6

PARVEEN ARIF ALI

Teaching Guide

Revised Edition

OXFORD UNIVERSITY PRESS

Contents

Introduct	ion
Unit 1	Learning to be a scientist
Unit 2	Living organisms13Lesson plans16Worksheets24
Unit 3	Sensitivity in living organisms26Lesson plans30Worksheets35
Unit 4	Photosynthesis and respiration in plants
Unit 5	Air45Lesson plans47Worksheets52
Unit 6	Elements, mixtures, and compounds
Unit 7	Energy65Lesson plans67Worksheets71
Unit 8	Work and machines.73Lesson plans76Worksheet79
Unit 9	Reflection of light80Lesson plans83Worksheets86
Unit 10	Sound88Lesson plans91Worksheet95
Unit 11	Exploring space96Lesson plans99Worksheet101
Test paper	1
Test paper	2
Test paper	3 112

Introduction I

Science and technology have assumed great importance in the world today. Not only has science changed our life, it has also influenced our thinking. We have used scientific knowledge to raise our standard of living and develop a better relationship with nature.

The study of science develops a spirit of enquiry that enables the scientist to understand the interrelationships that exist in nature. A student of science develops the habit of observing carefully, and collecting data accurately so that scientific phenomena can be seen in their true perspective. This habit not only develops a scientific attitude but also inculcates critical thinking that helps in drawing conclusive results from observations. Thus it enables a student of science to better understand and appreciate the environment as a whole.

The subject of science has always been considered a learning subject at the school level and the student has to go through a rigorous exercise of learning it by heart in order to pass examinations. In reality, science is not a subject to be memorized; it has to be given serious thought and this makes it a difficult subject. But if science is taught in such a manner that students understand its true meaning and develop a scientific approach towards understanding scientific phenomena, its study becomes meaningful as well as interesting.

A teacher can play a very important role in arousing the interest of students by allowing them to discuss facts and ideas and helping them to draw conclusions from them as to why and how things happen.

The teacher can stimulate the thinking process of students by asking questions and also by encouraging them to ask questions. Experimental work enables students to test for themselves the facts that have been learnt by them, thereby making it easier for them to understand the implications of the background to their activities.

This course has been developed to provide information about the world around on which students can base their opinion, verify information, come to conclusions, and use the knowledge thus gained in their everyday life. It will help in maintaining the curiosity and enthusiasm of students who have just started studying science. Concepts developed at this stage will be of use in their studies at an advanced level later. It will help them to develop a better outlook of life. In order to control the learning process the teacher not only encourages and advises but also critically evaluates the work of the students.

About the Pupil's Book:

This science series has been written especially for children both at the primary and secondary levels. It provides information at a child's level of understanding and has a direct appeal for children who need interesting and easy to read material.

Keeping in view the interests, abilities, curiosities, and needs of children, it provides stimulating learning experience and offers enjoyable educational motivation, thus serving as a building block for further learning.

The keyword in science is curiosity. The material in the series is designed to awaken in a child the same urge that motivates a scientist; the desire to know the answer to a question. There is a wide range of topics that will interest and motivate the child.

Introduction

Teachers will recognize that it deals with those broad areas about which most children frequently express curiosity; that it provides answers to many questions they ask, offering new and exciting information on many fields. It aims to create an awareness, as well as stimulate an interest in science.

The language is simple and easy to read and within the grasp of the students' abilities of each grade. Together, the text and illustrations motivate children to discuss, question, and explore.

The contents have been selected and are presented in such a way as to capture and hold the interest of the students. The objective is to simplify complex ideas and present them in an interesting way. Every effort has been made to keep the language simple.

When it is necessary to use a specialized word, it has been gently introduced into the text. When it is not self-explanatory within the context, it is defined. Clear and well-labelled illustrations have been included, which help to identify and clarify the topics dealt within.

Good pictures and diagrams arouse and develop interest. These make lasting impressions. They help to make the text clear. They also appeal to the child's imagination, while satisfying his/her curiosity and often provoke a favourable reaction.

Simple practicals—interesting and stimulating presentation of factual materials—offer every chance of successful learning experiences. Knowledge of problem-solving techniques so acquired can be applied in everyday life.

It is intended, through this series, to introduce children to many of the interesting and enjoyable things they can learn about and do for themselves. Also to develop in them the quest for knowledge and understanding of how science is shaping the world in which they live.

Syllabus break-up:

The textbook has been divided into four parts, namely biology, chemistry, physics, and the Earth and universe. Each chapter of the Teaching Guide pertains to the topics discussed in the textbook. This makes the work of the teacher easier.

In most schools the school year is roughly divided into three terms, i.e. Spring, Summer, and Winter. It is up to the teacher to select the topics to be taught in each term, but this selection should be well-balanced as sometimes a teacher would prefer to teach the topics that are easier or are better liked by him or her than others. For instance, a biology teacher would prefer to teach biology first and neglect the other parts.

To overcome these problems, each part of the textbook has been written in such a way that each topic is self-explanatory and the answers to the questions at the end of each chapter can be readily found in the text. Definitions and all aspects of each topic have been highlighted for quick reference, and simple experiments have been given wherever possible to make the concepts clear as well as make learning interesting and easy.

The role of the teacher:

It is up to the teacher to devise means and ways of reaching out to the students, so that they have a thorough knowledge of the subject without getting bored.

The teacher must use his/her own discretion in teaching a topic in a way that he/she finds appropriate, depending on the intelligence level as well as the academic standard of the class.

To the teacher:

With your assurance and guidance the child can sharpen his skills.

Encourage the child to share his experiences. Try to relate to real things. Do not rush the reading. Allow time to respond to questions and to discuss pictures or particular passages. It will enhance learning opportunities and will enable the child to interpret and explain things in his/her own way.

Preparation by the teacher:

Be well-prepared before coming to class.

- i) Read the lesson.
- ii) Prepare a chart if necessary.
- iii) Practise diagrams which have to be drawn on the board.
- iv) Collect all material relevant to the topic.
- v) Prepare short questions.
- vi) Prepare homework, tests, and assignments.
- vii) Prepare a practical demonstration.

The following may also be arranged from time to time.

- i) Field trips
- ii) Visits to the laboratory
- iii) A show of slides or films
- iv) Plan projects

Method of teaching:

The following method can be employed in order to make the lesson interesting as well as informative.

The basic steps in teaching any science subject are:

- i) locating the problem
- ii) finding a solution by observation and experimentation
- iii) evaluating the results
- iv) making a hypothesis and trying to explain it

The usual strategy which is easy as well as effective can be adopted:

i) Before starting a lesson, make a quick survey of the previous knowledge of the students by asking them questions pertaining to the topic, from everyday observation of their surroundings, or from things they have seen or read about in books, magazines, or newspapers.

Introduction

- ii) Explain the lesson.
- iii) Write difficult words and scientific terms on the board.
- iv) Ask students to repeat them.
- v) Help students to read text.
- vi) Show materials, models, or charts.
- vii) Make diagrams on the board.
- viii) Perform an experiment if necessary.
- ix) Ask students to draw diagrams in their science manuals.
- x) Students should tackle objective questions independently.
- xi) Ask questions from the exercises.
- xii) Answers to questions to be written for homework.
- xiii) The lesson should be concluded with a review of the ideas and concepts that have been developed or with the work that has been accomplished or discussed.

Starting the lesson:

Before starting a lesson, the teacher should make a quick survey of the previous knowledge of the students by asking some questions pertaining to the topic from their everyday observation.

It is not necessary that the class should begin with the reading of the textbook. The lesson should begin with the teacher telling an interesting incident or information that will keep the students interested and make them want to know more about the topic which has been introduced. Each topic of the lesson should be explained thoroughly and to check whether students are following, short questions should be asked in between the lecture.

Making a sketch or diagram on the board is a very important aspect of the study of science but too much time should not be spent on it or the students lose interest. An alternative to drawing on the board is a ready-made chart, or one made by the teacher, which can be hung in the classroom. The use of visual material is very effective as it keeps the students interested as well as helps them to build mental pictures which are learnt quickly and can be recalled whenever needed. Students, too, take interest in drawing diagrams and they should be helped by the teacher when diagrams are being made in class. If a diagram is not in the textbook then the students should either copy it from the board or a chart, or the teacher should photocopy it and distribute among the students.

Practicals and experimental work:

The science laboratory of any school should be well-equipped for meeting the requirements of the practical work done at the school level. The science teacher may make suggestions and request for material and equipment to perform simple experiments.

Science students should be taken to the laboratory to see the laboratory in charge at work. They can also see the specimens of various plants and animals on display and be introduced to some scientific equipment, chemicals, and solutions.

Practical work arouses interest in the subject. Some experiments can be easily performed in class. Class activities can be organized in such a way that the whole class can participate in and benefit from them. Students can be asked to work in groups or in pairs, depending on the type of work that is to be done, or the amount of material that is available. Demonstrations by the teacher are unnecessary. A Introduction

clear sequence of instructions related to the activity should be given and the students should be allowed to work independently, but the teacher, should be in direct and immediate control of everything. Teachers should also determine the pace of work.

If there is any difficulty or danger encountered at the start of an experiment, or during it, the teacher should be prepared to improvise, and provide an alternative method, or a different experiment giving the same results.

Most of the experimental work should be carried out by the students themselves, as it develops more interest and a sense of responsibility among the students. The basic method or technique should be thoroughly understood by the students before an experiment is performed. The students should be allowed to work independently under strict supervision. A record of the observations should be carefully made, preferably in tabular form. The conclusions or results should be thoroughly discussed in class before writing them down. Written work should be checked carefully and regular tests should be conducted. (Simple experiments have been given in each topic which will enable the teacher to plan and prepare them quickly and with ease.)

If the steps involved in the experiment and the precautions to be taken are explained clearly and thoroughly, the experiment can be successful and the students will develop a sense of achievement and confidence.

When the discussion of a topic has been completed, it should be summarized by the teacher along with the participation of the students by writing down all the important ideas and concepts that have developed from the text and the experimental work.

These guidelines for teachers will enable them to teach science effectively and develop in their students an interest in the subject which can be maintained throughout the academic year and possibly in their lives as a whole. These suggestions are not mandatory. They can only supplement and support the professional judgement of the teacher and in no way can they serve as a substitute for it.

Teaching objectives:

- to define science
- to discuss the nature of work of a scientist
- to discuss the scientific methods followed for answering questions and arriving at conclusions
- to describe a laboratory
- to demonstrate the usage of some basic laboratory apparatus and instruments

Teaching strategy:

Ask: What is science? Explain the meaning of science, who a scientist is and how he works.

Take the students to the laboratory, and with the help of a lab assistant show them the various instruments and apparatus and explain their uses. Rules regarding the use of equipment, and accidents that might happen through ignorance or carelessness in the laboratory should also be explained. Measures to be taken in case of an emergency should also be discussed.

Explain the steps involved in solving a problem with an example from the textbook.

Answers to Exercises in Unit 1:

- 1. (a) Science is the study of things and events that take place around us.
 - (b) A scientist is a person who studies science.
 - (c) A scientist uses scientific methods to solve problems.
 - (d) A special kind of room where a scientist works is called a laboratory.
- 2. (a) weight (b) length (c) volume (d) time (e) temperature
- 3. (a) apparatus (b) reagent (c) fire extinguisher (d) first aid box
 - (e) Specimens (f) metres (g) grams (h) litres (i) seconds
 - (j) degrees Celsius
- 4. measuring cylinder, measuring flask, pipette, burette

Additional Exercise:

MCQs

(a)	The study of things	s and events that take plac	e around us is called	
	science	news	environment	[science]
(b)	A person who studi	ies science is called		
	an artist	a scientist	a scholar	[a scientist]
(c)	A scientist works in	a special kind of classroo	om called a	
	library	study room	laboratory	[laboratory]
(d)	h calculations for the	ave been invented to help experiments they perform	scientists in making accurate n n.	neasurements and
	Instruments	Tools	Models	[Instruments]
(e)	A balance is an	instrument used for	measuring the	of a body.
	temperature	weight	height	[weight]
(f)	Volume is measure	d in		
	metres	kilograms	litres	[litres]
(g)	The instrument	used to measure the	temperature of a body is	·
	thermometer	altimeter	ammeter	[thermometer]
(h)	A laboratory must	be equipped with a fire ex	tinguisher to	
	put out fires	keep the laboratory cool	heat the laboratory	[put out fires]
(i)	Chemicals in a labo	oratory are kept in		
	plastic bottles	reagent bottles	thermos flasks	[reagent bottles]
(j)	A first aid box cont	ains		
	tools	medicines and bandages	machines [medicine	s and bandages]

Date:

Lesson plan

Time: 40 mins

Unit: 1	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Learning to be a scientist		Students should be able to:		
1. Learning to be a scientist	 to explain what science means to explain what a scientist does and where he/she works 	 explain the meaning of the word <i>science</i> describe what a scientist does to find explanations for scientific phenomena 	Pictures of some famous scientists and the work they have done A chart of the steps involved in solving a scientific problem	Reading: p 2 Activity: 1 CW: Q1 (a) (b) HW: Q1 (c) (d)
Key words: science, scien	ttist, laboratory, problem	, identify, information, experime	at	
Method : Start the lesson give us a better understan Explain that scientists car energy, living things, etc. (knowledge or skills toward	by asking questions: Wha ding of our world. ry out research work rela Often, a team of scientist as finding a solution.	at is science? Explain that science ting to different fields like the Ea s belonging to different fields wo	e is a way of searching for arth, the universe, materia rk together, each contribu	information that will als, force and uting his/her special
Ask: How does a scientist	think and work? Explain	that the steps a scientist follows	in solving a problem are:	
1. A scientist defines th	ie problem that s/he wan	ts to solve.		
2. S/he thinks of as mai	ny ways as s/he can to sol	lve it.		
3. S/he chooses the bes	t possible solution or exp	olanation.		
4. S/he plans an experii	ment to see whether the	chosen solution or explanation is	correct.	
5. If the experiment she	ows that the option is sui	itable, s/he proves it by doing fur	ther experiments.	
6. Careful scientists alw	vays verify their discoveri	es.		

