $\angle SNQ = z^{\circ}$. (vert. opp. $\angle s$) $a^{\circ} = 3x^{\circ}$ (corr. $\angle s$, AB // PQ) $x^{\circ} + z^{\circ} + y^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $b^{\circ} = 34^{\circ}$ (corr. $\angle s$, PQ // CD) $74^{\circ} + z^{\circ} + 45^{\circ} = 180^{\circ}$ $3x^{\circ} + 34^{\circ} + 275^{\circ} = 360^{\circ} (\angle s \text{ at a pt.})$ $z^{\circ} + 119^{\circ} = 180^{\circ}$ $3x^{\circ} + 309^{\circ} = 360^{\circ}$ $z^{\circ} = 61^{\circ}$ $3x^{\circ} = 51^{\circ}$ $\therefore x = 74, y = 45, z = 61$ $x^{\circ} = 17^{\circ}$ 4. (a) $\therefore x = 17$ (d) 140° C B 130° $a^{\circ} + 140^{\circ} = 180^{\circ}$ (int. \angle s, AB // PQ) $(13x + 1)^{\circ}$ $a^{\circ} = 40^{\circ}$ $b^{\circ} + 130^{\circ} = 180^{\circ}$ (int. \angle s, PQ // CD) Р Α C $b^{\circ} = 50^{\circ}$ $a^{\circ} = (13x - 1)^{\circ}$ (alt. \angle s, AB // PQ) $x^{\circ} = a^{\circ} + b^{\circ}$ $b^{\circ} + 5x^{\circ} = 180^{\circ}$ (int. $\angle s, PQ // CD$) $=40^{\circ}+50^{\circ}$ $b^{\circ} = 180^{\circ} - 5x^{\circ}$ = 90° $13x^{\circ} - 1^{\circ} + 180^{\circ} - 5x^{\circ} + 7x^{\circ} + 1^{\circ} = 360^{\circ} (\angle s \text{ at a pt.})$ ∴ *x* = **90** $15x^{\circ} + 180^{\circ} = 360^{\circ}$ $15x^{\circ} = 180^{\circ}$ $x^{\circ} = 12^{\circ}$ $\therefore x = 12$

Since $115^{\circ} + 65^{\circ} = 180^{\circ}$, then *AB* and *CD* are parallel (converse of alt. $\angle s$).

One other angle at the intersection of *AB* and *QR* or at the intersection of *CD* and *QR* is required.

Review Exercise 10

260° + 183° - 8x° + 2x° + 7° = 360° (
$$\angle s$$
 at a pt.)
450° - 6x° = 360°
-6x° = -90°
x° = 15°
 $\therefore x = 15$
4. Since 112° + 68° = 180°, then *AB* and *CD* are parallel (converse of alt. $\angle s$).
x° + 78° = 180° (int. $\angle s$, *AB* // *CD*)
x° = 102°
 $\therefore x = 102$
5. (i) $\angle BCF = 40°$ (alt. $\angle s$, *AB* // *CF*)
 $\angle FCD = 65°$ (alt. $\angle s$, *DC* // *FG*)
 $\angle BCD = 40° + 65°$
 $= 105°$
Obtuse $\angle CDE = 105°$ (alt. $\angle s$, *ED* // *CB*)
(ii) Obtuse $\angle FGH = 360° - 105°$ ($\angle s$ at a pt.)
 $= 255°$
6. (i) $\angle BCF = 360° - 272°$ ($\angle s$ at a pt.)
 $= 88°$
Since $\angle BCD = \angle CDE$, then *BC* is parallel to *DE* (converse of alt. $\angle s$).
(ii) $\bigcirc M$
 $\angle DEF = 360° - 300°$ ($\angle s$ at a pt.)
 $= 60°$
 $\angle PDE = 60°$ (alt. $\angle s$, *ND* // *EF*)
 $\angle CDP = 88° - 60°$
 $= 28°$
 $\angle NCD = 28°$ (alt. $\angle s$, *ND* // *PQ*)
 $\angle BCN = 360° - 28° - 272°$ ($\angle s$ at a pt.)
 $= 60°$
 $\angle ABC = 60°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle BCD = 60°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle BCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle BCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle BCM = p°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle NCD = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle BCM = p°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle ABC = 60°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle BCM = 7°$ (alt. $\angle s$, *AB* // *MN*)
 $\angle BCM = 7°$ (alt. $\angle s$, *AB* // *AB*)

Polygons and Geometrical Constructions

Worksheet 11A Triangles

1. (a) $x^{\circ} + 32^{\circ} + 90^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} + 122^{\circ} = 180^{\circ}$ $x^{\circ} = 58^{\circ}$ $\therefore x = 58$ **(b)** $x^{\circ} + 43^{\circ} + 43^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} + 86^{\circ} = 180^{\circ}$ $x^{\circ} = 94^{\circ}$ $\therefore x = 94$ (c) $x^{\circ} + x^{\circ} + x^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $3x^{\circ} = 180^{\circ}$ $x^{\circ} = 60^{\circ}$ $\therefore x = 60$ (d) $x^{\circ} + 15^{\circ} + 56^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} + 71^{\circ} = 180^{\circ}$ $x^{\circ} = 109^{\circ}$ $\therefore x = 109$ (a) $x^{\circ} + x^{\circ} + 50^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ 2. $2x^{\circ} + 50^{\circ} = 180^{\circ}$ $2x^{\circ} = 130^{\circ}$ $x^{\circ} = 65^{\circ}$ $y^{\circ} + 50^{\circ} + 50^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $y^{\circ} + 100^{\circ} = 180^{\circ}$ $y^{\circ} = 80^{\circ}$ $\therefore x = 65, y = 80$ (b) Consider the smaller triangle. $31^{\circ} + 31^{\circ} + (360 - x)^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $422^{\circ} - x^{\circ} = 180^{\circ}$ $-x^{\circ} = -242^{\circ}$ $x^{\circ} = 242^{\circ}$ Consider the larger triangle. $180^{\circ} - 68^{\circ}$ Base angle = 2 $= 56^{\circ}$ $y^{\circ} = 56^{\circ} - 31^{\circ}$ = 25° $\therefore x = 242, y = 25$

3. (a) $x^{\circ} + (x+2)^{\circ} = 80^{\circ} (\text{ext.} \angle \text{ of } \triangle)$ $2x^{\circ} + 2^{\circ} = 80^{\circ}$ $2x^{\circ} = 78^{\circ}$ $x^{\circ} = 39^{\circ}$ $\therefore x = 39$ **(b)** $\angle BAC + \angle ABC = 68^{\circ}$ (ext. \angle of \triangle) $2 \angle ABC = 68^{\circ}$ $\angle ABC = 34^{\circ}$ $x^{\circ} = 360^{\circ} - 34^{\circ} (\angle s \text{ at a pt.})$ = 326° $\therefore x = 326$ 4. $80^{\circ} + 53^{\circ} + \angle BCD = 180^{\circ}$ (int. $\angle s$, AB // CD) $\angle BCD + 133^{\circ} = 180^{\circ}$ $\angle BCD = 47^{\circ}$ $\angle BDC + 123^{\circ} = 180^{\circ}$ (adj. $\angle s$ on a str. line) $\angle BDC = 57^{\circ}$ $\angle CBD + 47^\circ + 57^\circ = 180^\circ (\angle \text{ sum of } \triangle)$ $\angle CBD + 104^{\circ} = 180^{\circ}$ $\angle CBD = 76^{\circ}$ \therefore **No.** \triangle *CBD* is not a right-angled triangle. (i) $\angle DEC + 118^\circ = 180^\circ$ (int. $\angle s$, DE //BC) 5. $\angle DEC = 62^{\circ}$ (ii) $\angle DAE + \angle ADE = 62^{\circ}$ (ext. \angle of \triangle) $2\angle DAE = 62^{\circ}$ $\angle DAE = 31^{\circ}$ (iii) $\angle DBC + 31^\circ + 118^\circ = 180^\circ (\angle \text{ sum of } \triangle)$ $\angle DBC + 149^{\circ} = 180^{\circ}$ $\angle DBC = 31^{\circ}$ (a) (i) $\angle DBC = 42^{\circ}$ (base \angle of isos. \triangle) 6. (ii) $\angle ADB = \angle DBC + \angle DCB$ (ext. \angle of \triangle) $= 42^{\circ} + 42^{\circ}$ = **84**° **(b)** $\angle BAC = 180^{\circ} - 90^{\circ} - 42^{\circ} (\angle \text{ sum of } \triangle)$ = 48° $\angle ABD = 90^{\circ} - 42^{\circ}$ $= 48^{\circ}$ Since $\angle BAD = \angle ABD$, then $\triangle ABD$ is isosceles. 7. (a) 🖤 A possible set of angles is 30°, 30° and 120°. 1202 130° (b) (b) A possible set of angles is 40°, 45° and 95°. 95% ×40°