Time: 40 mins

Unit: 1	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Learning to be a scientist		Students should be able to:		
2. Looking at a laboratory	• to introduce the names of items of laboratory apparatus and explain their use	 name various items of laboratory apparatus and equipment and explain their use 	A visit to a laboratory Charts of laboratory apparatus and equipment A table of scientific measurements	Reading: p 2, 3, 4 Activity: 2 CW: Q2 HW: Draw an instrument used to measure: a. weight b. volume of a liquid c. length of an object d. time e. temperature
Key words: apparatus,	instrument, microscope	, balance, cylinder, stopwatch, n	netre rule, measuring tape	e, thermometer
Method: Ask: How do	instruments help scient	ists make discoveries? Why do so	cientists use instruments?	Explain that scientific

instruments enable scientists to observe facts more accurately than by using their senses alone.

Take the students to the laboratory. Explain the safety rules that must be followed while working there. Show students the various instruments used for measuring quantities such as distance, weight, temperature, and time.

Date:

Lesson plan

Unit 1: Learning to be a scientist

Worksheet	1
worksheet	T

Na	ime:	Date:
1.	Arrange the following steps, used in studying	a scientific problem, in the correct order:
	reach a conclusion	
	analyze the results	
	collect information	
	record the results	
	perform an experiment	
	study the problem	
	i	ii
	iii	iv
	V	vi
2.	List five things that you should not do in a lab	poratory.
	i	
	ii	
	iii	
	iv	
	v	

Name:	
	-

Date: _____

1. Fill in the table:

Name of the instrument	What it is used for	Unit of measurement
balance		
measuring cylinder		
stopwatch		
metre rule		
thermometer		

2. a. Arrange the following steps that you would use in separating salt and sand from a mixture, in the correct order.

evaporate the filtrate to dryness

salt is left in the evaporating dish

filter the mixture with filter paper

put the mixture in water and stir gently

i.	
ii.	
iii.	
iv.	

b. Give three reasons why you followed this procedure.

Teaching objectives:

- to discuss the characteristics of living organisms
- to discuss the differences between living and non-living things
- to discuss the differences between animals and plants
- to describe the conditions that are necessary for the survival of living things
- to define 'environment'
- to describe the types of environment and their important features
- to explain how animals and plants adapt to their environments
- to explain how animals and plants protect themselves
- to explain food chains and food webs, and describe how living organisms are interconnected for their energy requirements
- to explain how wildlife is being destroyed and what measures can be taken to preserve it

Teaching strategy:

Place a potted plant, a clockwork toy, and a live cockroach in a jam jar on your desk. **Ask:** Which of these is a living thing? Depending on the answer, ask why it is a living or a non-living thing. Now wind the toy and ask: Is this a living thing? Ask students to tell the difference between a cockroach and a toy. Show the plant to the students and ask them to compare it to the cockroach. They should be able to explain the differences in colour, movement, shape, etc. **Ask:** Does the plant breathe, move, or eat? Does it have babies? Using all the information obtained from the students, explain the differences between living and non-living things, and between plants and animals.

Ask: What conditions do you think are necessary for life? Can you live without air? Why, or why not? Can you live without water? Why, or why not? What will happen if we close the lid of the jar with the cockroach in it? What will happen if we put this plant in a dark cupboard and do not water it? What will happen to the toy if we put it in the deep freezer? Expanding upon the answers from the students, explain the conditions that are necessary for living things, and their importance.

Ask: What type of area do you live in? What sort of climate do you like? What type of clothes do you wear in winter? What kind of food do you like to eat in summer? Explain that as we adapt ourselves to our surroundings, so do other living organisms. **Ask:** Why do we not see lizards and frogs in winter? Explain the terms cold-blooded, warm-blooded, and hibernation. **Ask:** Do you have a pet animal or fish? How do you look after it? What do you give it to eat? Where do you keep it? Explain the importance of natural and artificial environments, and the features of a natural environment. Explain the features of an artificial environment (such as a fish aquarium or a birdcage) where the animals do not have to search for their food and they cannot change their surroundings. **Ask:** What would happen

if you let your pet free? Explain the meaning of adaptations and the features that enable an organism to live in a particular environment.

Ask: Where do different kinds of food come from? Explain the importance of photosynthesis and that plants are the main producers for all living things and the Sun is the main source of energy. **Ask:** What do plants eat? What does a rabbit eat? What does a dog eat? What does a lion eat? Explain the different kinds of food and the animals which eat it. Explain the concept of food chains and food webs and how living organisms depend on each other for their food requirements. **Ask:** Which animals eat plants? Which animals eat both plants and meat? Explain herbivores, carnivores, and omnivores.

Ask: What happens to animals if we cut down trees? Explain how natural habitat is being destroyed by man's activities. **Ask:** How can we protect wildlife and preserve natural habitats? Explain how humans are polluting the environment and destroying the natural habitats of wild organisms. Discuss the dangers of all this with the students.

Do the activities.

Summarize the lesson.

Answers to Exercises in Unit 2:

- (a) <u>Cells</u>: They are the building blocks of all living things. <u>Tissue</u>: They are a group of similar cells which are specialized to perform a particular function. <u>Organ</u>: Different types of tissues group together to form an organ. <u>Organ systems</u>: Systems are made up of many organs which work together.
 - (b) In multicellular plants, materials are circulated in a system of tubes called the vascular system. The vascular system of plants is composed of specialized tissues called xylem and phloem. Xylem is made up of long, dead cells called vessels. Vessels have thick walls. They carry water from the roots, through the stem to the veins in the leaves. Phloem is made up of long thinwalled tubes called sieve tubes. Sieve tubes are made of living cells whose horizontal walls have tiny holes. Food flows from the leaves to other parts of the plant through the sieve tubes.
 - (c) Plants lose water vapour into the atmosphere by evaporation. The water passes through tiny holes called stomata which are found mainly on the lower side of leaves. This process is called transpiration. It is important because it helps in the transportation of water in plants and it also helps plants to keep cool in summer.
 - (d) Respiration is the process by which food is oxidized in the body cells to produce energy. The parts of the respiratory system of a mammal are nose, windpipe, bronchi, bronchioles, and air sacs.
 - (e) The heart is a muscular organ found in the centre of the chest. It has four chambers. The upper two chambers or atria are thin walled and the lower two chambers or ventricles are thick walled.
 - (f) The process by which insoluble food is broken down by the action of enzymes into soluble substances, is called digestion. Food is completely digested in the small intestine.
 - (g) brain, spinal cord, and nerves
 - (h) A reflex action is an involuntary response to a stimulus such as sneezing.
 - (i) writing, reading, speaking
- 2. (a) vessels (b) sieve tubes (c) Transpiration
 - (e) capillary (f) enzymes (g) villi
- (h) kidneys

(d) alveoli

(i) neurons (j) reflex (k) reflex arc (l) involuntary or reflex action

- 3. (a) food pipe (b) stomach (c) small intestine (d) large intestine Refer to the diagram on page 14 of the Pupil's Book.
- 4. (a) Refer to the diagram on page 15 of the Pupil's Book.

5.		Plant cell	Animal cell
	a) cell wall	thick cell wall present	cell membrane present
	b) chloroplasts	chloroplasts present	chloroplasts absent
	c) vacuole	large central vacuole	small scattered vacuoles

Additional Exercise:

MCQs

(a) All plants, animals, and other living things are made up of ______.
cells water air [cells]
(b) A group of similar cells which are specialized to perform a particular function are called

[tissues]	organs		tissues	cells	
	m	together to for	tissues are grouped	Different types of	(c)
[organs]	organs		tissues	cells	
	ns which work together.	o of many orga	systems are made up)	(d)
[Organ]	Organ		Tissue	Cell	
l xylem and phloem.	of specialized tissue calle	ts is composed	system in plan	They	(e)
[vascular]	respiratory		digestive	vascular	
	called	the stomata is	n the leaves through	Loss of water from	(f)
[transpiration]	transpiration		circulation	respiration	
duce energy.	zed in the body cells to pr	h food is oxidiz	is a process by which		(g)
[Respiration]	Digestion	ı	Transpiration	Respiration	
	is	re of the chest	an found in the cent	The muscular org	(h)
[heart]	kidney		heart	liver	
into simple soluble	by the action of enzymes	s broken down	hich insoluble food i ed	The process by w substances is calle	(i)
[digestion]	excretion		respiration	digestion	
	overed by a tough sheath.	_ which are co	es of	Nerves are bundle	(j)
[neurons]	nephrons		neurons	tendons	

Date:

Lesson plan

Time: 40 mins

Unit: 2	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Living organisms		Students should be able to:		
1. Cells	 to explain that all living things have similar characteristics to explain that all living things are made up of cells to describe the structure of a cell to compare an animal and a plant cell 	 explain that all living things are made up of cells and have similar characteristics describe the structure of a typical cell explain the difference between an animal and a plant cell 	A microscope, slides of an animal cell, a plant cell Diagrams of the structures of different kinds of cells	Reading: p 8, 9 Activity: 1, 2 CW: Q5 HW: Write the functions of the functions of the following parts of a cell: a. nucleus b. cell membrane c. mitochondria d. chromosome e. chloroplast
Key words: reprod cell sap	uction, cell, cytoplasm, nucleus,	, cell membrane, mitochondria,	chloroplast, vacuole, chro	mosome, chlorophyll,
Method: Ask: Wha typical cell. Take th explain the structur	t are living things made of? Sho e students to the laboratory and es of a typical animal and plant	w the students diagrams of diffe show them slides of a plant cell cell. Explain the functions of ea	rrent types of cell, and exp and an animal cell. With the part and ask the studer	lain the structure of a the help of diagrams, nts to describe the

differences between them.

Date:		-		Time: 40 min
Unit: 2	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Living organisms	D	Students should be able to:		
 Cells, tissues, organs, organ systems 	 to explain that organisms are made of cells, tissues, organs and organ systems 	 explain that living organisms are made up of cells, tissues, organs, and organ systems 	Pictures and diagrams of cells, tissues, organs, and organ systems in plants and animals	Reading: p 9, 10 HW: Define the following:
		 describe the structure of various tissues and systems in living organisms 		a. tissue b. organ c. organ system
Key words: cell, tis	sue, organ, organ system			
Method: Start the cells that are all alil are called <i>tissue</i> . Mu tissue? Discuss the performs a differen	lesson by asking the student: ce? Explain that cells divide a ascles are made from muscle different kinds of tissue four t function.	s: What are living things made u and grow to reproduce themselv e tissue whose work is to contrac id in plants. Explain the structu	p of? What are cells? Is your es. A group of similar cells :t. Ask : Is a plant made up (re of the root and the stem.	r body made up of doing the same job of the same kind of Explain how each part
With the help of ch	arts and diagrams explain th	ie different types of tissue in anii	mals.	
Ask: What is an org	an? Explain that different tis	ssues combine to form an organ	. The stomach is an organ t	hat digests food. It is

Ask: Can you name any organs of the body? Explain that organs work together to form organ systems, which carry out much made up of muscle tissue, nerve tissue, and blood tissue.

larger functions than a single organ is able to do. The digestive system is made up of various organs such as the stomach, liver, and intestines. Another example of an organ system is the circulatory system, which carries blood around the body.

Ä

Lesson plan

Date:

Lesson plan

Time: 40 mins

Unit: 2 Topic: Living organisms	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
3. Transport systems in plants	 to explain how food and water is transported in plants to explain the significance of photosynthesis for all living things 	 explain the structure and function of the vascular system in plants explain why photosynthesis is important for all living things 	Pictures and diagrams of the following: the vascular system in plants the transpiration stream the process of photosynthesis	Reading: p 10, 11 Activity: 4, 5, 6 CW: Q1 (b) HW: Q1 (c)
Key words: vascular sys Method: Start the lessor materials takes place insi systems and how they we plants and, with the help Ask: From where do gr Ask: How would the we importance for providin and for providing fuels l	tem, xylem, phloem, vesse i by discussing simple, one de them. Ask : How does 1 ork in a coordinated mann of diagrams and charts, e een plants get food? Disc orld be affected if there w ig food, for maintaining t like gas, coal, and petrole	l, sieve tube, root hair, transpir e-celled organisms such as amo food taken into the mouth read er in order to keep the body in xplain how food, water, and ai uss the process of photosynth ere no green plants? Discuss he balance of the amounts of um.	ation, stomata ation, stomata hall the cells of the body? working order. Discuss th t are circulated in the body tesis with the help of diag the importance of photos oxygen and carbon dioxi	ow the transport of Discuss the various e transport system in of a plant. rams and charts. ynthesis and its de in the atmosphere,

Date:

Lesson plan

Time: 40 mins

Unit: 2 Topic: Living organisms	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
 4. Various systems in humans: The respiratory system 	• to describe the respiratory system in human beings	 define respiration describe the human respiratory system 	Charts and diagrams of the respiratory system in humans A sheep's lungs	Reading: p 12 CW: Study the table on p 12 and answer the following questions: 1. Why is there less oxygen in exhaled air?
				3. Why is the amount of nitrogen the same in exhaled air?
				4. Why is there more water vapour in exhaled air?HW: Q1 (d)
Key words: respirat Method: Show the the lungs to show he the importance of re Explain that the oxy	ion, nose, windpipe, trac students the respiratory s w the lungs deflate. With spiration, and how gased gen in the inhaled air is a	hea, bronchi, bronchiole, air sa ystem of a sheep. Blow throug i the help of charts and diagran wus exchange takes place in the ubsorbed by the red blood cells	ac, alveoli, inhale, exhale h the trachea to show how ms, describe the human re t lungs. Ask : Where does th s and taken to all parts of t	the lungs inflate. Press spiratory system. Explain ne air from the lungs go? he bodv through the blood

Discuss the comparison table on page 12 to explain how gaseous exchange takes place.

	_	
Lesson plan		
	-	

Time: 40 mins

Unit: 2	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Living organisms		Students should be able to:		
5. The circulatory system	• to explain the blood circulatory system in human beings	 define the term <i>blood</i> <i>circulation</i> describe the human circulatory system 	Diagrams and charts of the human blood circulatory system A sheep's heart	Reading: p 13 Activity: 7 HW: Q1 (e)
Key words: heart, artery,	, capillary, vein, atrium, ver	atricle		
Method : Show the studer Describe the parts of the J Describe the structure of	nts a sheep's heart. Ask : W heart. Explain the pumpin the heart with the help of a	¹ here is the heart found in the gaction of the heart and how a chart.	human body? What is the the heart pumps blood to	function of the heart? all parts of the body.
- - - - -				

Describe the blood circulatory system with the help of a chart. Explain the difference between an artery, a vein, and a capillary. Discuss the importance of the circulation of blood in the body.

Date:

Date:

Lesson plan

Time: 40 mins

Unit: 2 Topic: Living	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
organisms				
6. The digestive system	• to explain the	• define digestion	Diagrams and charts	Reading: p 13, 14
	parts of the	• describe the human	of the human digestive	Activity: 8
	system	digestive system		CW: Q3
				HW:Write the name of the part of the
				digestive system where:
				a. food is chewed and
				mixed with saliva
				b. gastric juice is
				c. digested food is
				blood capillaries
				d. water and salts are
				absorbed
Key words: digestion, mo large intestine, anus	outh, food pipe, oesophag	çus, stomach, gastric juice, sm	all intestine, bile, liver, par	ncreatic juice, pancreas,
Method: Start the lesson	by asking the students: W	That happens to the food that	we eat? What is digestion?	Describe the digestive
system with the help of a (of absorption of food by th	cnart, and explain the protection of the protect	ocess of digestion. Ask: What l e intestines. Ask: What happer	nappens to the angested to any undigested food:	ood: Explain the process? Explain that it is

expelled from the body through the anus.

Lesson plan

Date:

Time: 40 mins

Unit: 2	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Living organisms		Students should be able to:		
7. The excretory system	 to explain the human excretory system 	 define <i>excretion</i> describe the human excretory system 	A sheep's kidney Charts and diagrams of the human excretory system	Reading: p 15 Activity: 9 HW: Q4
Key words: excretion, kidr Method: Ask: How are wa the kidney. Explain that its excretion.	ey, ureter, urinary bladd ste products removed fro function is to filter blooo	ler, urethra om the body? Show the studer d. With the help of charts and	its a sheep's kidney. Explai diagrams on the board, ex	n the structure of plain the process of

Lesson plan

Date:

Time: 40 mins

Unit: 2 Topic: Living organisms	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
8. The nervous system	 to explain the structure of the human nervous system to explain how the nervous system works 	 describe the structure of the human nervous system explain how the nervous system works 	Charts and diagrams of the human nervous system A sheep's brain	Reading: p 15, 16 Activity: 3 CW: Q2 HW: Q1 (g) (h) (i)
Key words: nervous sy involuntary Method: Ask: Which F the main organ in the t students a chart of the what a reflex action is v to bring about reflex ac	ystem, neuron, brain, craniun part of the body controls all c body and it controls all the of nervous system and explain with examples. Draw a reflex ctions in the body. Also discu	A, spinal cord, vertebral column our actions? How do we think? I ther parts. Show the students a its working. Explain the position arc on the board and explain h ss voluntary and involuntary ac	I, nerve, reflex arc, reflex How do we work? Explair sheep's brain. Explain its n and the working of the ow messages are carried t tions, with examples.	action, voluntary, 1 that the brain is structure. Show the spinal cord. Explain to and from the brain

Name:	

Date: _____

1. a. Label the cells.

	And the office of the office o
А	В
b. Which cell is a plant cell?	
c. Give 3 reasons for your answer:	
i	
ii	
iii	
2. Arrange the following in order from the small	llest to the largest:

organ	organ system	cell	tissue

Name:	

Date: _____

Worksheet 2

1. Draw a line to match each part to its function:

Part	Function
xylem	gaseous exchange in leaves
phloem	absorbs water
root hair	transports food in plants
stomata	gaseous exchange in the lungs
alveoli	carry oxygenated blood
red blood cells	transports water in the plant
artery	returns deoxygenated blood to the heart
vein	absorb oxygen
capillary	forms a connection between an artery and a vein

2. Fill in the blanks to complete the description of the process of excretion in human beings.

Blood containing waste substances enters the kidney, through the _____

arteries. Blood is filtered by ______ and waste substances, along

with excess ______, pass down the ______ into

the ______ where it is stored in the form of ______

for sometime. When the bladder is full, urine is passed out of the body through the

Teaching objectives:

- to explain that all living things respond to changes inside and outside their bodies
- to explain how simple organisms respond
- to describe how plants and animals respond
- to describe how coordination takes place in our bodies
- to explain the structure and working of the nervous system
- to explain the position and function of the glands of the endocrine system
- to explain the structure and functions of the brain and the sense organs

Teaching strategy:

Introduce the topic of sensitivity by asking the students some questions:

Ask: Do plants move? Will a plant run away if you hit it? What characteristics of a plant help you to know that it is living? Where does an amoeba live? What is the green layer seen on the surface of stagnant water? Explain that all living organisms are sensitive to changes in their environment. Explain that plants move their parts, such as sunflowers which turn to face the Sun. Roots always grow downwards towards soil and water. Some flowers open and close according to light intensity. Explain that chlamydomonas and euglena can detect changes in light intensity using their eyespot. In an amoeba the whole cytoplasm is sensitive.

Explain that movements of the root and the shoot are called tropic movements. Perform the experiments described in the book, and explain that these movements are caused by a chemical substance called auxin. **Ask:** In which direction will the root and the shoot grow if the plant is on its side? Explain that auxin collects in the lower half of the stem and root, which slows down the growth of the root cells, and the root curves downwards.

Ask: How do animals respond to changes in their surroundings? Explain that simple organisms can sense general stimuli such as light, or temperature changes. **Ask:** How do we receive information from our surroundings? Explain that we have special organs called sense organs, which help us receive stimuli from our environment. **Ask:** What happens when we put food in our mouth? Explain that as the food passes down the alimentary canal, different glands pour their secretions to help digest the food. Blood carries the digested food to the cells. Explain that the working together of all the organs and organ systems is called coordination. **Ask:** What happens when you touch something hot or when you smell food? Explain that our senses help us to receive stimuli, and our body reacts to these stimuli to bring about responses. **Ask:** Which organ coordinates all stimuli and responses in the body? Explain that brain is the main organ which controls all parts of the body and helps them to work together.

Shell a complete walnut and explain that the human brain is of the same shape. Show the students a model of the human brain. Explain the name and functions of each part.

Ask: What is the nervous system made up of? With the aid of a chart or a diagram made on the board, explain the structure of the nervous system. Draw a neuron or nerve cell and explain how neurons are linked together to make up the brain, spinal cord, and nerves. Draw a reflex arc on the board and explain the path of a stimulus to the brain or spinal cord and the response produced. **Ask:** Why do you sneeze, cough, or blink your eyes in strong light? Explain that these are reflex actions which are produced spontaneously without the intervention of the will. **Ask:** What kind of actions are reading, speaking, walking, etc? Explain that we read, speak, and walk by our own will. These are called voluntary actions.

Ask: In which part of your body do you feel happiness or fear? What are your reactions when you feel happy or sad?

Explain that emotions affect the whole body. There is no specific organ that reacts. The heart beats faster, the breathing rate increases, you may start blushing, or become pale, etc. These reactions are produced due to the release of special chemical substances in the blood. These chemical substances are called hormones. There are several glands in various parts of the body, which produce hormones that control different reactions of the body. This system of glands is called the endocrine system, and the glands are called endocrine glands. Explain the position of the endocrine glands with the aid of a chart or a diagram.

Explain the structure of the eye, ear, and skin with the aid of models or draw diagrams on the board with coloured chalk. Take care to label these correctly. Explain the functions of each part. Draw a section of a taste bud and explain how the taste buds help you to distinguish different tastes. Ask: Can you tell the taste of some food with your nose pressed between your finger and thumb? Why? Explain that the sense of taste is enhanced by the sense of smell. Perform the experiments and activities at the end of the lesson to provide a better understanding of the topic. Encourage children to make diagrams and models of the various organs and systems described in the lesson. Before attempting the exercise, read out the summary for a quick review of the lesson.

Answers to Exercises in Unit 3:

- 1. (a) In single-celled organisms, the whole cytoplasm is sensitive to changes in the environment.
 - (b) The ability of an organism to respond to a stimulus is called sensitivity.
 - (c) The movement of plants towards light and gravity are called tropic movements.
 - (d) Auxin is a chemical substance which is made in the cells at the tips of the roots and shoots. Auxin speeds up the growth in stems, and slows down the growth in roots.
 - (e) Higher animals respond to changes in their environment by taking appropriate action.
 - (f) The working together of all the organs and systems of the body is called coordination. Coordination in the body is brought about by two systems: the nervous system, the endocrine system.
- 2. (a) eyes, ears, nose, tongue, skin (b)
 - sight
- (c) salty, sweet, sour, bitter

- (d) smell
- (e) Plants
- (f) Auxin (g) brain
- (h) Motor (i) Auditory nerve (j) semicircular canals and vestibule

Unit 3 Sensitivity in living organisms

3.	Part	Function
	sense organ	detects stimuli
	eyespot	helps to detect changes in light intensity in a Eugilena
	auxin	speeds up stem growth
	brain	controls all parts of the body
	ear	sensitive to the stimulus of sound
	semicircular canals	maintain the balance of the body
	sweat glands	produce sweat
	pupil	controls the amount of light entering the eye
	taste buds	sensitive to taste
	olfactory nerve	connects the nose to the brain

- 4. Refer to page 26 of the Pupil's Book.
- 5. Refer to page 25 of the Pupil's Book.
- 6. Refer to page 24 of the Pupil's Book.

Additional Exercise:

MCQs

(a) Some unicellular organisms such as euglena have an eyespot which helps them to detect changes in ______ intensity.

[light]	heat	sound	light	
	is is called	to respond to a stimul	b) The ability of an organism t	(b)
[sensitivity]	creativity	sensitivity	reactivity	
		owards light is called _	c) The bending of the shoot to	(c)
[phototropism]	hydrotropism	geotropism	phototropism	
	d by chemicals called	and shoot are controlle	l) The responses of the root a	(d)
[auxins]	fertilizers	auxins	medicines	
	s of the body is called	the organs and system	e) The working together of all	(e)
[coordination]	reactions	coordination	synthesis	
	·	ade up of a number of) The endocrine system is ma	(f)
[glands]	nerves	glands	cells	
		_ form a nerve.	g) Bundles of	(g)
[axons]	glands	cells	axons	

(h)	Certain parts of the	he body which res	pond to hormones are	called
	target organs	sensory organ	s organ systems	[target organs]
(i)	The	is the largest sensory of	organ of the body.	
	nose	eye	skin	[skin]
(j)	Sense organs are made	e up of	cells.	
	small	sensory	body	[sensory]

Date:				Time: 40 mins
Unit: 3	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Sensitivity in living organisms		Students should be able to:		
 Sensitivity in living organisms 	 to explain that all living things are sensitive to describe sensitivity in simple organisms to describe sensitivity in plants 	 explain that all living things respond to changes inside and outside their bodies describe sensitivity in simple organisms and plants 	A microscope Slides of euglena, chlamydomonas, amoeba, touch-me-not plant Some seedlings	Reading: p 21, 22 Activity: 1, 2, 8 CW: Q1 (a) (b) HW: Q1 (c) (d)
Key words: sensitivity, ey	e-spot, stimulus, response	., tropism, phototropism, geotr	opism	
Method : Introduce the to What characteristics of a 1 surface of stagnant water?	opic of sensitivity by asking plant help you to know the	g some questions: Ask : Do pla at it is living? Where does an ar	ats move? Will a plant run noeba live? What is the gre	away from danger? en layer seen on the
Explain that all living orga turn to face the Sun, root intensity. Simple organism amoeba the whole cytopla	anisms are sensitive to cha s always grow downwards ns like the euglena and chl asm is sensitive.	nges in their environment. Pla towards soil and water, some f amydomonas can detect chang	ats move some parts, for e lowers open and close acco ges in light intensity using i	xample, sunflowers ording to light their eye-spots. In an
Explain that the movemer explain that tropic mover Discuss the role of auxins	nts of the root and shoot a nents are caused by a chem in tropic movements and	re called tropic movements. Concerning a substance called auxin, with the growth of plants.	arry out Activities 1 and 2 hich is found at the tips of	on page 27 and the roots and shoots.

OXFORD UNIVERSITY PRESS

Lesson plan

Date:

Lesson plan

Time: 40 mins

Unit: 3	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Sensitivity in living organisms		Students should be able to:		
2. Sensitivity in animals	 to explain how animals respond to changes in their environment to describe coordination to explain how coordination takes place in our bodies 	 give examples of how animals respond to changes in the environment explain what coordination is and describe how coordination in brought about in the body describe the nervous system and the endocrine system 	Charts and diagrams of the nervous system and the endocrine system A sheep's brain	Reading: p 22, 23 CW: Draw a nerve cell and label it. Q1 (e) HW: Q1 (f)
Key words: stimulus, sensory nerve motor r	coordination, nerve tissue	e, nervous system, endocrine syste	m, gland, brain, spinal coi	:d, impulse, dendrite,
Explain that simple or	o animals respond to chan ganisms can sense genera	nges in their environment? How d l stimuli such as light or temperat	o we receive information f ure changes. We have spec	rom our surroundings? ial organs called sense
Ask: What happens when neur us pour out their secretion	respond to sumun irom c nen we put food in our m ns to help digest the food	our environment. outh? Explain that as the food pas l. Blood carries the digested food t	ses down the alimentary c o all the cells of the body.	anal, different glands Explain that the
working together of all Ask: What happens wh	the organs and organ sys nen we touch something h	stems is called coordination. aot? What happens when we smell	food? Explain that our se	nses receive stimuli,
and our body reacts to Ask: Which organ coo	these stimuli to bring ab rdinates all the stimuli an	out responses. Id responses in the body? Explain	that the brain is the main	organ which controls
Ask: What is the nerve	ous system made up of? W	Vith the aid of a chart or a diagram	t on the board, explain the	structure of the
Draw a reflex arc on the Students a ch	a net to con and explain the just of the endocrine system	path of a stimulus to the brain or em.	the spinal cord, and the re	sponse produced.
			ہ د	

These reactions are produced by the release of special chemical substances in the blood called hormones. With the help of charts, Ask: In which part of your body do you feel happiness or fear? Explain that there are no specific organs for these reactions. discuss the position of the various endocrine glands and the reactions that they produce.