8. Let $\angle ABC = x^{\circ}$ and $\angle BAC = 4x^{\circ}$. $4x^{\circ} + x^{\circ} + 60^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $5x^{\circ} + 60^{\circ} = 180^{\circ}$ $5x^{\circ} = 120^{\circ}$ $x^{\circ} = 24^{\circ}$ $\therefore \angle BAC = 4(24^{\circ}) = 96^{\circ}$

Challenge Myself!

9. $\angle ACD = w^{\circ} + x^{\circ} (\text{ext.} \angle \text{ of } \triangle)$ $z^{\circ} = w^{\circ} + x^{\circ} + y^{\circ} (\text{ext.} \angle \text{ of } \triangle)$ Two possible sets of values are w = 20, x = 45, y = 35 and z = 100, and w = 15, x = 50, y = 40 and z = 105.

Worksheet 11B Quadrilaterals

(a) $x^{\circ} + x^{\circ} = 54^{\circ}$ (ext. \angle of \triangle) 1. $2x^{\circ} = 54^{\circ}$ $x^{o} = 27^{o}$ $\angle AED = 54^{\circ}$ (vert. opp. $\angle s$) $y^{\circ} + y^{\circ} + 54^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $2y^{\circ} + 54^{\circ} = 180^{\circ}$ $2v^{\circ} = 126^{\circ}$ $v^{\circ} = 63^{\circ}$ $\therefore x = 27, y = 63$ **(b)** $x^{\circ} + 22^{\circ} + 90^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} + 112^{\circ} = 180^{\circ}$ $x^{\circ} = 68^{\circ}$ $\angle DEC = 180^\circ - 33^\circ - 68^\circ$ (adj. $\angle s$ on a str. line) = 79° $y^{\circ} + 90^{\circ} + 79^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $v^{\circ} + 169^{\circ} = 180^{\circ}$ $y^{\circ} = 11^{\circ}$ $\therefore x = 68, y = 11$ 2. (a) $x^{\circ} = 90^{\circ}$ 90° $\gamma^{o} =$ 2 $= 45^{\circ}$ $\therefore x = 90, y = 45$ 90° (b) $x^{\circ} =$ $= 45^{\circ}$ $y^{\circ} + 45^{\circ} = 180^{\circ}$ (int. $\angle s$, *DA* // *FE*) $y^{\circ} = 135^{\circ}$ $\therefore x = 45, y = 135$ 3. (a) $3x^{\circ} + (5x + 12)^{\circ} = 180^{\circ}$ (int. $\angle s$, *AB* // *DC*) $3x^{\circ} + 5x^{\circ} + 12^{\circ} = 180^{\circ}$ $8x^{\circ} = 168^{\circ}$ $x^{\circ} = 21^{\circ}$ $y^{\circ} + 5(21^{\circ}) + 12^{\circ} = 180^{\circ}$ (int. $\angle s$, *DA* // *CB*) $y^{\circ} + 117^{\circ} = 180^{\circ}$ $v^{\circ} = 63^{\circ}$ $\therefore x = 21, y = 63$

(b) $x^{\circ} = 23^{\circ}$ (alt. $\angle s$, *AB* // *DC*) $\angle DAE = 84^{\circ}$ (alt. $\angle s$, DA // CB) $y^{\circ} = 35^{\circ} + 84^{\circ} (\text{ext.} \angle \text{ of } \triangle)$ $= 119^{\circ}$ $\therefore x = 23, y = 119$ 4. (a) $\angle CBD = 34^{\circ}$ (base \angle of isos. \triangle) $x^{\circ} + 90^{\circ} + 34^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} + 124^{\circ} = 180^{\circ}$ $x^{\circ} = 56^{\circ}$ $v^{\circ} = 56^{\circ}$ (base \angle of isos. \triangle) $\therefore x = 56, y = 56$ (b) $\angle ACD = 4x^{\circ} (AB // DC)$ $\angle DAC = 4x^{\circ}$ (base \angle of isos. \triangle) $7x^{\circ} + 4x^{\circ} + 4x^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $15x^{\circ} = 180^{\circ}$ $x^{\circ} = 12^{\circ}$ $12y^{\circ} = 7x^{\circ}$ $= 7(12^{\circ})$ = 84° $v^{\circ} = 7^{\circ}$ $\therefore x = 12, y = 7$ 5. (a) $x^{\circ} + x^{\circ} + 126^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $2x^{\circ} + 126^{\circ} = 180^{\circ}$ $2x^{\circ} = 54^{\circ}$ $x^{\circ} = 27^{\circ}$ v° + 37° + 37° = 180° (\angle sum of \triangle) $v^{\circ} + 74^{\circ} = 180^{\circ}$ $y^{\circ} = 106^{\circ}$ $\therefore x = 27, y = 106$ **(b)** $x^{\circ} = 28^{\circ}$ $\angle DBC = 55^{\circ}$ $\gamma^{\circ} + 28^{\circ} + 55^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $v^{\circ} + 83^{\circ} = 180^{\circ}$ $y^{\circ} = 97^{\circ}$ $\therefore x = 28, y = 97$ (a) $x^{\circ} + 90^{\circ} = 180^{\circ}$ (int. $\angle s$, AB // DC) 6 $x^{\circ} = 90^{\circ}$ $y^{\circ} + 65^{\circ} = 180^{\circ}$ (int. $\angle s$, *AB* // *DC*) $v^{\circ} = 115^{\circ}$ $\therefore x = 90, y = 115$ **(b)** $5x^{\circ} + 6x^{\circ} + 7x^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $18x^{\circ} = 180^{\circ}$ $x^{\circ} = 10^{\circ}$ $2y^{\circ} + 75^{\circ} + 6(10^{\circ}) = 180^{\circ}$ (int. $\angle s$, *AB* // *DC*) $2y^{\circ} + 135^{\circ} = 180^{\circ}$ $2y^{\circ} = 45^{\circ}$ $y^{\circ} = 22.5^{\circ}$ $\therefore x = 10, y = 22.5$ 7. (i) Obtuse $\angle DAE = 180^{\circ} - 59^{\circ}$ (int. $\angle s, AB // DC$) $= 121^{\circ}$ Reflex $\angle DAE = 360^{\circ} - 121^{\circ} (\angle s \text{ at a pt.})$ = 239° (ii) $\angle EFD = 130^{\circ}$ (alt. $\angle s$, AB // DC) (iii) $\angle AFD = 180^\circ - 59^\circ - 59^\circ (\angle \text{ sum of } \triangle)$ $= 62^{\circ}$ $\angle AFE = 130^{\circ} - 62^{\circ}$ = **68**°

8. (i)
$$x = 10.5$$

(ii) $y^{\circ} + 28^{\circ} + 90^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$
 $y^{\circ} + 118^{\circ} = 180^{\circ}$
 $y^{\circ} = 62^{\circ}$
 $\therefore y = 62$
9. (i) $\angle BCD = 360^{\circ} - 96^{\circ} - 105^{\circ} - 105^{\circ} (\angle \text{ sum of quadrilateral})$
 $= 54^{\circ}$
(ii) $\angle FEC = 105^{\circ} (\text{corr. } \angle \text{s, } AB // FE)$
 $\angle FGC = 105^{\circ} (\text{corr. } \angle \text{s, } AD // FG)$
 $\angle EFG = 360^{\circ} - 54^{\circ} - 105^{\circ} - 105^{\circ} (\angle \text{ sum of quadrilateral})$
 $= 96^{\circ}$

10. (a) (i) ∠BCD = 47° (corr. ∠s, BC // FD)
(ii) ∠ABD + 55° + 47° = 180° (int. ∠s, AB // DC) ∠ABD + 102° = 180°
∠ABD = 78°
(iii) ∠BDF = 55° (alt. ∠s, BC // FD)
∠AFD + 99° + 78° + 55° = 360° (∠ sum of quadrilateral)
∠AFD + 232° = 360°
∠AFD = 128°
(b) Since ∠ABD + ∠BAF = 78° + 99° = 177° ≠ 180°, then there are no pairs of parallel lines in ABDF, i.e. ABDF is not a trapezium.

Each interior angle of a regular pentagon = $\frac{(5-2) \times 180^{\circ}}{100}$ 8. $(7-2) \times 180^{\circ}$ Each interior angle of a regular heptagon = = 128.571° (to 3 d.p.) $x^{\circ} = 360^{\circ} - 108^{\circ} - 128.571^{\circ} (\angle s \text{ at a pt.})$ $= 123.4^{\circ}$ (to 1 d.p.) $\therefore x = 123.4$ (i) Sum of interior angles of a pentagon = $(5 - 2) \times 180^{\circ}$ 9. $= 540^{\circ}$ (ii) $x^{\circ} + (3x - 50)^{\circ} + 100^{\circ} + 2x^{\circ} + (2x + 10)^{\circ} = 540^{\circ}$ $8x^{\circ} + 60^{\circ} = 540^{\circ}$ $8x^{\circ} = 480^{\circ}$ $x^{\circ} = 60^{\circ}$ $\therefore x = 60$ 10. (i) Sum of exterior angles of a hexagon = 360° $8x^{\circ} + 3x^{\circ} + (11x + 3)^{\circ} + (6x + 7)^{\circ} + (7x - 3)^{\circ} + (5x - 7)^{\circ}$ $= 360^{\circ}$ $40x^{\circ} = 360^{\circ}$ $x^{\rm o} = 9^{\rm o}$ $\therefore x = 9$ (ii) Smallest exterior angle of the hexagon = 3(9°) $= 27^{\circ}$: Largest interior angle of the hexagon $= 180^{\circ} - 27^{\circ}$ = 153° **11.** Sum of interior angles of a hexagon = $(6 - 2) \times 180^{\circ}$ $= 720^{\circ}$ $720^\circ-3(100^\circ)$ Each remaining interior angle = 3 $= 140^{\circ}$ $x^{\circ} = 360^{\circ} - 140^{\circ} (\angle s \text{ at a pt.})$ $= 220^{\circ}$ ∴ *x* = **220** 12. (i) Sum of interior angles of a 9-sided polygon = $(9 - 2) \times 180^{\circ}$ = 1260° (ii) $6(135^{\circ}) + x^{\circ} + (x+10)^{\circ} + (2x-84)^{\circ} = 1260^{\circ}$ $4x^{\circ} + 736^{\circ} = 1260^{\circ}$ $4x^{\circ} = 524^{\circ}$ $x^{\circ} = 131^{\circ}$ Largest angle = $2(131^\circ) - 84^\circ$ = 178° **13.** Sum of interior angles of an *n*-sided polygon = $(n - 2) \times 180^{\circ}$ $4(115^{\circ}) + (n-4)x^{\circ} = (n-2) \times 180^{\circ}$ 460 + (n-4)x = 180n - 360(n-4)x = 180n - 820 $x=\frac{180n-820}{100}$ n-4**14.** (i) $\angle ABC = \frac{(8-2) \times 180^{\circ}}{2}$ = 135° (ii) Since GC bisects $\angle BCG$, 135° $\angle BCG =$ = 67.5° (iii) $\angle BCF = 90^{\circ}$ $\angle GCF = 90^{\circ} - 67.5^{\circ}$ = 22.5°

15. (a) ∠ABC =
$$\frac{(8-2) \times 180^{\circ}}{8}$$

= 135°
∠QBC = 135° - 90°
= 45°
∴ ∠BQC = $\frac{180^{\circ} - 45^{\circ}}{2}$ (base ∠s of isos. △)
= 67.5°

(b) By symmetry, BC is parallel to QD and BQ is parallel to CD.
∴ BCDQ is a parallelogram.
In addition, BQ = AB (sides of a square) and AB = BC = CD (sides of a regular polygon).
∴ BQ = BC = CD
∴ BCDQ is a rhombus.

Challenge Myself!

16. (a) (i)
$$\angle COD = \frac{360^{\circ}}{10}$$

= 36°
(ii) $\angle ABC = \frac{(10-2) \times 180^{\circ}}{10}$
= 144°
 $\angle BCA = \frac{180^{\circ} - 144^{\circ}}{2}$ (base \angle of isos. \triangle)
= 18°
 $\angle ACD = 144^{\circ} - 18^{\circ}$
= 126°

Review Exercise 11

 $5y^{\circ} + 4y^{\circ} = 180^{\circ}$ (int. $\angle s$, // lines) 1. $9y^{\circ} = 180^{\circ}$ $y^{\circ} = 20^{\circ}$ $\therefore y = 20$ 2. $x^{\circ} + (x - 20)^{\circ} + (x - 25)^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $3x^{\circ} - 45^{\circ} = 180^{\circ}$ $3x^{\circ} = 225^{\circ}$ $x^{\circ} = 75^{\circ}$ ∴ The angles are **75°**, **50°** and **55°**. 3. Let the first angle be x° , i.e. the other two angles are $3x^{\circ}$ and $(3x + 19)^{\circ}$. $x^{\circ} + 3x^{\circ} + (3x + 19)^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $7x^{\circ} + 19^{\circ} = 180^{\circ}$ $7x^{\circ} = 161^{\circ}$ $x^{\circ} = 23^{\circ}$ ∴ The angles are 23°, 69° and 88°. (i) $\angle BCD + 55^{\circ} = 180^{\circ}$ (int. $\angle s, AB // DC$) 4. $\angle BCD = 125^{\circ}$ (ii) $\angle DAB = 125^{\circ}$ (opp. $\angle s$ of a parallelogram are equal) $\angle ADE + 125^{\circ} + 32^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $\angle ADE + 157^{\circ} = 180^{\circ}$ $\angle ADE = 23^{\circ}$ (i) $\angle CED = 180^{\circ} - 61^{\circ} - 61^{\circ} (\angle \text{ sum of } \triangle)$ 5. = 58° (ii) $\angle CEF = 61^{\circ}$ (alt. $\angle s$, AD // FE) (iii) $\angle FAC + 70^\circ = 180^\circ$ (int. $\angle s$, AD // FE) ∠*FAC* = **110**°