Les	Lesson plan
-----	-------------

Time: 40 mins

Unit: 3	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
lopic: Sensitivity in living organisms		Students should be able to:		
3. Sense organs: Ear	• to explain the structure and the working of the ear	 describe the structure of the ear explain how the ears enable us to hear 	Diagrams, models, and charts of the ear	Reading: p 24, 25 Activity: 7 CW: Q6
Key words: outer ear, middl canal	e ear, inner ear, eardrum	, ossicle, oval window, Eustacl	nian tube, cochlea, vestib	ule, semicircular
Method: Explain the structue explain the functions of each	re of the ear with the hel part. Explain how the se	p of models, charts, or diagra emicircular canals help to main	ms on the board. Label th ntain the balance of the b	ne parts clearly and ody.

Date:

Lesson plan

Date:

Time: 40 mins

Unit: 3 Topic: Sensitivity in	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
living organisms				
4. Eye	 to describe the 	describe the structure of	Diagrams, models,	Reading: p 25
	structure of the	the eye	and charts of the eye	Activity: 3
	eye and explain the functions of each part	• explain the functions of		CW: Q5
		each part of the eye		
Key words: cornea, iris,	pupil, lens, retina, rods and	cones, optic nerve		
Method: Explain the str	ucture of the eye with the he	elp of models, charts, and diag	rams on the board. Label	the parts carefully

and explain the functions of each part. Explain how the iris controls the amount of light entering the eye.

Date:

Lesson plan

Time: 40 mins

Unit: 3 Topic: Sensitivity in living organisms	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW	
5. Skin, tongue, nose	 to explain the structure of the structure of the skin, tongue, and nose to explain the functions of each part 	 describe the structure of the skin, the tongue, and the nose explain the functions of each part 	Models, diagrams, and charts of the skin, the tongue, and nose	Reading: p 25, 26 Activity: 4, 5, 6 CW: Q2, Q4 HW: Q3	
Key words: epidermis, de Method: Explain the stru- explain the functions of ea Explain the structure of th Explain the structure of th the sense of smell.	ermis, sweat gland, oil glan cture of the skin with the ach part. Explain how the ne tongue. Explain how th ne nose. Explain how the	nd, blood capillary, taste bud, help of models, charts, and di skin helps to maintain a cons ie tongue helps to distinguish nose distinguishes between dif	smell receptor, olfactory ne agrams on the board. Labe tant body temperature in m between various tastes. Ferent kinds of smells. Disc	rve I the parts clearly and ammals. uss the importance of	
T T • ·	~	o · · ·	•	4	
----------------	----	-------------	----	--------	-----------
Unit	3:	Sensitivity	ın	living	organisms
				0	

Worksheet 1

Name:	

Date: _____

1. Give the scientific names for the following parts of the sensory organs of the human body.

Part of the body	Scientific name
a. The coloured part of the eye	
b. The nerve which connects the eye to the brain	
c. The outermost layer of the skin	
d. The layer of the skin which contains nerves and hair follicles	
e. A thin membrane in the ear which vibrates when sound waves strike it	
f. Help to maintain the balance of the body	
g. Helps to adjust air pressure in the middle ear	
h. Controls the amount of light entering the eye	
i. Is sensitive to taste	
j. Nerve that connects the nose to the brain	
Which part of the following organisms responds to changes in the	eir surroundings?

a.	euglena	
b.	chlamydomonas	
c.	amoeba	
d.	green plant	
e.	human body	

2.

			•
Unit 3: Sens	itivity i	in living	organisms

Wo	orksł	neet	2

Name:			Date:
	А	В	

- 1. Extend the shoots in flowerpots A and B to show how plants respond to light. (The two flowerpots are placed in sunlight.)
- 2. Label the organs of the endocrine system.

Teaching objectives:

- to explain that most of our food comes from plants
- to explain that green plants can make their own food
- to describe the structure of a leaf in relation to the function that it performs
- to describe the process of photosynthesis
- to explain how glucose is made in a leaf
- to explain how the food is utilized by the plant
- to explain that plants respire
- to describe how leaves are adapted for respiration
- to explain how respiration and photosynthesis help to keep a balance in the composition of gases in the atmosphere

Teaching strategy:

Show the students some green plants having roots, stems, and leaves. Ask them the function of each part. **Ask:** Are plants living things? Discuss the various activities that living things do, with special reference to plant activities. **Ask:** Do plants eat? Why are leaves green? Explain the presence of chloroplasts and how they help absorb sunlight. **Ask:** What will happen to a plant if we keep it in the dark for some time? Discuss the importance of sunlight to the process of photosynthesis.

Draw the structure of a leaf on the board and label it. Discuss the function of each part of the leaf. Show the students some slides of the transverse sections of leaves under the microscope. Explain the structure of the different tissues of a leaf and the functions that they perform. **Ask:** What do we get from plants? Discuss the importance of plants for all living things. Write the word PHOTOSYNTHESIS on the board. Draw a line between PHOTO and SYNTHESIS. Ask the students the meanings of the two words. Explain that photo means 'light' and 'synthesis' means 'manufacture'. The two words put together mean: 'manufacture in the presence of light'. Discuss the process of photosynthesis and how the leaves are adapted for the function that they perform.

Explain the importance of xylem and phloem and their functions. **Ask:** What happens to the glucose that the leaves manufacture? Explain the uses of food in the plant. **Ask:** Does the plant use up all the food that it manufactures? Discuss storage of food in plants and how it is utilized.

Ask: Do plants breathe? How can you tell? Do plants have lungs or special parts where gaseous exchange occurs? Explain that plants are living things and like all living things plants must respire in order to produce energy and stay alive. Define respiration and explain where and how respiration in plants occurs. Discuss the structure of the leaf and the position of stomata in relation to respiration. Write the equation of photosynthesis and respiration on the board. **Ask:** Can you tell the difference between the two

processes? Explain that both processes are the opposite of each other. Compare and contrast both processes. Perform the activities on photosynthesis and respiration that are given in the Pupil's Book and ask the students to draw conclusions from them about the processes. Draw a cycle of the oxygen and carbon dioxide balance in nature. **Ask:** How is the composition of air kept fairly constant? Why is it important for the gases in the air to remain balanced? How do plants help to maintain a balance in nature? Discuss the importance of the oxygen and carbon cycle in nature Summarize the lesson.

Answers to Exercises in Unit 4:

- 1. a) The process by which green plants make their food in the presence of sunlight and chlorophyll is called photosynthesis.
 - b) Photosynthesis occurs in the green leaves of plants.
 - c) A green plant needs four things for photosynthesis to take place. These are: carbon dioxide, water, sunlight, and chlorophyll.
 - d) The plant makes glucose by the process of photosynthesis. This glucose is converted into starch and stored in the leaves.
 - e) Stomata are small holes found on the under surface of leaves.
 - f) Carbon dioxide, a raw material for photosynthesis, enters the stomata. Oxygen, which is a by-product of photosynthesis, passes out of the stomata.
 - g) Glucose that is made during photosynthesis is used by the plant for producing energy and for growth. It is also changed into starch or oil and stored in the stems, roots, fruits, and seeds. Some of it is used in making cellulose for new cell walls. Some of it is combined with minerals and used to make proteins and other things which plants need for growth.
 - h) Respiration is the process leading to the chemical breakdown (oxidation) of food materials to provide energy for living things.
 - i) Respiration occurs inside the living cells of plants and animals.
 - j) Oxygen from the air enters the stomata and diffuses into the tissues and cells of plants after getting dissolved in the film of water present around the cells. Inside the cells this oxygen oxidizes the carbohydrates and other organic compounds into carbon dioxide and water to produce energy.
- 2. Refer to page 35 of the Pupil's Book.
- 3. Refer to Experiment no 4.
- 4. Refer to experiment no 5.
- 5. a. all b. day c. food or carbohydrates
 - d. glucose e. food, oxygen, carbon dioxide, water
 - f. carbon dioxide, water, glucose, oxygen
- 6. Complete the following table by putting a 'tick' mark in the correct column:

	Photosynthesis	Respiration
takes place in all living cells	_	✓
needs chlorophyll	1	_
takes place in dark or in light	_	✓

oxygen is given out or used up	given out	used up
carbon dioxide is used or given out	used	given out
food is needed	_	1
energy is given out	_	1

Additional Exercise:

M	CQs			
(a)	Sugar and starch are			
	proteins	fats	carbohydrates	[carbohydrates]
(b)	The three elements need	ded by plants to make	glucose are	
	carbon, hydrogen, oxyge	en	carbon, oxygen, nitrogen	
	carbon, hydrogen, nitrog	gen	[carbon	, hydrogen, oxygen]
(c)	Plant roots take in wate	r by their		
	root caps	root hairs	root systems	[root hairs]
(d)	Water is transported in	plants by		
	xylem	phloem	xylem and phloem	[xylem]
(e)	Food is transported in p	olants by		
	xylem	phloem	xylem and phloem	[phloem]
(f)	Stomata are usually pre-	sent on the	surface of leaves.	
	upper	lower	both	[lower]
(g)	which	is made in the leaves is	s used for producing energy an	nd for growth.
	Glucose	Proteins	Fats	[Glucose]
(h)	The process of the oxid	ation of food materials	to provide energy for living th	ings is called
	·			
	digestion	excretion	respiration	[respiration]
(i)	The green material four	nd in leaves is called		
	chlorophyll	xanthophyll	mesophyll	[chlorophyll]
(j)	Photosynthesis takes pla	ice during the		
	day time	at night	all the time	[day time]

Time: 40 mins

Dale.				I IIIIC. 40 IIIIIIS
Unit: 4 Topic: Photosynthesis and respiration in plants	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
 Food from green plants How is food made in a green leaf? 	 to explain that most of our food comes from green plants to explain that green plants can make their own food to describe the structure of a leaf and explain the function of each part 	 state that most of our food comes from green plants explain how green plants make their own food describe the structure of a leaf in relation to its function 	Some green plants A green leaf, a section of a leaf, a slide of a section of a leaf	Reading: p 32, 33 Draw a diagram to show how a leaf makes food. CW: Q1 (a) (b) HW: Q1 (c) (d)
Key words: photosynthes Method: Show the studer Ask: Are plants living thin absorbing sunlight. Ask: W sunlight for the process of Draw a diagram of the stru	is, phloem, xylem, stomati its some green plants. Ask gs? Do plants eat? Why ar Vhat would happen to a pl photosynthesis. ucture of a leaf on the boa	a, vein, sieve tube, vessel them to suggest the functions e leaves green? Explain the pr lant if it was kept in the dark f urd and label it. Explain the fu	of each part. esence of chloroplasts and or some time? Explain the actions of each part. Use a	their function of importance of 1 microscope to show
the students slides of the t	ransverse sections of leave	ss. Explain the structures of th	e different tissues of a leaf	and the functions

Ask: What do we get from plants? Discuss the importance of plants for all living things.

that they perform.

Date:

Lesson plan

Date:

Lesson plan

Time: 40 mins

Unit: 4 Topic: Photosynthesis	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
and respiration in plants				
2. Process of photosynthesis	 to explain the process of photosynthesis to explain how a leaf is adapted for 	 describe the process of photosynthesis explain how the structure of a leaf is adapted for the functions that it performs 	Charts and diagrams of photosynthesis	Reading: p 33, 34 Activity: 1, 2, 3, 4 CW: Q1 (e) (f) HW: Q1 (g)
	 the function that it performs to explain how plants use the plants use the plants 	 explain how food is utilized by the plant 		
	gueuse mat mey make			
Key words: sunlight, chlore	phyll, carbon dioxide, w	ater, oxygen, glucose, starch, oi	1	
Method: Write the word PF SYNTHESIS.	IOTOSYNTHESIS on	the board. Draw a line separati	ng the word into two part	s like this: PHOTO /
Ask the students the meanir	lgs of the two words. Exj	plain that 'photo' means 'light'	and 'synthesis' means 'ma	Inufacture'. Together

they mean: manufacture in the presence of light. Discuss the process of photosynthesis and how the leaves are adapted for the functions that they perform.

Explain the importance of the network of veins and the function that they perform.

Ask: What happens to the glucose that the leaves manufacture? Explain the uses of food in the plant.

Ask: Does the plant use up all the food that it manufactures? Discuss the storage of food and how it is utilized later.

Date:

Lesson plan

Time: 40 mins

Unit: 4 Topic: Photosynthesis and respiration in plants	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
3. Respiration in green plants	 to explain that plants respire to explain how leaves are adapted for respiration to explain how photosynthesis and respiration maintain a balance in the composition of the atmosphere 	 describe the process of respiration in green plants describe how a leaf is adapted for respiration explain how photosynthesis and respiration help to maintain a balance in the composition of gases in the air 	Charts showing respiration and the oxygen and carbon dioxide balance in nature	Reading: p 34, 35 Activity: 5, 6 CW: Q2, Q5, Q6 HW: Q1 (h) (j) (j)
Key words: respiration, int Method: Ask: Do plants br Explain that plants, like all where respiration in plants Write the equations of phot Ask: Can you tell the differ Explain that photosynthesis	ernal respiration, cellular eathe? How can you tell iving things, must respir occurs. Discuss the struc osynthesis and respiratio ence between the two pr- and respiration are the (c respiration P Do plants have lungs or spece in order to produce energy, turre of a leaf and the position on the board. Ocesses?	cial parts where exchange of and to stay alive. Define re of the stomata.	of gases occurs? spiration and explain rences between the

Ask: How is the composition of air kept fairly constant? Why is it important for the gases in the air to remain in balance? How do

Discuss the importance of the oxygen-carbon dioxide cycle in nature.

plants help to maintain a balance in nature?

Draw a diagram of the oxygen-carbon dioxide cycle on the board.

two processes.

OXFORD UNIVERSITY PRESS

Unit 4: Photosynthesis a	and respiration in pla	nts
--------------------------	------------------------	-----

Da	te:

1. The diagram shows an experiment of how plants and animals interact.

a. Which flask would contain the most oxygen after one hour? Explain your answer. b. Which flask would contain the most carbon dioxide after one hour? Explain your answer. c. In which flask would the fish survive the longest? Explain your answer.

43

plastic plastic pondweed plant plant pondweed water water water water 32 fish fish · С Α В D

Name: _____

Worksheet 2

Na	me: Date:	
	B A C and D	
1.	Name the parts labelled A to E.	
2.	Explain the functions of the parts of the leaf:	
	chloroplasts	
	xylem	
	phloem	
	midrib	
	air spaces	
	stomata	

Teaching objectives:

- to explain what constitutes the atmosphere
- to discuss the various layers of the atmosphere
- to explain atmospheric pressure
- to explain that air has weight
- to explain that air pressure can be measured by a barometer
- to describe the different types of barometers
- to explain the effects and uses of atmospheric pressure
- to describe air pollution

Teaching strategy:

Ask: What do we breathe? Where is air? Can we see air? Can we feel air? What is air made of? Explain that we cannot see air but we can feel it. We can see things moving when the wind blows. Air is a mixture of gases. Oxygen is important for breathing and burning. Carbon dioxide is used by plants to make food by photosynthesis. Nitrogen cannot be used directly by living things, but it is changed into chemical substances which are absorbed by plant roots. Nitrogen is used to make proteins. **Ask:** Does air contain water? Put some ice cubes in a drinking glass and explain the condensation of atmospheric water vapour on the outside of the glass.

Show a chart of the layers of the atmosphere or draw the layers on the board. Explain that the troposphere is the most important layer as it contains all the important gases for living things. **Ask:** Have you heard of the ozone layer? Why is ozone important? Explain that ozone protects us from the harmful ultraviolet rays of the Sun.

Demonstrate by an experiment that air exerts pressure, and has weight. Explain that air pressure is most at sea level and becomes less as we go higher up. **Ask:** Have you seen a doctor take the blood pressure of a patient? Explain that the pressure of the air can also be measured. The pressure of the atmosphere at sea level is 1 kilogram on every cubic centimetre. Draw a centimetre cube on the board and explain that the weight of the air on this small cube is equal to one kilogram. **Ask:** How much pressure of air would there be on our bodies? Why don't we feel the pressure? Explain that our blood pressure equalizes it. Draw a simple barometer on the board. Explain that the height of the mercury column measures the air pressure. Show the students pictures of an anaeroid barometer and an altimeter. Explain their usage. If you climb uphill why do you start panting? Explain that as we go up a hill the air pressure decreases, and we have to breathe faster to take in more air. **Ask:** What do you feel just before a storm? Explain that a low pressure area is created and air rushes in from an area of high pressure to an area of low pressure, and a storm builds up. Changes in air pressure cause changes

Unit 5 Air

in weather. Fill a glass with water. Tell a student to suck it with a drinking straw. **Ask:** What would happen if the glass was tightly closed from the top? Explain that air pressure helps us to suck liquids, fill fountain pens, and syringes and to do many other such things.

Ask: What is the air like in a village or a hilly area? What is the air like in a busy city? Why is the air cleaner in the countryside? Explain the causes of pollution and how we can reduce it. Tell students to make placards and charts to make others aware of the hazards of air pollution.

Do the activities. Summarize the lesson.

Answers to Exercises in Unit 5:

- 1. (a) The Earth is surrounded by a layer of air, which extends hundreds of kilometres above the surface of the Earth. This ocean of air is called atmosphere.
 - (b) One-fifth of the air is oxygen, four-fifth is nitrogen. Other gases, like carbon dioxide and argon, are in very small amounts.
 - (c) The layers of air are: troposphere, tropopause, stratosphere, ionosphere. The troposphere is the layer nearest to the Earth. It has oxygen gas which is very important for all living things.
 - (d) The weight of the atmosphere is called atmospheric pressure.
 - (e) A simple barometer consists of a long glass tube which is sealed at one end. It is filled with mercury and inverted in a dish containing mercury. The height of the column of mercury in the tube measures the atmospheric pressure, which is equal to 60 mm of mercury at sea level.
 - (f) Take an empty tin can and heat it to remove all the air inside it. Now screw on the cap tightly. The can will collapse due to the air pressure outside.
 - (g) Changes in air pressure cause changes in weather. As warm air rises it produces an area of low pressure near the ground. Cooler air moves down to take its place. Rain clouds are formed in low pressure areas. Low pressure causes strong dust storms and hurricanes because air rushes from regions of high pressure to regions of low pressure. When there is high pressure the weather is often sunny and fine.

2.	(a)	hundreds of k	tilomo	eters	(b)	pressure			(c)	760 mm of mer	rcury	
	(d)	Barometer			(e)	Low air pr	essure	e	(f)	decreases		
	(g)	air pressure			(h)	high			(i)	altimeter	(j)) barometer
3.	Cho	oose the correc	t ans	wer:								
	(a)	1 kg	(b)	high j	pressur	e to low pre	essure		(c)	storms		
	(d)	lower to high	er alt	itudes					(e)	temperature	(f)	altimeter
	(g)	760 mm	(h)	pilot					(i)	air	(j)	high altitudes
4.	(a)	low	(b)	low					(c)	high		
	(d)	high	(e)	low					(f)	low	(g)	high
5.	(a)	nitrogen		(b)	oxyge	n		(c)	argo	on		
	(d)	sulphur dioxi	de	(e)	carboi	n monoxide		(1)	S001	t		
6.	(a)	carbon dioxic	de, ni	trogen	, oxyge	n		(b)	cart	oon dioxide, nitre	ogen,	oxygen
	(c)	oxygen		(d)	carbo	n dioxide		(e)	cart	oon dioxide		
	(f)	oxygen		(g)	carbo	n dioxide		(h)	oxy	gen (i)	са	rbon dioxide

Lesson plan

Date:

Time: 40 mins

Unit: 5 Topic: Air	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
1. Air	 to explain the composition of the atmosphere to explain the properties and uses of gases in the air 	 describe the composition of air explain the properties and uses of oxygen, nitrogen, and carbon dioxide 	A pie chart showing the composition of air Pictures showing uses of oxygen, nitrogen, and carbon dioxide gases	Reading: p 41, 42 Activities: 1, 2, 3 CW: Q6 HW: Q1 (a) (b)
Key words: atm extinguisher, dry Method: Begin t	osphere, oxygen, nitrogen, c ice he lesson by asking: Where i	rrbon dioxide, argon, oxide, respirati s air? Can we see air? Can we feel air	on, combustion, fertilizer, c ? What is air composed of?	arbonic acid, fire

Explain that we cannot see air but we can teel it. We can see things moving when the wind blows. Air is a mixture of gases. Discuss the properties and uses of oxygen, nitrogen, carbon dioxide.

Time: 40 mins

Unit: 5	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Air		Students should be able to:		
2. Layers of the atmosphere	• to describe the layers of the atmosphere	 identify the layers of the atmosphere 	Diagram showing the layers of the atmosphere	Reading: p 42, 43 HW: O1 (c)
	• to explain how the atmosphere prevents the Earth from becoming too hot	• explain how the atmosphere protects the Earth from becoming too hot		
Key words: troposp	here, tropopause, stratosphere	, ionosphere		
Method : Show the s as it contains all the	students the diagram of the lay important gases for living thin	ers of the atmosphere. Explain gs.	that the troposphere is the	most important layer
Ask: Have you heard	d of the ozone layer? Why is th	e ozone layer important?		
Explain how the ozo	ne layer protects us from the h	narmful ultraviolet rays of the S	un.	

OXFORD UNIVERSITY PRESS Date:

d	<u>ز</u>
+	2
٢)

Lesson plan	

Time: 40 mins

Unit: 5 Topic: Air	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
3. Atmosphere and wind	 to explain what wind is to identify the effects of temperature on the atmosphere 	 explain how winds are caused explain what thermals and land and sea breezes are 	Diagrams of thermals, land, and sea breezes	Reading: p 43, 44 CW: Draw a diagram of land and sea breezes. HW: Q. What is a thermal? How are thermals useful?
Key words: wind, tl Method: Ask: Have Explain that a therm Ask: What is a breez warm and cool air. A has high pressure an	nermal, breeze you seen birds such as eagles al is a rising current of warm a e? How is a breeze caused? Ex dr moves from areas of high pr d is heavy. Changes in temper	floating in the sky? How does a air which enables birds and glid plain that land and sea breezes essure to areas of low pressure. ature during daytime and night	glider float in the sky? ers to float in the air. are caused by the changes Warm air has low pressur time cause land and sea b	t in air pressure due to e and is light. Cool air reezes.

on plan	
Lesso	

Date:				Time: 40 mins
Unit: 5	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Air		Students should be able to:		
4. Atmospheric pressure	 to define atmospheric pressure to explain that air has weight to describe the effects of atmospheric pressure to explain how air pressure can be measured to identify uses of air pressure 	 explain that air exerts pressure called atmospheric pressure explain that air has weight describe the effects of atmospheric pressure explain how atmospheric pressure can be measured identify ways in which air pressure can be useful 	Balloons, stick, glass dish, glass tube, metre rule, barometer, drinking straw, glass tumbler, tin can, syringe	Reading: p 44, 45, 46 Activity: 4 CW: Q2 HW: Q3, Q4
Key words: atmo Method: Demons	spheric pressure, weight, barom trate by experiments described	leter, altimeter, syringe on pages 44 and 46 that air has	weight and it exerts press	sure.
Explain that air pr Ask: Have you see atmosphere at sea on this small cube	essure is greatest at sea level an en a doctor take a patient's bloc level is 1 kg on every cubic cen is one kilogram.	d decreases as we go higher up. d pressure? Explain that air pres timetre. Draw a centimetre cube	sure can also be measure to on the board and explain	d. The pressure of the n that the weight of air
Ask : How much r Explain that our b	pressure is there on our bodies? lood pressure is equal to the ex	Why do we not feel the pressure ternal air pressure.	ĉ	
Draw a simple ban students pictures start panting? Exp Ask : What do you pressure to an are	ometer on the board. Explain t of different kinds of barometer lain that as we go uphill the air feel just before a storm? Expla- a of low pressure and a storm b	hat the height of the mercury co and an altimeter. Explain their u pressure decreases, and we have in that a low pressure area is cre- uilds up. Explain that changes ir	lumn measures the air pr se. Ask : When you climb to breathe faster to take ated and air rushes in frou air pressure cause chang	essure. Show the uphill, why do you in more air. n an area of high es in the weather.
Discuss the uses c	f air pressure in daily life.	•	•	

OXFORD UNIVERSITY PRESS

Date:

Time: 40 mins

Unit: 5	Teaching methodology	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Air		Students should be able to:		
5. Air pollution	• to explain what air	• define air pollution	Pictures of air	Reading: p 47
	pollution is	• identify the causes of air	pollution	HW: Q5
	• to explain the causes of air	pollution		
	pollution and its harmful effects	• describe its harmful effects		
Key words: air po	llution, acid rain			
Method: Ask: Wh.	at is the air like in a village? a hi	Ily area? a busy city? Why is the a	ir cleaner in the countrysi	ide? Discuss the

causes and effects of pollution and how we can reduce it. Ask the students to make posters to make others aware of the hazards of air pollution.

Nam	e:	Date:	_
1. Id	entify the following gases:		
	Description	Gas	
a.	Colourless, heavier than air, soluble in water, does not help in burning		_
b.	Colourless, combines with oxygen to form oxides, combines with hydrogen to form ammonia		_
c.	Colourless, slightly soluble in water, combines with many elements to form their oxides		_
2. W	rite the name of the gas which is used for:		
a.	breathing and burning		
b.	cutting and welding		
c.	making fertilizers		
d.	freezing food		
e.	putting out fires		
f.	making fizzy drinks		

Unit	5:	Air	

Name:	

Worksheet 2

Date:	

1. Write the names of the layers of the atmosphere.

a.	
b.	
c.	
d.	
e.	

2. Draw arrows from the text in the boxes to show how the atmosphere protects the Earth from becoming too hot:

Sun

heat from the sun

Some heat escapes into space.

some heat absorbed by the clouds and dust particles

Heat warms the Earth.

Earth

Teaching objectives:

- to explain the structure of atom
- to define mass number
- to explain atomic mass
- to define a molecule and explain how it is formed
- to define an element and explain that there are more than 117 known elements
- to explain that elements can be divided into metals and non-metals and to know the properties of metals and non-metals
- to define a mixture
- to describe the various types of mixtures
- to define a solution and discuss various types of solutions
- to explain the methods by which the components of a mixture can be separated
- to define a compound
- to describe physical and chemical changes
- to explain the physical and chemical properties of a substance

Teaching strategy:

Ask: What would happen if a piece of silver or coal is pounded with a hammer for a long time? Explain that it will be crushed into almost invisible particles but they will still be the same. (This will help develop the concept of an element being a pure substance). Show the students a piece of charcoal and a piece of iron and ask the difference between the two. Explain the differences between metals and non-metals.

Mix sugar and salt in a clean dish and ask the students to taste it. Mix salt and crushed charcoal and ask the students if they can see the two kinds of particles. Mix powdered charcoal and iron filings and ask the students if they can see the two types of particles. Bring a bar magnet near the mixture and ask the students what they can observe. Explain the properties of mixtures. With the help of experiments given in the textbook, explain types of mixtures.

Ask: Can you think of a way to separate a mixture of salt and sand? Children should perform an experiment in the laboratory to separate salt and sand. Mix iron filings and sulphur powder in a china dish and show the mixture to the students. Stir a bar magnet in the mixture, the iron filings will stick to it. Put the filings back in the dish and heat it. Explain the changes and why they take place. Explain the formation of compounds and the differences between mixtures and compounds.

Ask: What happens when ice melts? What happens when a piece of paper is burnt? Explain the meaning of physical and chemical changes with the help of examples. Show students some substances such as sugar, sulphur powder, iron filings, common salt, etc. and ask the students to describe them. Explain that they have just described the physical properties of these substances. Explain what are the physical properties. Refer to the previous experiment of heating iron filings and sulphur powder and explain the chemical nature and properties of substances.

Do the activities at the end of the lesson. Summarize the lesson.

Answers to Exercises in Unit 6:

- (a) An atom is made up of tiny particles called electrons, protons, and neutrons. Electrons are negatively charged particles that revolve around the nucleus in a specific path called an orbit. Protons are positively charged particles found in the nucleus of an atom. Neutrons are neutral particles which are also present in the nucleus. The mass of a neutron is equal to the mass of a proton.
 - (b) (i) An element is a substance that is made up of the same kinds of atoms. For example, the element carbon is made up of carbon atoms only.