Worksheet 12A Conversion of units

(a) $1 \text{ m}^2 = 100 \text{ cm} \times 100 \text{ cm}$ 1. $= 10\ 000\ cm^2$ **(b)** $4 \text{ m}^2 = 4 \times 10\ 000\ \text{cm}^2$ $= 40\ 000\ cm^2$ (c) $17 \text{ m}^2 = 17 \times 10\ 000\ \text{cm}^2$ $= 170\ 000\ cm^2$ (d) $0.1 \text{ m}^2 = 0.1 \times 10\ 000\ \text{cm}^2$ $= 1000 \text{ cm}^2$ (e) $0.05 \text{ m}^2 = 0.05 \times 10\ 000\ \text{cm}^2$ $= 500 \text{ cm}^2$ $m^2 = \frac{1}{8}$ $\times 10\ 000\ cm^2$ (f) $= 1250 \text{ cm}^2$ 10 000 (a) $10\ 000\ \mathrm{cm}^2 = -$ 2 - m² 100×100 $= 1 m^{2}$ **(b)** 30 000 cm² = $\frac{30\ 000}{1000}$ m^2 100×100 $= 3 m^2$ $68\ 000\ m^2$ (c) $68\ 000\ \mathrm{cm}^2 = 100 \times 100$ $= 6.8 \text{ m}^2$ (d) 714 000 cm² = $\frac{714\ 000}{100 \times 100}$ m² $= 71.4 \text{ m}^2$ 920 $\frac{920}{100 \times 100}$ m² $920 \text{ cm}^2 = -$ (e) $= 0.092 \text{ m}^2$ 2 (f) $2 \text{ cm}^2 = -\frac{1}{2}$ $\frac{2}{100 \times 100} \,\mathrm{m}^2$ $= 0.0002 \text{ m}^2$ $39\ 100\ 000\ cm^2 = \frac{39\ 100\ 000}{m^2}\ m^2$ 3. 100×100 $= 3910 \text{ m}^2$ Difference in area = $4050 \text{ m}^2 - 3910 \text{ m}^2$ $= 140 \text{ m}^2$... The rectangular field is larger by 140 m².

Worksheet 12B Perimeter and area of rectangles and triangles

1. (a) Area of square = 7 cm × 7 cm = 49 cm² Perimeter of square = (4×7) cm = 28 cm (b) Area of square = 3x cm × 3x cm = $9x^2$ cm² Perimeter of square = $(4 \times 3x)$ cm = 12x cm

52 cm 2. (a) Length of side of square = = 13 cm Area of square = $13 \text{ cm} \times 13 \text{ cm}$ = 169 cm² (b) Length of side of square = $\sqrt{196}$ cm = 14 cmPerimeter of square = (4×14) cm = 56 cm (a) Area of rectangle = $11 \text{ cm} \times 4 \text{ cm}$ 3. $= 44 \text{ cm}^2$ Perimeter of rectangle = 2(11 cm + 4 cm)= 30 cm (b) Area of rectangle = $9 \text{ cm} \times (5x + 1) \text{ cm}$ $= (45x + 9) \text{ cm}^2$ Perimeter of rectangle = 2[9 cm + (5x + 1) cm]= 2(5x + 10) cm = (10x + 20) cm OPEN 4. (i) $8 \text{ cm} \times 6 \text{ cm} = 48 \text{ cm}^2$ The length and breadth of the rectangle could be 8 cm and 6 cm respectively. (ii) Perimeter = 2(8 cm + 6 cm)= 28 cm (a) Area of triangle = $\frac{1}{2} \times 10 \text{ cm} \times 4 \text{ cm}$ 5. $= 20 \text{ cm}^2$ (**b**) Area of triangle = $\frac{1}{2} \times x \operatorname{cm} \times y \operatorname{cm}$ $=\frac{1}{2}xy$ cm² $\frac{1}{2}$ × 26 cm × h cm 6. (a) Area of triangle = 130 = 13h13h = 130h = 10(**b**) Area of triangle = $\times z \text{ cm} \times 9 \text{ cm}$ 130 = $\frac{3}{2}z = 130$ z = 28.9 (to 3 s.f.) 2a + 3(12) = 457. 2a + 36 = 452a = 9a = 4.5 $12 \times b = 60 \times 4.5$ 12b = 270b = 22.522.5 + 5c = 605c = 37.5c = 7.5 $\therefore a = 4.5, b = 22.5, c = 7.5$ Worksheet 12C Perimeter and area of parallelograms

1. (a) Area of parallelogram = $24 \text{ cm} \times 16 \text{ cm}$ = 384 cm^2

Worksheet 12D Perimeter and area of trapeziums
1. (a) Area of trapezium
$$= \frac{1}{2} \times (12 \text{ cm} + 20 \text{ cm}) \times 11 \text{ cm}$$

 $= 176 \text{ cm}^2$
(b) Area of trapezium $= \frac{1}{2} \times (33 \text{ cm} + 17 \text{ cm}) \times 21 \text{ cm}$
 $= 525 \text{ cm}^2$
(c) Area of trapezium $= \frac{1}{2} \times (4.4 \text{ cm} + 9.2 \text{ cm}) \times 7.6 \text{ cm}$
 $= 51.68 \text{ cm}^2$
(d) Area of trapezium $= \frac{1}{2} \times (6 \text{ cm} + 4 \text{ cm}) \times 4.8 \text{ cm}$
 $= 24 \text{ cm}^2$
2. (i) $\frac{1}{2} \times (12 \text{ cm} + 8 \text{ cm}) \times 12 \text{ cm} = 120 \text{ cm}^2$
The lengths of the parallel sides of the trapezium could be
12 cm and 8 cm, and the height could be 12 cm.
(ii) 8 cm
 12 cm
 12 cm
3. Divide the pentagon into a rectangle and a trapezium.
Area of pentagon $= \left[16 \times 10 + \frac{1}{2} \times (10 + 4) \times 9 \right] \text{ cm}^2$
 $= 223 \text{ cm}^2$
Alternatively, find the difference in areas of a rectangle and a triangle.
Area of pentagon $= \left[(25 \times 10) - \frac{1}{2} \times 9 \times 6 \right] \text{ cm}^2$
 $= 223 \text{ cm}^2$
4. (i) $DC = \{(11.5x - 14) - [1.5x + (3x - 4) + 2(x - 1)]\} \text{ cm}$
 $= (11.5x - 14 - 1.5x - 3x + 4 - 2x + 2) \text{ cm}$
 $= (5x - 8) \text{ cm}$
(ii) Since $AD = BC$,
 $1.5x = 2(x - 1)$
 $= 2x - 2$
 $-0.5x = -2$
 $x = 4$
Perimeter of trapezium $= [11.5(4) - 14] \text{ cm}$
 $= 32 \text{ cm}$

(iii) AB = [3(4) - 4] cm = 8 cm DC = [5(4) - 8] cm = 12 cm Area of trapezium = $\frac{1}{2} \times (8 \text{ cm} + 12 \text{ cm}) \times 5.7 \text{ cm}$ $= 57 \text{ cm}^2$