(ii)	Element	Symbol
	carbon	С
	nitrogen	Ν
	hydrogen	Н
	oxygen	0
	sulphur	S
	iodine	Ι
	phosphorous	Р
	calcium	CA
	chlorine	CL
	zinc	Zn

(iii)	Latin names	Symbol
	cuprum	Cu
	argentum	Ag
	aurum	Au
	hydrargyrum	Hg
	ferrum	Fe
	kalium	K
	natrium	Na
	plumbum	Pb
	stannum	Sn

Unit 6 Elements, mixtures, and compounds

(c)	Compound	Formula
	sodium chloride	NaCl
	sodium hydroxide	NaOH
	potassium hydroxide	КОН
	carbon dioxide	CO_2
	water	H_2O
	sugar	$C_{12}HO_{11}$
	glucose	C_6HO_6
	copper oxide	CuO
	copper sulphate	$CuSO_4$
	ammonia	NH_3

(d)

Metals	Non-metals
good conductors	bad conductors
shiny	dull
solids	solids, liquids, gases
high melting and boiling points	low melting and boiling points
can be drawn into wires and beaten into foil and plates	cannot be drawn into wires or beaten into foil and plates

In metals, the atoms are so tightly packed that the electrons overlap one another forming metallic bonds.

- (e) A mixture is not a pure substance. It is made of two or more substances which are not chemically combined. For example, a mixture of sugar and salt.
- (f) An aqueous solution is a mixture of water and any substance that is solvent in it. For example, a solution of water and common salt or sugar.

A dilute solution is one in which a smaller amount of solute is dissolved in the solvent.

A concentrated solution is one in which a lot of solute is dissolved in the solvent. For example, one tablespoon of salt in two cups of water is more dilute than three tablespoons of salt in two cups of water.

Concentrated solutions can be mixed with solvents to make dilute solutions, e.g. fruit juice concentrates can be mixed with water to dilute them.

(g) A mixture of salt and sand can be separated by adding water and then filtering the solution. Sand will be left on the filter paper. The filtered solution is heated; the water evaporates and pure salt is left behind.

- (h) When two or more atoms combine chemically, they form a compound. For example, hydrogen and oxygen combine chemically to form water.
- (i) ionic bond
- (j) covalent bond

(k)	Properties	Ionic compounds	Covalent compounds
	(i) physical state	solid	solid, liquid, gas
	(ii) melting point	high	low
	(iii) conductor	good	bad
	(iv) solubility	in water	in covalent solvents
	(v) type of bond between aloms	ionic	covalent between atoms

- (1) A solution which cannot dissolve any more solute at a fixed temperature.
- 2. Fill in the blanks.

(a)	atoms	(b)	Proton	(c)	electron		
(d)	atomic number	(e)	mass number	(f)	two		
(g)	eight	(h)	chemical bond	(i)	positively	(j)	covalent

3.

	Symbol	Protons	Neutrons	Electrons	Atomic No.	Mass No.
(a) hydrogen	Н	1	_	1	1	1
(b) carbon	С	6	6	6	6	12
(c) sodium	Na	11	12	11	11	23
(d) chlorine	C1	17	18	17	17	35
(e) oxygen	0	8	8	8	8	16

(f) filtration

4. Choose the correct answer.

- (a) an element (b) is a bad conductor of heat and electricity
- (c) various gases
- (g) metals (h) metal

5. Match the statements.

(d) solute

- (a) is a pure substance. (b) is formed by a chemical reaction.
- (c) contains particles that are not chemically combined.

(e) an emulsion

- (d) is passing a mixture through a filter paper.
- (e) is formed when oil and water are mixed.
- (f) is dissolved in a solvent.
- (g) is a layer formed by settling of particles at the bottom.
- (h) are good conductors of heat and electricity.

Date:

Lesson plan

Time: 40 mins

Unit: 6	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Elements, mixtures, and compounds		Students should be able to:		
1. Atoms	 to describe the structure of an atom to explain how electrons are distributed in an atom to explain what an element is to compare metals and non-metals 	 describe the structure of an atom explain how electrons are distributed in an atom define what an element is explain the differences between metals and non- metals 	Charts and diagrams of atoms, samples of metals and non-metals	Reading: p 52, 53 Activity: 1, 2, 3 CW: Q1 (a) Q3 HW: Q1 (d)
Key words: atom, e non-metal	lectron, proton, neutron, orbit, (shell, nucleus, atomic number,	mass number, atomic ma	ss, element, metal,
Method: Draw a dia Describe the structure	agram of an atom on the board.	Label it and explain that all me mes on the narricles of an atom	atter in the world is made	up of atoms.
Ask: What is the mas	ss number of an atom? What is th	ne atomic mass of an atom? Exp	lain what atomic mass and	l mass number mean.
Explain the way that	t atomic mass and atomic numb	ber are written next to the symb	ol or short form name of	the atom.
Draw a sodium aton	n on the board. Write the numb	er of protons, neutrons, and ele	ctrons of the atom.	
Ask: Are all the elec outermost shell can	trons in one shell? Explain the c not hold more than eight electro	listribution of electrons in the F ons.	K, L, M, N shells. Also exj	plain that the
Ask: What is an elen	nent? Explain that an element is	s a substance that is made up of	only one kind of atom.	
Ask: What is a metal	l? How can you distinguish a me	etal from a non-metal? Discuss	the properties of metals a	nd non-metals.

OXFORD UNIVERSITY PRESS

Date:

Time: 40 mins

Unit: 6 Topic: Elements, mixtures, and compounds	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
2. Mixtures and solutions	 to define <i>mixture</i> to define <i>solution</i> to describe different kinds of solution to define the term <i>solubility</i> to describe the different kinds of mixture 	 explain that a mixture is not a pure substance explain that a solution is a mixture describe the different kinds of solution explain what solubility is describe the different kinds of mixture 	A can of cola, lemon squash, vinegar, salt, water, coins, sugar, beaker, spoon, paint, chalk, cooking oil	Reading: p 54, 55, 56 Activity: 5, 6 CW: Q2, Q4 HW: Q1 (e) (f)
Key words: mixture, suspension, emulsion	solution, solute, solvent, solv	ible, insoluble, aqueous, dilute, o	concentrated, saturated, s	ıspension, solubility,
Method: Stir a teasp Ask: Can you see the Explain the propertie called a solution. The Ask: Is sand soluble (liquid) solution. Ask concentrated solutior Ask: What will happe be able to dissolve in Ask: Are ketchup and Explain what the solub Stir some powdered o Explain the formation	oon of salt into a glass of wat salt in the water? Can you ta s of a mixture and describe tl salt is the <i>solute</i> , the <i>solvent</i> i n water? Explain the differen i. What will happen to the sol t. n if we add even more salt to it. Discuss some everyday exi- dity of a salt means. Ask the stu- dity of a salt means. Ask the stu- shalk into a beaker of water. <i>I</i> nsion is. Stir a teaspoon of co n of an emulsion.	er. ste the salt in the water? Can sa ne types of mixture with exampl s water. We can say that salt is <i>so</i> ce between soluble and insolubl ution if we add more salt to it? I the solution? Explain that the s amples of solutions. such mixtures are called susper dents to study the graph. Explain Ask : Is the mixture clear? Has th oking oil into a beaker of water.	It and water be separated es. Explain that the mixtu <i>luble</i> in water. e. Describe the characteri Explain the difference bet olution will become satur nsions. nsions. Ask: Has the oil dissolve	easily? How? re of salt and water is stics of an aqueous ween a dilute and a ated. No more salt will the solubility of a salt. ater? d in the water?

59

Date:

Lesson plan

Time: 40 mins

Unit: 6 Tonic: Flements	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
nopre. Literaterus, mixtures, and compounds`		oracitis situata oc aoto to.		
 Methods of separating mixtures 	• to explain how the components of a mixture can be separated	 describe the methods by which the components of mixtures can be separated 	Stand, funnel, filter paper, beaker, tripod, burner, china dish, distillation flask, condenser, beaker, black ink, dropper	Reading: p 57, 58 HW: Q1 (g)
Key words: filtration, filtr	rate, evaporation, crystalliza	tion, distillation, paper chrom	atography	
Method: Demonstrate pri	actically the various methoo	ds of separating mixtures.		
Explain that an insoluble :	substance can easily be sep	arated by passing the mixture	through a filter paper.	
A soluble solute can be se saturated solution to cool	parated from the solvent by slowly. Crystals of the solut	r heating the solution to evapo te will be formed.	rate the solvent, and then	allowing the
Ask: How can a pure solv	ent be obtained from a solu	ttion?		
Demonstrate the process of collected as a pure substar	of distillation. Explain that nce.	the solution is heated and the	solvent evaporates and co	ndenses and is
Ask: How can you find or	ut what a coloured substanc	e is made up of?		
Demonstrate paper chron is added to it drop by drop	natography. Show how the c p.	coloured substances in black ir	ık separate out in the forn	n of rings when water

Time: 40 mins

Date:				Time: 40 mins
Unit: 6	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Elements, mixtures, and compounds		Students should be able to:		
4. Compounds	 to explain what a compound is compound is to explain the differences between a mixture and a compound to explain the methods of forming compounds to describe the properties of compounds 	 explain that a compound is made up of two or more atoms explain that the particles of a compound are chemically combined and cannot be separated easily describe the formation of different types of chemical bonds and explain their properties 	Diagrams of atoms, ionic and covalent bonds	Reading: p 58, 59 Activity: 4 CW: Q1 (i) (j) Q4 HW: Q1 (h) (k)
Key words: compound, c	chemical bond, ionic bond	l, covalent bond, metallic bond,	ionic compound, covalen	t compound
Method: Ask: Are the ato atoms joined to each othe	oms of a mixture joined to ar in a compound?	each other? Can they be separ	ated easily? What is a com	pound? How are
Explain with charts and d electrons are taken or give	liagrams on the board, the en away by atoms. Positive	: formation of chemical compou bions are formed when electron	unds. Explain that ionic bo is are given away by an ato	onds are formed when om. Negative ions

Draw two hydrogen atoms on the board. Explain that the two atoms come close to each other and begin sharing electrons, thus are formed when atoms receive electrons. Explain the formation of ions of sodium and chlorine atoms to make the compound sodium chloride (common salt). Explain the properties of ionic compounds.

forming a covalent bond. Explain the properties of covalent compounds.

Ask: How are atoms arranged in metals? Explain that the atoms in a metal are so tightly packed that their electrons overlap each other and cannot be separated easily. Draw overlapping atoms of a metal to explain the properties of metals.

Data

Date:				Time: 40 mins
Unit: 6 Topic: Elements, mixtures, and compounds	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
5. Symbols of elements and formulae of chemical compounds	 to explain the symbols of elements to explain the formulae of some common compounds 	 explain what symbols signify write the formula of some common compounds 	Charts of symbols of elements, and formulae of compounds	Reading: p 59, 60 CW: Q. Make a chart of symbols of some common elements, and chemical formulae of some common compounds. Q1 (b) HW: Q1 (c) (d)
Key words: element, corr Method: Show the studer name of an element. Some symbols are letters Some symbols are two lett Some symbols are derived Na. Ask: How can we write th found in it and then we wr written as NaCl.	npound, symbol, formula ats charts of symbols of s of the name of the eleme ters of the name of an el ifrom the Latin names o ne chemical name of a m rite the formula using sy	a some common elements. Explai ent, for example, carbon C, oxyg ement, for example, calcium Ca of elements. For example, the L of ecule of a compound? Explai mbols. For example, carbon mo	in that a symbol is a short gen O, etc. a, Zinc Zn, etc. atin name of sodium is nat atin name of sodium is nat n that we must know the el onoxide is written as CO, <i>ε</i>	way of writing the rium and its symbol is lements that are und sodium chloride is

Name: _____

Date:

1. Complete the table to differentiate between metals and non-metals.

Properties	Metals	Non-metals
shiny		
conductors of heat and electricity		
melting points		
states found in		
produce sound on being beaten		
can be drawn into wires		
can be beaten into plates		

2. Write the properties of ionic and covalent compounds in the correct boxes below.

Ionic compounds	Covalent compounds

Properties: hard solids, do not conduct electricity, high melting and boiling points, good conductors of electricity, soluble in water, soluble in covalent compounds, do not conduct electricity, low melting and boiling points, found in all three states

Name: _____

Date: _____

- 1. Draw the following atoms and write their names:
 - a. atomic mass 12, atomic number 6
 - b. atomic mass 23, atomic number 11
 - c. atomic mass 35, atomic number 17

2. Which two atoms would make an ionic compound? ______and

3. Write the name of the compound.

Teaching objectives:

- to define energy
- to explain the different forms of energy
- to explain the sources and properties of energy
- to discuss the sources and importance of nuclear energy
- to explain that energy can be controlled and converted for useful purposes
- to discuss the energy resources of today
- to discuss the energy resources of the future

Teaching strategy:

Place your finger on an ice cube in a plate. **Ask:** What is happening? Why does the cube melt? Explain that the heat of the hand increases the speed of the vibrating molecules and this helps to bring about a change in state. **Ask:** What are fire crackers made up of? What happens when you light a fire cracker? Why does a cracker make a crackling sound when it is lit? Explain the energy changes that take place. **Ask:** How do green plants make their food by photosynthesis? Explain the energy changes that take place. **Ask:** What is energy? Explain the meaning of energy and how it can be used to do useful work.

Ask: What are the different kinds of energy? Explain the forms of energy and that energy can change its form. **Ask:** What are the energy changes that take place when a piece of paper is burnt? Explain that energy can neither be created nor destroyed. Explain that all things need energy to work. **Ask:** Why do we eat food? Where does energy in food come from? Explain that energy in food is the energy of the Sun which has been trapped by green plants during the process of photosynthesis.

Ask: How is the Sun's energy recycled? Explain the food cycle. **Ask:** What is a solar cell? Explain how the Sun's energy is used to generate electricity. **Ask:** What is an atom bomb? Explain the process of nuclear fusion and fission. Explain how nuclear energy can be used for peaceful purposes. **Ask:** How does a windmill work? How is electricity generated by a dam? Explain the use of natural elements such as wind and water to produce energy. Explain the working of a waterwheel. Explain how our bodies act as energy controllers and converters for various activities. **Ask:** From where do we get energy for our homes and factories? Explain the current and future resources of energy.

Answers to Exercises in Unit 7:

- 1. (a) Energy is the ability to do work. All things need energy to move and work.
 - (b) All energy on the Earth comes from the Sun. It is called solar energy.
 - (c) Millions of years ago plants and animals got energy from the Sun. When they died their bodies slowly changed into oil and coal which are called fossil fuels.

Unit 7 Energy

- (d) Kinetic energy is the energy in a body which is due to its moving atoms. Potential energy is the stored energy in a body which is due to its position.
- (e) Chemical energy is the energy which is stored in chemical substances. It may be released in the form of kinetic energy or heat.
- (f) Sound energy moves in the form of sound waves which are produced by vibrating bodies.
- (g) The breaking apart of the nucleus of an atom is called nuclear fission. It releases huge amounts of heat energy.
- (h) Solar energy is produced by the Sun due to fusion of hydrogen atoms which crash into each other making larger atoms of helium gas.
- (i) Energy cannot be made out of anything and neither can it be destroyed. But it can change its form.

2.	(a)	energy	(b)	solar	(c)	heat	(d)	Petrol	(e)	kinetic
	(f)	chemical	(g)	digested	(h)	fission	(i)	fusion	(j)	biogas
3.	(a) (f)	potential chemical	(b) (g)	electrical potential	(c) (h)	chemical kinetic	(d) (i)	nuclear electrical	(e)	sound

Additional Exercise:

MCOs (a) The energy of the Sun is called _____ lunar energy electrical energy [solar energy] solar energy (b) Oil and coal are called _____ petrol fuels diesel fuels fossil fuels [fossil fuels] (c) Moving atoms have ______ energy. kinetic [kinetic] potential sound (d) _____ _____ energy is the stored energy of a body due to its position. Potential Kinetic Electrical [Potential] (e) The vibrations produced by a vibrating body travel in air as ______ waves. light heat sound [sound] _____ energy which is released in the form of sound, heat, and light. (f) Fireworks have _____ electrical chemical physical [chemical] (g) The splitting of atoms is called _____. fusion fission synthesis [fission] (h) Fats and carbohydrates produce ______ energy for our bodies. heat light sound [heat] (i) When biogas mixes with carbon dioxide gas _____ gas is produced. chlorine [methane] ammonia methane (j) Energy from the ground is called _____. kinetic energy geothermal energy mechanical energy [geothermal energy]

Date:

Time: 40 mins

Unit: 7	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Energy		Students should be able to:		
1. Energy	 to explain what energy is to discuss the types of energy 	 explain what is meant by energy identify the types of energy 	Pictures of animals, plants, people, aeroplane, ship, car, wind, waves, electric poles, a ball, sand	Reading: p 68, 69 Activity: 1, 2, 3, 4 CW: Q1 (a) (b) HW: Q1 (c) (d)
Key words: energy, solar	energy, fossil fuel, kinetic	energy, potential energy		
Method: Show the studer work. All things need ener eat. Ask: How does energ by photosynthesis.	ats pictures of different the rgy to work. Ask : Where o y get into food? Revise ho	uings that use energy. Ask : Wh do we get energy to work and p ow green plants use the energy	at is energy? Explain that (lay? Explain that we get e from the Sun (solar energ	energy is the ability to nergy from the food we sy) to make their food
Ask: What does a car, a st trapped in coal and miner	cam engine, an aeroplane al oil millions of years ag	e need to move? Explain that a o. Explain the formation of fos	ll fuels come from solar er sil fuels.	ıergy which was
Ask : Do atoms have energender molecules begin to move 1	gy? Explain that atoms ar faster and faster, and fina	e always moving so they have have hily they break away from each	inetic energy. When an ice other and the ice melts to	e cube is heated, its form water.
Hold a ball in your hand. falling ball have energy? E	Ask : Does this ball have Explain with more exampl	energy? Let the ball fall from y es the difference between kine	our hand onto a pile of sa tic and potential energy.	nd. Ask : Does this

Date:				Time: 40 mins
Unit: 7 Topic: Energy	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
2. Kinds of energy	 to describe the various kinds of energy to discuss the uses of energy 	 describe the various kinds of energy and their sources identify the uses of different kinds of energy 	Pictures of electrical appliances, things that make sound, a nuclear power station, food	Reading: p 70, 71 CW: Q1 (e) (f) HW: Q1 (g) Q3
Key words: electric Method: Ask: What from? Explain the n	ity, sound energy, chemical t is energy? Explain that we neaning of energy and how	l energy, nuclear energy, fission, fi e are using energy all the time. Asl it can be used to do useful work.	ision, food energy k:Where does all the energ	y in the world come
Ask : What are firect take place.	ackers made of? Why does	a firecracker make a crackling sou	ınd when it is lit? Explain t	he energy changes that
Discuss the various atoms. Nuclear ener	kinds of energy that we use gy can be used to make an	e and their sources. Explain that n 1 atom bomb, but it can also be us	uclear energy is generated ed to generate electricity.	by fusion and fission of
Ask: How do green	plants use energy from the	: Sun? Explain the energy changes	that take place.	

Date:				Time: 40 mins
Unit: 7 Topic: Energy	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
3. Energy changes	 to explain how energy changes from one form to another to explain that energy can neither be created not destroyed 	 explain that energy can change its form explain that energy can neither be created nor destroyed 	Pictures of different machines that use energy	Reading: p 71, 72, 73 CW: Q1 (i) HW: Q2
Key words: chemical en	nergy, electrical energy, elec	tromagnetic energy, microwav	es, radio wave, biogas, met	thane
Method: Ask: What are energy and how energy Explain that energy can of the Sun recycled? Ex How is electricity genery	the different kinds of energe can change its form. Ask : W be changed from one form plain the food cycle with the ated by a dam? Explain the	gy? Can energy be created? Ca Vhat are the energy changes th to another, but it can be neith e help of a chart or a diagram use of natural elements such ε	n energy be destroyed? Ex at take place when a piece ler created nor destroyed. <i>J</i> on the board. Ask : How d is wind and water to produ	plain the kinds of of paper is burnt? Ask : How is the energy oes a windmill work? Ice energy.
Ask : What is biogas? Ex	plain how animal waste can	t be used to generate methane	gas which can be used as f	ſuel.
Discuss the transfer of to plants and then to ot and therefore the numb	energy in the environment. I her living organisms. Explai er of animals at each stage i	Revise food chains and food w in that at each stage in the foo in the chain decreases.	ebs and how energy is tran d chain some energy is lost	sferred from the Sun to the environment
Discuss the different tyl	pes of energy converters sho	own on p 73.		

Lesson plan

Time: 40 mins

Unit: 7 Topic: Energy	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
4. New energy sources	 to examine new energy sources to discuss how natural elements can be used as energy sources 	 identify the energy sources of the future explain how they can be used to generate energy 	Pictures of solar panels, solar cells, windmills, floating rafts, geothermal energy	Reading: p 74, 75 Activity: 5 CW: Q. Which new energy source do you think would be most effective and cheapest to produce in our country? Give reasons for your answer. HW: Q1 (h)
Key words: primary sour Method: Ask: Where do v of energy. Explain that ele pictures, discuss the new e	ce, secondary source, renew we get electricity for our hou cetricity is a secondary source energy sources and their use	vable source, non-renewable so mes, businesses, schools, and f ce of energy because it is prod- es.	ource, solar, wind, water, actories? Discuss the fou uced from a primary sour	geothermal r primary sources rce. With the help of

OXFORD UNIVERSITY PRESS Date:

Ask the students to make a chart of the new energy sources and write a few lines about each.
Date: _____

1. Starting from the Sun, draw a diagram to show how energy is transferred in an environment.

2. Fill in the blanks to complete the paragraph below.

gas is a valuable	and cheap source of energy. When plants
and animals, the	y give off this gas. When animal waster and
manure mix with	gas, a gas called
gas is formed. It can be collected and used as	, for cooking
and for boiling	

Name:	

Date: _____

1. Fill in the table to show the energy input and output of some useful energy converters:

Converter	Energy input	Energy output
radio		
television		
electric drill		
washing machine		
calculator		
iron		
light bulb		
telephone		

2. a. Write the names of four new energy sources.

b. Which one would it be useful, as well as economical, to produce in your part of the country?

c.	Explain your answer	
----	---------------------	--

Work and machines

Teaching objectives:

- to define a simple machine
- to describe the various types of simple machines
- to explain the use of simple machines
- to explain how a machine helps us to do more work with less effort
- to explain that machines need energy to work
- to define friction
- to explain the advantages and disadvantages of friction
- to describe the methods of reducing friction

Teaching strategy:

Ask: Can you name some machines which we use? Show a bottle opener to the students. Tell them it is a machine. Open a bottle of coke with an opener. Explain the use of the bottle opener as a simple machine. Explain that a machine helps us to do useful work with less effort. Cut a piece of cloth with a pair of scissors. Explain that a pair of scissors is a simple machine. Explain the meaning of a machine and its use. **Ask:** Why is it better to use a machine rather than trying to do the same work with your hands? Explain the types of machines and the useful work that they do. Explain the mechanical advantage of machines. Show students the various types of levers and their use in everyday life.

Ask: How can you push a heavy load uphill? Explain the use of an inclined plane. Show the students a wedge and explain that its shape is made up of two inclined planes. Explain how it works to cut hard things. Explain how it helps to increase and change the direction of the applied force. Show the students a screw. Explain how it is used to hold two pieces of wood or metals together. Show the students a simple wheel and an axle of a toy car. Wind a piece of string in the groove of the axle and attach a metallic object to the free end. Explain how heavy things can be hauled up by using a wheel and an axle. **Ask:** Can heavy objects be lifted by applying a downward force? Explain the action of a pulley. Explain how the mechanical advantage can be increased by increasing the number of pulleys.

Ask: What happens when you rub two stones together? Explain the heating up of the moving parts of a machine when they rub against each other. Explain the meaning of friction. **Ask:** Is friction useful or harmful? Explain the advantages and disadvantages of friction. **Ask:** Why do we put oil or grease in the moving parts of machines? Explain the methods of reducing friction.

Answers to Exercises in Unit 8:

- 1. (a) A machine is a device or tool which helps us with our work.
 - (b) Effort is the amount of force that is applied to do work.Work is the distance that a machine moves when a certain force is applied to it.Power is the amount of work done by a machine during a certain period of time.
 - (c) Mechanical advantage is the extra force that is gained by using simple machines. Less effort is applied to do more work.

(d)	Simple machine	example
	lever	bottle opener, nut cracker
	inclined plane	wooden plank
	wedge	knife, axe
	screw	car jack, nuts and bolts
	wheel and axle	water wheel, car wheels
	pulley	crane
	gears	car gear, cycle gears

- (e) A block and tackle is a pulley system with more than one pulley. The pulleys are the blocks and the rope is the tackle.
- (f) The lifting force of the block and tackle can be increased by increasing the number of pulleys.
- (g) Gears are wheels with cogs or notches around the edge. Each gear fits with another to pass on the motion of the machine. They are useful for changing the direction and speed of movement.
- (h) Gears move the hands of a clock.
- 2. Fill in the blanks.

(a)	energy	(b)	rubbing	(c)	force	(d)	power
(e)	pulley	(f)	pulley	(g)	increases	(h)	inclined plane

4. Refer to diagram on page 84.

Additional Exercise:

MCQs

(a)	A machine is a devie	ce which helps us v	vith our	
	rest	work	play	[work]
(b)	The amount of work	that a machine do	oes depends on the amount of	_ applied.
	effort	work	friction	[effort]
(a)	The amount of world	, dana hu a maahir	a during a cortain pariod of time is called the	

(c) The amount of work done by a machine during a certain period of time is called the ______ of that machine.

work effort power [power]

(d)	A is applying very little eff	a simple machine in the form ort.	n of an arm which can li	ft a heavy load by
	lever	pulley	wedge	[lever]
(e)	A heavy load can be r	aised easily by pulling it along	g a sloping surface called	1
	a lever	a pulley	an inclined plane	[an inclined plane]
(f)	A is	a simple machine which chan	ges the direction of force	as well as increases it.
	lever	wedge	screw	[wedge]
(g)	A is	a special kind of inclined pla	ne with a huge mechanic	cal advantage.
	lever	wedge	screw	[screw]
(h)	A load attached to the the wheel end of the r	e end of the ope.	rope will be pulled up i	f effort is applied to
	wheel	axle	lever	[axle]
(i)	A is a simple machine	made up of wheels		
	wheel and axle	block and tackle	pulley	[pulley]
(j)	Wheels which have no	otches or cogs cut around the	edge are called	·
	wheels	gears	pulleys	[gears]

Time: 40 mins

Unit: 8 Tonio: Work and	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
machines		טומערוונא אונטמות טר מטור וט.		
1. Work and machines	• to define a machine	• define a machine	Pictures of different	Reading: p 79
	• to explain what	• explain the meanings of	kinds of machines	CW: Q1 (a) (c)
	effort, work, and power are	ettort, work, and power		HW: Q1 (b)
Key words: machine, eff	ort, work, power, force			
Method: Ask: What is a r machine is a device that h	nachine? Can you name so lelps us with our work; ever	me machines that we use ever; 1 a teaspoon or a knife is a ma	y day? Is a clock a machin chine.	le? Explain that a
Ask: Can a machine work electricity The energy can	on its own? Explain that ma be electrical, mechanical, or	achines need some kind of ener r chemical Discuss the differer	rgy to function. A car need of kinds of energy that are	ls petrol, a fan needs needed by machines

Ask: How do things move? Explain that force is needed to make something move. Describe the things that force can do. a ã

Ask: How does a machine work? Explain that a machine transfers force from one part to another, and keeps changing direction. Explain that the amount of work that a machine does depends on the amount of effort applied. Ask: What is effort? Explain that effort is the force that is applied. For example if one person pushes a car, it will move slowly and will travel a short distance. If two people push the car, the force will be doubled and the car will move further and faster. Also explain that the amount of work done by a machine during a certain period of time is called the power of that machine.

Lesson plan

Time: 40 mins

Unit: 8 Topic: Work and machines	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
2. Simple machines	 to introduce simple machines to explain the mechanical advantage that simple machines provide 	 identify simple machines explain that simple machines provide a mechanical advantage 	Diagrams of the three types of lever A see-saw, a pair of scissors, a nut cracker, a wheel barrow, a hockey stick, a fishing rod/bottle opener, an inclined plane, an axe	Reading: p 80, 81 Activity: p 83 [Make an alligator long-arm] CW: Q. Draw the three kinds of lever. Mark the positions of the fulcrum, load, and effort. HW: Q1 (c) (d)
Key words: simple mac	chine, mechanical advantag	e, lever, effort, load, fulcrum, i	nclined plane, wedge	

Use it to open a bottle of a soft drink. Explain that a machine helps us to do useful work with less effort. A pair of scissors is also a Method: Ask: Can you name some machines that we use daily? Show the students a bottle opener. Explain that it is a machine. machine.