5. Area of parallelogram = $30 \text{ cm} \times 6 \text{ cm}$ $= 180 \text{ cm}^2$ Area of trapezium = 90 cm^2 $\frac{1}{2} \times (4+x) \times 10 = 90$ 5(4+x) = 9020 + 5x = 905x = 70x = 14OPEN 6. (a) He assumes that AD = BC. (b) Let DE = 7.5 cm. Area of $\triangle ADE = 75 \text{ cm}^2$ $\frac{1}{2} \times 7.5 \times AE = 75 \text{ cm}^2$ AE = 20 cm: Another possible value of the area of trapezium $ABCD = \frac{1}{2} \times (40 \text{ cm} + 20 \text{ cm}) \times 20 \text{ cm} = 600 \text{ cm}^2.$

Worksheet 12E Circumference and area of circles

1. (a) Area = $\pi(5)^2$ cm² $= 3.142(5)^2 \text{ cm}^2$ $= 78.55 \text{ cm}^2$ Circumference = $2\pi(5)$ cm = 10(3.142) cm = 31.42 cm (b) Radius = 6 mCircumference = $2\pi(6)$ m = **37.7 m** (to 3 s.f.) Area = $\pi(6)^2 \mathrm{m}^2$ $= 113 \text{ m}^2$ (to 3 s.f.) (c) Radius = $\sqrt{\frac{770}{\pi}}$ mm = 15.7 mm (to 3 s.f.) Diameter = $2 \times \sqrt{\frac{770}{\pi}}$ mm = 31.3 mm (to 3 s.f.) (d) Let the radius of the circle be r. Area = πr^2 22 $r^2 = 38.5$ $r^2 = 12.25$ *r* = 3.5 Circumference = $2\pi r$ $= 2\left(\frac{22}{7}\right)(3.5)$ = 22 cm (e) Let the radius of the circle be *r*. Circumference = $2\pi r$ $\pi x = 2\pi r$ x = 2rr = 0.5xArea = $\pi (0.5x)^2$ $= 0.25\pi x^{2}$

2. (a) Area
$$=\frac{1}{2} \times \pi(8)^2 \operatorname{cm}^2$$

 $= 101 \operatorname{cm}^2(\operatorname{to} 3 \operatorname{s.f.})$
 Perimeter $= \left[8 + 8 + \frac{1}{2} \times 2\pi(8) \right] \operatorname{cm}$
 $= 41.1 \operatorname{cm}(\operatorname{to} 3 \operatorname{s.f.})$
(b) Radius = 21 mm
 Area $=\frac{1}{2} \times \pi(21)^2 \operatorname{mm}^2$
 $= 693 \operatorname{mm}^2(\operatorname{to} 3 \operatorname{s.f.})$
 Perimeter $= \left[42 + \frac{1}{4} \times 2\pi(21) \right] \operatorname{cm}$
 $= 108 \operatorname{mm}(\operatorname{to} 3 \operatorname{s.f.})$
 Perimeter $= \left[2 \times \sqrt{\frac{2 \times 1}{\pi}} + \frac{1}{2} \times 2\pi \left(\sqrt{\frac{2 \times 1}{\pi}} \right) \right] \operatorname{m}$
 $= 4.10 \operatorname{m}(\operatorname{to} 3 \operatorname{s.f.})$
 Perimeter $= \left[2 \times \sqrt{\frac{2 \times 1}{\pi}} + \frac{1}{2} \times 2\pi \left(\sqrt{\frac{2 \times 1}{\pi}} \right) \right] \operatorname{m}$
 $= 4.10 \operatorname{m}(\operatorname{to} 3 \operatorname{s.f.})$
 3. (a) Area $= \frac{1}{4} \times \pi(11)^2 \operatorname{cm}^2$
 $= 95.0 \operatorname{cm}^2(\operatorname{to} 3 \operatorname{s.f.})$
 Perimeter $= \left[11 + 11 + \frac{1}{4} \times 2\pi(11) \right] \operatorname{cm}$
 $= 39.3 \operatorname{cm}(\operatorname{to} 3 \operatorname{s.f.})$
 (b) Radius $= \sqrt{\frac{4 \times 0.9}{\pi}} \operatorname{m}$
 $= 1.07 \operatorname{m}(\operatorname{to} 3 \operatorname{s.f.})$
 Perimeter $= \left[\sqrt{\frac{4 \times 0.9}{\pi}} + \sqrt{\frac{4 \times 0.9}{\pi}} + \frac{1}{4} \times 2\pi \left(\sqrt{\frac{4 \times 0.9}{\pi}} \right) \right] \operatorname{m}$
 $= 3.82 \operatorname{m}(\operatorname{to} 3 \operatorname{s.f.})$
4. (i) Perimeter of shape
 $= \left[14 + 5 + \frac{1}{4} \times 2\pi(5) + 16 + 12 \right] \operatorname{cm}$
 $= 54.9 \operatorname{cm}(\operatorname{to} 3 \operatorname{s.f.})$
 (ii) Area of shape
 $= \left[\frac{1}{2} \times (14 + 21) \times 10 - \frac{1}{4} \pi(5)^2 \right] \operatorname{cm}^2$
 $= 155 \operatorname{cm}^2(\operatorname{to} 3 \operatorname{s.f.})$
5. (i) Radius of quadrant $= \frac{8 \operatorname{m} - 5.2 \operatorname{m}}{2}$
 $= 1.4 \operatorname{m}$
 Perimeter
 $= \left[52 + \frac{1}{2} \times 2\pi(1.4) + 2(3) + (8 - 5) + \frac{1}{2} \times 2\pi(2.5) \right] \operatorname{cm}$
 $= 26.5 \operatorname{m}(\operatorname{to} 3 \operatorname{s.f.})$
 (ii) Area $= \left[(8 \times 4.4) - \frac{1}{2} \times 2\pi(2.5)^2 + \frac{1}{2} \times 2\pi(2.4)^2 \right] \operatorname{m}^2$
 $= 22.3 \operatorname{m}^2(\operatorname{to} 3 \operatorname{s.f.})$

(i) Radius of large circle =
$$\frac{d + kd}{2}$$

= $\frac{1}{2} d(k + 1)$
Area of large circle = $\pi \left[\frac{1}{2}d(k+1)\right]^2$
= $\pi \left[\frac{1}{4}d^2(k+1)^2\right]$
= $\frac{1}{4}\pi d^2(k+1)^2$ (shown)
(ii) Area of large semicircle = $\frac{1}{2} \times \frac{1}{4}\pi d^2(4+1)^2$
= $\frac{25}{8}\pi d^2$
Area of shaded semicircle = $\frac{1}{2}\pi \left(\frac{d}{2}\right)^2$
= $\frac{1}{2}\pi \left(\frac{d}{4}\right)^2$
= $\frac{1}{2}\pi \left(\frac{d}{4}\right)^2$
= $\frac{1}{2}\pi \left(\frac{16d^2}{4}\right)$
Area of unshaded semicircle = $\frac{1}{2}\pi \left(\frac{16d^2}{4}\right)$
Area of shaded section = $\frac{25}{8}\pi d^2 - 2\pi d^2 + \frac{1}{8}\pi d^2$
= $\frac{5}{4}\pi d^3$
Area of unshaded section = $\frac{25}{8}\pi d^2 + 2\pi d^2 - \frac{1}{8}\pi d^2$
= $5\pi d^2$
 \therefore Difference in area = $5\pi d^2 - \frac{5}{4}\pi d^2$
= $\frac{15}{4}\pi d^2$
(i) Perimeter of shape = $2[5x + 9 + 16 + 2(x + 10) + (3x - 1)]$
= $2(10x + 44)$ cm
= $(20x + 88)$ cm
(ii) Perimeter of shape = 308 cm

D

6.

1. (i) Perimeter of shape =
$$2[5x + 9 + 16 + 2(x + 10) + (3x - 1)]$$
 cm
= $2(5x + 25 + 2x + 20 + 3x - 1)$ cm
= $2(10x + 44)$ cm
= $(20x + 88)$ cm
(ii) Perimeter of shape = 308 cm
 $20x + 88 = 308$
 $20x = 220$
 $x = 11$
(iii) $5x + 9 = 5(11) + 9 = 64$
 $2(x + 10) = 2(11 + 10) = 42$
 $3x - 1 = 3(11) - 1 = 32$
Area of shape = $[64 \times 42 + (64 + 16) \times 32]$ cm²
= 5248 cm²
2. (i) Perimeter of shape = $\left[\frac{1}{2} \times 2\pi(6) + 5 + \frac{1}{4} \times 2\pi(5) + 13\right]$ cm
= 44.7 cm (to 3 s.f.)
(ii) Area of shape = $\left[\frac{1}{2} \times \pi(6)^2 + \frac{1}{4} \times \pi(5)^2 + \frac{1}{2} \times 12 \times 5\right]$ cm²
= 106 cm² (to 3 s.f.)

3. Area of quadrant =
$$\frac{1}{4} \times \pi x^2 \operatorname{cm}^2$$

= $\frac{1}{4} \pi x^2 \operatorname{cm}^2$
Area of shaded region = $\left(\frac{1}{4}\pi x^2 - \frac{1}{2} \times x \times x\right) \operatorname{cm}^2$
= $\left(\frac{1}{4}\pi x^2 - \frac{1}{2}x^2\right) \operatorname{cm}^2$
= $\left(\frac{1}{4}\pi - \frac{1}{2}\right) \operatorname{cm}^2$
Required percentage = $\frac{\operatorname{Area of shaded region}}{\operatorname{Area of quadrant}} \times 100\%$
= $\frac{\left(\frac{1}{4}\pi - \frac{1}{2}\right)x^2}{\frac{1}{4}\pi x^2} \times 100\%$
= 36.3% (to 3 s.f.) (shown)
4. $\underbrace{\textcircled{Points}}_{lentric}$
(i) Let $x = 7$.
Let the radius of arc PQR be $l \operatorname{cm}$,
then $\frac{\frac{1}{2} \times 2\pi (l+7)}{\frac{1}{2} \times 2\pi l} = \frac{3}{2}$.
 $\frac{l+7}{l} = \frac{3}{2}$
 $2l + 14 = 3l$
 $l = 14$

 \therefore A possible value of *x* is 7 and a possible value for the length of *PR* is **28 cm**.

(ii) Perimeter of shape

$$= \left[\frac{1}{2} \times 2\pi(14) + 7 + 7 + \frac{1}{2} \times 2\pi(21)\right] \text{ cm}$$

= $(14\pi + 14 + 21\pi) \text{ cm}$
= $(35\pi + 14) \text{ cm}$
Area of shape = $\left[\frac{1}{2} \times \pi(21)^2 - \frac{1}{2} \times \pi(14)^2\right] \text{ cm}^2$

 $= 122.5\pi$ cm²

5. Let the perpendicular distance from *B* to *CE* be *h* units. Area of ABCD = 56 units² $AB \times h$ units = 56 units²

$$AB = \frac{56}{L}$$
 units

Area of
$$\triangle ABE = \left(\frac{1}{2} \times AB \times h\right)$$
 units²

$$= \left(\frac{1}{2} \times \frac{56}{h} \times h\right)$$
 units²

$$= 28 \text{ units}^2$$
6. (i) Area of rhombus = $\left(2 \times \frac{1}{2} \times 24 \times 9\right)$ cm²

$$= 216 \text{ cm}^2$$
(ii) Area of $\triangle ABC = \left(\frac{1}{2} \times 216\right)$ cm²

$$= 108 \text{ cm}^2$$

$$\frac{1}{2} \times 15 \text{ cm} \times AE = 108 \text{ cm}^2$$

$$AE = 14.4 \text{ cm}$$

7. (a) Shapes A, B, C and E exist. (b) Consider Shape A. Let the radius of the circle be *r* cm. $2\pi r = 12\pi$ r = 6Area of circle = $\pi(6)^2$ $= 36\pi \text{ cm}^2$ Consider Shape B. Area of triangle = $\left(\frac{1}{2} \times 6 \times 8\right)$ cm² $= 24 \text{ cm}^2$ Consider Shape C. Area of parallelogram = (10×5) cm² $= 50 \text{ cm}^2$ Consider Shape E. Area of trapezium = $\left[\frac{1}{2} \times (7+3) \times 4.8\right]$ cm² $= 24 \text{ cm}^2$:. Shapes **B** and **E** have the same area. 8. (i) Let the radius of the semicircle be *r* cm. $\frac{1}{2} \times 2\pi r = 35\pi$ *r* = 35 Area of cardboard left $= \left[\frac{1}{2} \times \pi (35)^2 - \frac{1}{2} \times (12 + 70) \times 8\right] \text{ cm}^2$ $=\left(\frac{1225}{2}\pi-328\right) \,\mathrm{cm}^2$ $= 1600 \text{ cm}^2$ (to 3 s.f.) (ii) Area of cardboard left : area of semicircle $=\left(\frac{1225}{2}\pi - 328\right): \frac{1225}{2}\pi$ = 1:1.21 (to 3 s.f.)

13 Statistical Data Handling

Worksheet 13A Frequency table

- (a) Number of students who chose a tote bag = 840 - 109 - 73 - 330 = 328
 - (b) Difference = 330 73 = 257
- 2. (a) Total number of people = 0 + 3 + 15 + 4 + 2 + 1= 25
 - (b) Number of people who drank at least 3 *l* of water each day
 = 4 + 2 + 1
 = 7

(c) Required percentage =
$$\frac{18}{25} \times 100\%$$

= 72%

Worksheet 13B Pictogram

- (i) Number of children in the playgroup = $16\frac{3}{4} \times 4$ 1. (ii) Difference in the number of children = $\left(5 - 1\frac{1}{2}\right) \times 4$
- $\frac{1}{2} \times 10$ (i) Number of luxury cars sold in 2021 = 12. = 15
 - (ii) Difference in the number of luxury cars = $\left(3 2\frac{1}{2}\right) \times 10$ = 5

represents 10 luxury cars

- (a) (i) No. He ate 6 bananas, but 16 cherries. 3.
 - (ii) No. He ate more cherries (16) than pears (6).
 - (b) 💬

4.

Use identical pictures, or pictures of the same size, to represent each fruit.

(i) Adventure Cove Gardens by the Bay National Gallery

represents 10 students

- (ii) Ratio is 80 : 35 = 16 : 7
- (iii) Number of Secondary 1 students $=\frac{100}{100-15}\times(80+35+55)$

 - = 200

Worksheet 13C Bar graph

- (i) Difference in the number of people per km² 1. = 7800 - 1100
 - = 6700
 - (ii) Number of people living in Hong Kong $= 6350 \times 1104$
 - = 7 010 400

(i) Number of students who graduated with distinction in 2. psychology = 6Number of students who graduated with merit in graphic

design = 29

= 56
(iii) Required percentage =
$$\frac{14}{7+14} \times 100\%$$

= $66\frac{2}{3}\%$

(iv) No. 33 students from the law faculty graduated with distinction or merit, but there may be others who graduated with neither.

Worksheet 13D Pie chart

- $\times 360^{\circ}$ 1. Angle representing the colour red = 4+3+11+5+7= **60**°
- 2. $(105^{\circ} 45^{\circ}) = 60^{\circ}$ represents 5 votes Number of students in Secondary 1A who took part in the survey $=\frac{360^{\circ}}{60^{\circ}}\times 5$

3. (i)
$$p^{\circ} = \frac{1}{6} \times 360^{\circ}$$

 $= 60^{\circ}$
Number of students who chose Korean $= \frac{60^{\circ}}{180^{\circ}} \times 45$
 $= 15$
(ii) $q^{\circ} + 60^{\circ} + 2q^{\circ} + 180^{\circ} = 360^{\circ}$
 $3q^{\circ} + 240^{\circ} = 360^{\circ}$
 $3q^{\circ} = 120^{\circ}$
 $q^{\circ} = 40^{\circ}$
Number of students who chose Japanese $= \frac{80^{\circ}}{60^{\circ}} \times 15$
 $= 20$
4. Angle of sector corresponding to Engineering $= 75^{\circ}$
Number of students who chose Engineering $= \frac{75^{\circ}}{360^{\circ}} \times 72$
 $= 15$

7. (a)

6. (a) Angle of sector corresponding to running

$$=\frac{7}{18}\times15$$

(b) Amount of time spent cycling each day

$$=\frac{1}{2}\times\frac{155^{\circ}}{100}\times18^{\circ}$$

$$= 1.1071 \text{ h} (\text{to 5 s.f.})$$

= **66 min** (to the nearest minute)

	College	Polytechnic	Employment	TOTAL
Males	41	68	26	135
Females	54	45	6	105
TOTAL	95	113	32	240

: 6 females chose employment.

(b) Angle representing males choosing college

$$=\frac{41}{135}\times 360^{\circ}$$

- = **109.3**° (to 1 d.p.)
- (c) Percentage of males who chose employment

$$=\frac{26}{125} \times 100\%$$

- 135 = 19.259% (to 5 s.f.)
- Percentage of females who chose employment

$$=\frac{6}{100} \times 100\%$$

- : A greater percentage of **males** chose employment.
- 8. (a) Total number of students = 25 + 11 + 36

	- 72	
	Frequency	Sector angle
At home	25	$\frac{25}{72} \times 360^\circ = 125^\circ$
At the food centre near the school	11	$\frac{11}{72} \times 360^\circ = 55^\circ$
At the school cafeteria	36	$\frac{36}{72} \times 360^\circ = 180^\circ$

(b) There are likely to be more than 72 students in the school, and it cannot be assumed that this sample of 72 students is representative of the entire student population.

Worksheet 13E Evaluation of statistical representations

- (a) (i) It is likely that the people coming out of the library read books.
 - (ii) She could conduct her survey at a train station or online instead.

(b) The question does not indicate a time frame, such as one week.

2. Based on the graph, it is not clear whether the area or the height of each picture is to be used in comparing the amount of mobile data used.

Review Exercise 13

2. (i)

- 1. (i) 1. The question does not indicate a time frame, such as one day.
 - 2. The options do not include 0 h or 9 h.
 - (ii) Indicate the time frame, such as one day. Include an option for 0 h, and change the "over 9" to "9 or more".
 (i) 75

- (ii) No. It is tedious to draw so many pictures to represent the number of students as it is not possible to use a picture to represent a certain number of students.
- (iii) The total number of Secondary 1 students in the school may be decreasing from year to year.

(a) \bigcirc A possible ratio is 8 : 24 : 12 = 2 : 6 : 3. 3. (**b**) Angle corresponding to fiction = $\frac{47}{90} \times 360^{\circ}$ $= 188^{\circ}$ Angle corresponding to comics = $\frac{23}{90} \times 360^{\circ}$ $= 92^{\circ}$ Number of travel books and history books = 90 - 47 - 23= 20 Angle corresponding to travel = $\frac{3}{5} \times \frac{20}{90} \times 360^{\circ}$ Angle corresponding to history = $\frac{2}{5} \times \frac{20}{90} \times 360^{\circ}$... The angles are 188° (fiction), 92° (comics), 48° (travel) and 32° (history).

End-of-year Checkpoint A

Section A

7x - 4(x - 4) = 7x - 4x + 161. = 3x + 16[1] 8abx - 28acx + 32ax = 4ax(2b - 7c + 8)[1] 2. $\frac{9}{x+3} = \frac{7}{2x-1}$ 3. 9(2x - 1) = 7(x + 3)[1] 18x - 9 = 7x + 2111x = 30 $x = 2\frac{8}{11}$ [1]

(a) Based on the graph, it is not clear whether the area or the height 4. of each picture is to be used in comparing the water bill. [1]

(b) 🖤 The cost of water per m³ may be lower in July than in June. [1] [1]

(a) 0.85 5. (h)

(b)

$$Y = Z X$$

 $0 = 0.5$
(c)
 $LBCD + 72^{\circ} = 180^{\circ} (int. $\angle s, BA // CD)$
 $\angle BCD = 108^{\circ}$
 $\angle CDE = 108^{\circ} (alt. $\angle s, BC // DE)$
 $\therefore \text{ Reflex } \angle CDE = 360^{\circ} - 108^{\circ} (\angle s \text{ at a pt.})$
 $= 252^{\circ}$
 $\pi(4)^{2}$
[1]$$

7. Required percentage =
$$\frac{\pi(4)^2}{9 \times 7} \times 100\%$$
 [2]
= 79.8% (to 3 s.f.) [1]

11. (i)
(i)
$$2ADB = 86^{\circ}$$
 (1)
12. (a) $76 \times 171 + (2 \times 2 \times 19) \times (3 \times 3 \times 19)$ (1)
 $= 2^{\circ} \times 3 \times 19^{\circ}$ (1)
13. (a) $AE = \frac{3}{2}(12) \text{ cm}$ (b) For 174 k to be a perfect code,
 $= 1085$ (1)
13. (a) $AE = \frac{3}{2}(12) \text{ cm}$ (1)
 $= -1085$ (1)
14. (a) $2BAY = \frac{168 \text{ cm}^{\circ}}{100 \times 100} \text{ m}^{\circ}$ (1)
 $= -1068 \text{ m}^{\circ}$ (1)
15. (a) (b) This is the second polygon $= \frac{360^{\circ}}{20^{\circ}}$ (1)
 $= \frac{168 \text{ cm}^{\circ}}{100}$ (1)
 $= 168^{\circ} \text{ m}^{\circ}$ (1)
16. (a) $7.75 \text{ kr} \text{ s1}$ (222) $\frac{100}{95} \times 10.5 \text{ min}$ (1)
 $= -3170.23 \text{ (to 2 d p.)}$ (2)
 $= -3170.23 \text{ (to 2 d p.)}$ (3)
 $= -3170.23 \text{ (to 2 d p.)}$ (3)
 $= -3170.23 \text{ (to 2 d p.)}$ (3)
 $= -310.43 \text{ (to 1 min she spends ong graves the spends running = -\frac{2}{30.9} \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 2 min shad running running = -\frac{2}{3.74 \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 2 min shad running running = -\frac{2}{3.74 \text{ (to 1 min she spends running = -\frac{2}{3.74 \text{ (to 1 min she sp$

End-of-year Checkpoint B

Section A

1. 0.667,
$$\frac{2}{3}$$
, $\frac{1}{2}$, $\left(\frac{2}{3}\right)^2$ [1]

- 2. (i) $\angle ABC = 360^\circ 96^\circ 110^\circ 110^\circ (\angle \text{ sum of quadrilateral})$ = 44° [1]
 - (ii) The length of AC is less than 7 cm because the side opposite the smallest angle (∠ABC) in the triangle (△ABC) is the shortest. [1]
- 3. (a) Estimated distance = 60×3 = 180 km [1]
 - (b) In part (a), both the actual speed (56.8 km/h) and the actual time taken (2.74 h) are less than the values correct to 1 significant figure. Since distance travelled = speed × time, then the actual distance travelled by the motorist is less than 180 km.

4. When
$$x = \frac{1}{2}$$
, $y = -\frac{3}{4}$,
 $\frac{1}{2}a + b = -\frac{3}{4}$ [1]

 \therefore An example of the values is a = 2 and $b = -1\frac{3}{4}$.

5.
$$\frac{4x - y}{8} - \frac{3(y + x)}{4} = \frac{4x - y}{8} - \frac{6(y + x)}{8}$$
$$= \frac{4x - y - 6(y + x)}{8}$$
$$4x - y - 6y - 6x$$
[1]

$$=\frac{4x - y - 6y - 6x}{8}$$
 [1]

$$= -\frac{-2x - 7y}{8} = -\frac{2x + 7y}{8}$$
[1]

6. Value of car at the end of the 1st year = $\frac{90}{100} \times \$87\ 500$ = \$78\ 750

Value of car at the end of the 2^{nd} year = $\frac{90}{100} \times 78750 = \$70875

Value of car at the end of the
$$3^{rd}$$
 year = $\frac{90}{100} \times $70 875$

Overall percentage reduction =
$$\frac{1}{887500}$$
 × 100% [1]
= 27.1% (to 3 s.f.) [1]

Circumference of circle =
$$2\pi(4r)$$
 cm
= $8\pi r$ cm

Length of side of square =
$$\sqrt{25r^2}$$
 cm
= 5r cm
Perimeter of square = $(4 \times 5r)$ cm

 $= 20r \,\mathrm{cm}$

Difference between the circumference of circle and perimeter of square

 $= (8\pi r - 20r) \text{ cm}$ [1] = 4r(2\pi - 5) cm [1] **8.** Use a pair of compasses to construct an equilateral triangle with sides 6 cm.

From one side of this triangle, construct another equilateral with sides 6 cm.

Continue until there are a total of 6 equilateral triangles which make a regular hexagon. [2]

9. Consider the case where
$$PQ = QR$$
.
 $\angle R = 50^{\circ}$ [1]
Consider the case where $PQ = PR$.

$$R = \frac{180^{\circ} - 50^{\circ}}{2}$$
= 65° [1]

Consider the case where PR = QR. $\angle R = 180^{\circ} - 50^{\circ} - 50^{\circ}$

$$= 80^{\circ} = 50^{\circ} = 50^{\circ}$$

∠ŀ

[1]

10. Let the additional number of children that would need to join the club be *x*.

$$\frac{84+x}{96+84+x} = \frac{60}{100}$$

$$\frac{84+x}{180+x} = \frac{3}{5}$$

$$5(84+x) = 3(180+x)$$

$$420+5x = 540+3x$$
[1]

$$20 + 5x = 540 + 3x$$

$$2x = 120$$

$$x = 60$$
[1]

 \therefore The smallest number of children that would need to join the club is **60**. [1]

11. (a) Time taken if he arrives on time = (t - 2) min Time taken on Sunday = (t - 2 - 4) min = (t - 6) min [1]

(b) Since the distance travelled on both days is the same,

$$0 \times \frac{t}{60} = 36 \times \frac{t-6}{60}$$

$$30t = 36(t-6)$$

$$= 36t - 216$$

$$6t = 216$$
[1]

$$t = 36$$

3(

13.

∴ Corey took **36 min** on Saturday. [1]

12. (i)
$$AX = \frac{5}{13} \times 65 \text{ cm} = 25 \text{ cm}$$

 $DX = \frac{12}{13} \times 65 \text{ cm} = 60 \text{ cm}$
 \therefore Area of quadrilateral = $\left(4 \times \frac{1}{2} \times 60 \times 25\right) \text{ cm}^2$ [1]

$$= 3000 \text{ cm}^2$$
 [1]

(ii) Let the shortest distance from *C* to *AB* be *h* cm.
AB × *h* cm = 3000 cm²

$$65 × h = 3000$$
 [1]
 $h = 46.2$ (to 3 s.f.)
 \therefore The shortest distance from *C* to *AB* is **46.2 cm**. [1]
(a) (i) 270 = 2 × 3³ × 5 [1]
(ii) 18 = 2 × 3²
 $270 = 2 × 33 × 5$ [1]

$$90 = 2 \times 3^{2} \times 5$$

$$90 = 2 \times 3^{2} \times 5$$
(1)
HCF of 54 and $90 = 2 \times 3^{2} = 18$
LCM of 54 and $90 = 2 \times 3^{3} \times 5 = 270$

7.

(b) For 1936
$$\div \frac{p}{q}$$
 to be a perfect cube, 1936 $\times \frac{q}{p}$ is a perfect cube.
 $\therefore p = 2, q = 11$ [2]

Section B

- 14. (a) Males in age group 21–24 years use the most mobile data in both years. [1]
 - (b) Yes, because the bars corresponding to the females are taller than those corresponding to the males. [2]
 - (c) Yes, because angle of sector corresponding to age group 21-24 years

$$= \frac{12}{3+9+12+10+6} \times 360^{\circ}$$
[1]
= 108° [1]

- 15. (a) (i) Number of passengers handled in 2017 $=\frac{100}{105.5}$ × 65.6 million [1]
 - = 62.2 million (to 3 s.f.) [1]
 - (ii) Percentage of passengers that passed through the airport 221 155 [1]

$$= \frac{1}{65\,600\,000} \times 100\%$$
[1]
= **0.337%** (to 3 s.f.) [1]

(b) Time required =
$$\frac{100}{79} \times 5.5$$
 h [1]

= 6.9620 h (to 5.5 f)

- = 6 h 58 min (to the nearest min)
- (c) (i) Amount he has to pay from 9.30 p.m. to 11 p.m. $= (90 \times 4)$ cents
 - = 360 cents
 - = \$3.60
 - Amount he has to pay from 11 p.m. to 1 a.m.
 - $= (5 \times 4)$
 - = \$20
 - \therefore Total amount he has to pay = 3.60 + 20

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

- (ii) 🐑 The top two levels may offer more convenient access to the arrival and departure halls, hence they might be targeted at those who go to the airport to pick up or send off people, i.e. short-term parking. [1]
- **16.** (a) (i) Each interior angle of polygon Q

 $360^\circ - 90^\circ$ = 2 = 135° Each exterior angle of polygon $Q = 180^\circ - 135^\circ$

= 45° (ii) Number of sides in polygon R = Number of sides in polygon Q

$$=\frac{360^{\circ}}{45^{\circ}}$$

(b) 🖭

- (i) Each interior angle of polygon *Q* and of polygon *R* could be 150° and 120° respectively. [2]
- (ii) Each exterior angle of polygon $Q = 180^{\circ} 150^{\circ}$ $= 30^{\circ}$ [1]

Number of sides in polygon
$$Q = \frac{360^{\circ}}{30^{\circ}}$$

Each exterior angle of polygon $R = 180^{\circ} - 120^{\circ}$ 600 [1]

Number of sides in polygon
$$R = \frac{360^{\circ}}{60^{\circ}}$$

End-of-year Checkpoint B