Ask: Why is using a machine better than trying to do the same work with your bare hands? Explain the types of simple machine and the useful work that they do. Explain the meaning of mechanical advantage. Show the students various types of lever and their use in everyday life. Explain the position of the load, the fulcrum, and the effort applied that helps a machine to make work easier.

Ask: How can we push a heavy load uphill? Explain the use of an inclined plane. Show the students an axe or a knife. Explain that an axe is made up of two inclined planes. Explain that when we strike the axe downwards, it creates a strong sideways force that splits the wood. A sharp axe will have a greater splitting force than a blunt one.

Lesson plan

Time: 40 mins

Unit: 8 Topic: Work and machines	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
3. Some more simple machines	• to name and describe some other simple machines	 identify a screw, a wheel and axle, a pulley, a block and tackle, and gears as simple machines explain how these simple machines make our work easier 	A screw, a nut and a bolt, a car jack, wheel and axle of a a toy car, a pulley, rope and weight, a block and tackle, gears of a toy car, a pendulum clock, a bicycle, an egg beater	Reading: p 82, 83, 84 Activity: p 85 CW: Q2, Q3, Q4 HW: Q1 (e) (f) (g) (h)
Key words: screw, whe	cel and axle, pulley, block a	ind tackle, gear		
Method: Show the stu	dents a screw. Explain how	r it is used to hold two pieces o	of wood or metal together.	
Show the students the object to the free end o	simple wheel and axle of a f the string. Explain how h	toy car. Wind a piece of string leavy things can be hauled up	in the groove of the axle a by using a wheel and axle.	nd attach a metallic
Ask: Can heavy objects advantage can be incre	s be lifted by applying a do ased by increasing the num	wnward force? Explain the ac ther of pulleys in the system.	ion of a pulley. Explain the	at the mechanical
Show the students a monotches or cogs cut aro the machine. Gears are	echanical toy that has whee und the edges. Wheels like also useful for changing th	els with toothed edges. Explain these are called gears. One ge ne direction and the speed of t	n that some machines have ar fits into another and par he movement.	wheels that have sses on the movement of
Show the students a dir the students a pendulu also be shown to explai	agram of a racing bicycle w m clock and explain that g n the function of gears.	vith gears. Explain how the ge ears inside the clock help to n	ars help to make the bicycl tove the arms of the clock.	e go faster. Also show A clockwork toy can
Explain the application	of pulleys and gears in me	achines to make them work.		

Unit 8: Work and machines

Date: _____

Worksheet 1

1. Fill in the blanks to complete the statements:

A machine is a device which helps us with our _____. Machines need some kind of ______ to function. The activity of the parts inside the machine makes them _____ up. Some of the energy is changed into _____ and the rest is used for doing useful _____. The amount of work that a machine does depends on the amount of ______ that is applied. The amount of work done by a machine during a certain period of time is called the ______ of the machine. The ______ is the extra force that is gained by simple machines. This means that ______ effort needs to be applied to do ______ work.

2. Draw lines to match the name of the machine to its description:

Description

A machine in the form of a long arm

A sloping plane

Two sloping planes put together

A rod with spiral grooves on it

A circular wheel with a groove round it; it turns on a rod, passing through the centre of the wheel.

A simple machine made up of a wheel which turns on an axle

It has a rope wound over the groove. A system made up of more than one pulley

Machines with wheels having notches or cogs cut round the edges, which fit into one another to pass on the motion of the machine

79

OXFORD

inclined plane wheel and axle screw

wedge

lever

pulley

Name

gears

block and tackle

Teaching objectives:

- to explain the reflection of light and the laws of reflection
- to describe the characteristics of an image formed by a plane mirror
- to explain how reflection takes place on smooth and rough surfaces
- to describe spherical mirrors and explain how they reflect light
- to explain where the image is formed by a spherical mirror when the object is placed at different distances from it
- to discuss how spherical mirrors are useful

Teaching strategy:

Ask: What happens when light falls on a shiny surface? Explain that the bouncing back of light from a shiny surface is called reflection. Draw the experiment of reflection by a plane mirror on the board. Explain how the incident ray is reflected at the same angle. Help the students set up their own experiment, and draw the reflection of rays by a plane mirror. Explain the laws of reflection. **Ask:** What is the size of the image formed in a mirror? At what distance is the image made? Is the image inverted or upright? Can the image be seen on a screen placed in front of the mirror? Explain the characteristics of an image formed by a plane mirror.

Ask: How does light reach our rooms in the daytime? Explain the reflection of light on smooth and rough surfaces by diagrams on the board. Ask: What is the shape of a shaving mirror? Show the students a shaving mirror and a rear view mirror of a car. Ask: What kind of an image can you see in both? Explain the shapes of convex and concave mirrors with diagrams on the board, and label their parts. Tell the students to move the mirrors away from their faces and then bring them near.

Ask: When do you see a clear image? Explain the formation of images of objects placed at different distances by spherical mirrors. Ask: What is a concave mirror used for? What is a convex mirror used for? Explain that as a concave mirror makes a large image, it is used in shaving and make-up mirrors. Explain that as convex mirrors give a wider view they are used in cars and other vehicles.

Summarize the lesson.

Answers to Exercises in Unit 9:

- 1. (a) When rays of light fall on a polished surface, such as a plane mirror, they bounce back to produce an image. The bouncing back of light is called reflection.
 - (b) Place a mirror on a white sheet of paper and mark its position MM'. Place two common pins A and B in front of it and observe their image from the opposite side. At the point where the images of pins A and B appear to be in a straight line, place two other pins P and Q to mark their positions. Remove the pins and the mirror. Join points AB and PQ, and extend them to meet MM' at O. Draw a line OL perpendicular to MM'. Measure angle AOL and angle LOP. They are equal.
 - (c) The characteristics of an image formed by a plane mirror are: The image is upright, laterally inverted, virtual, and is of the same size as the object. It is formed as far behind the mirror as the object is in front of it.
 - (d) When light falls on a rough surface, it is scattered in all directions. This irregular reflection of light helps sunlight to reach inside houses in the daytime.
 - (e) When an object is close to a concave mirror an upright and magnified image is formed.
 - (f) An image formed by a convex mirror is always small, upright, and virtual.
- 2. (a) upright, laterally inverted (b) equal
- (c) real

(g) the centre of curvature

- (d) convex (e) laterally (f) irregular
- (h) infinity (i) concave (j) convex
- 3. (a) Refer to pages 91 and 92 of the Pupil's Book.
 - (b) Refer to pages 91 and 92 of the Pupil's Book.
 - (c) Refer to pages 91 and 92 of the Pupil's Book.
- 4. a) regular reflection
 - b) irregular reflection
- 5. Refer to pages 91 and 92 of the Pupil's Book.
- 6. Refer to pages 91 and 92 of the Pupil's Book.
- 7. A H I M O T V W
- 8. a) concave mirror b) convex mirror c) concave mirror
- Convex mirror as it gives a wider view.
 Concave mirrors magnify objects which is why they are used in makeup mirrors.

Х

Additional Exercise:

M	CQs			
(a)	The bouncing back of ra	ays of light from a shiny surf	ace is called	
	refraction	dispersion	reflection	[reflection]
(b)	The incident ray, reflect	ed ray, and the normal ray a	Il lie in the same	
	plane	angle	path	[plane]
(c)	The angle of incidence a	and the angle of reflection ar	e	
	equal	unequal	normal	[equal]
(d)	The image formed by a	plane mirror is		
	real	virtual	blurred	[virtual]
(e)	When parallel rays of lig	ht fall on a rough surface, th	ney are reflected at different	
	angles	sides	planes	[angles]
(f)	An image formed by a c	onvex mirror is		
	small, upright, virtual		small, upright, and real	
	large, upright, and virtua	al	[small, uprigh	nt, and virtual]
(g)	Concave mirrors	objects.		
	diminish	magnify	reduce	[magnify]
(h)	Convex mirrors give a _	view.		
	wide	narrow	angular	[wide]
(i)	When a ray of light com passes through the prince	ing from an object is paralle	l to the principal axis of a sphereflection.	erical mirror, it
	image	object	focus	[focus]
(j)	An image formed by an	object far away from a conc	ave mirror is real,	, and
	smaller than the object.			

Lesson plan

Time: 40 mins

Unit: 9	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Reflection of light		Students should be able to:		
1. Reflection of light	 to explain how light is reflected to explain the laws of reflection to describe the characteristics of an image formed by a plane mirror to discuss different kinds of reflection 	 explain the reflection of light explain the laws of reflection describe the characteristics of an image formed by a plane mirror differentiate between regular and irregular 	A plane mirror, pins, sheet of white paper, a full length mirror	Reading: p 88, 89 Activity: 1, 2 CW: Q4, Q7 HW: Q1 (a) (b) (c) (d)
Key words: plane m: regular, irregular refl Method: Start the le a shiny surface is call	irror, reflection, incident ra ection, scattering sson by asking: What happe ed reflection.	y, reflected ray, normal ray, angle ens when light falls on a shiny su	e of incidence, angle of re rface? Explain that the bc	flection, ouncing off of light from

Draw on the board the diagram of the experiment: To study the laws of reflection (p 88). Explain that the incident ray is reflected at the same angle. Help the students to set up their own experiment, and draw a diagram of the reflection of rays by a plane mirror.

Explain the laws of reflection. Ask: What is the size of the image formed in a mirror? At what distance from the mirror is the image formed? Which way up is the image? Can the image be seen on a screen placed in front of the mirror?

Explain the characteristic of an image formed by a plane mirror.

Ask: How does light reach our rooms in the daytime? Use diagrams on the board to explain the reflection of light from smooth and rough surfaces. Time: 40 mins

Date:				Time: 40 mins
Unit: 9 Topic: Reflection of light	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
2. Optical instruments	• to explain the use of mirrors in optical instruments	 describe the use of plane mirrors in optical instruments 	Diagrams and pictures of a telescope, periscope, projector, microscope, kaleidoscope	Reading: p 90 Activity: Draw two optical instruments and mark the places where mirrors have been used. Draw rays to show how an image is formed by them.
Key words: telescope	, periscope, projector, micr	oscope, kaleidoscope		
Method: Show the st diagrams to explain h	udents pictures of a telesco ow reflecting surfaces are u	pe, a periscope, a projector, a n ised in various optical instrume	nicroscope, and a kaleidosc :nts.	cope. Use charts and
Ask : What are these c periscope is used in sr cinema screen. A mic formations of beads o	optical instruments used for ubmarines for observing thi roscope is used for observin r other coloured objects.	A Explain that a telescope is use ings on the surface of the sea. A rg very tiny cells and organisms	ed for observing heavenly l A projector is used for show s. A kaleidoscope is used fo	oodies in space. A ing pictures on a r observing colourful

OXFORD UNIVERSITY PRESS

Lesson plan

Date:

n plan		
Lesso	Lesson plan	

Time: 40 mins

Unit: 9	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Reflection of light		Students should be able to:		
3. Spherical mirrors	 to describe spherical mirrors to explain how spherical mirrors reflect light to describe the characteristics of an image formed by a spherical mirror to explain the uses of spherical mirrors 	 describe spherical mirrors explain how spherical mirrors reflect light describe the characteristics of images formed by spherical mirrors list some uses of spherical mirrors 	Convex mirror, concave mirror, diagrams and charts showing the formation of images by spherical mirrors A shaving mirror A car rear view mirror	Reading: p 91, 92 Activity: Q6 CW: Q2, Q3, Q5 HW: Q1 (e) (f) Q8, Q9, Q10
Key words: concave	mirror, convex mirror, virtua	l image, real image, centre of cui	rvature, principal axis, prii	ncipal focus
Method: Ask: What is	the shape of a shaving mirror	r? Show the students a shaving n	iirror and a rear view mirro	or of a car. Ask: What

kind of image can you see in each mirror? Explain the shapes of convex and concave mirrors with diagrams on the board, and label

their parts. Ask the students to move the mirrors backwards and forwards. Ask: At what point do you see a clear image of yourself? Explain the formation of images of objects placed at different distances from spherical mirrors.

Ask: What is a concave mirror used for? What is a convex mirror used for? Explain that a concave mirror produces a large image. It is used in shaving and make-up mirrors. A convex mirror gives a wider view so it is used in cars and other vehicles.

Name:	

Date: _____

- 1. Underline the correct word(s) to complete each sentence.
 - a. Light travels from one point to another in a straight / curved line.
 - b. The bouncing back of rays of light when they fall on a polished surface is called refraction / reflection.
 - c. The incident ray, the reflected ray, and the normal ray all lie in the same / different plane.
 - d. The angle of incidence is greater than / equal to the angle of reflection.
 - e. The image formed by a plane mirror is upright / inverted.
 - f. The image formed by a plane mirror is virtual / real.
 - g. The size of the image formed by a plane mirror is bigger than / equal to the size of the object.
 - h. The distance of the image from the plane mirror is the same / different from the distance of the object from it.
- 2. Draw two rays coming from an object which strike a plane mirror at different angles to prove the laws of reflection.

Name:	

Date: _____

1. Where will the image be formed by a concave mirror, when the object is placed in different positions?

Place of the object	Place of the image	Kind of image formed
At the centre of curvature		
At the principal focus		
Beyond the centre of curvature		
Between the principal focus and the pole of the mirror		

2. Draw rays to show the reflection of light on:

A smooth surface

A rough surface

3. Draw a periscope and mark the positions where plane mirrors are placed.

Teaching objectives:

- to define oscillation and explain how it can be used to create waves
- to describe the kinds of waves and how they are produced
- to explain how sound is produced
- to discuss the speed of sound and the factors that affect it
- to explain that sound waves can travel through solids, liquids, and gases, but not through vacuum
- to explain the characteristics of sound and the factors they depend on
- to explain that an echo is a reflection of sound
- to describe how echoes can be useful
- to discuss the difference between music and noise
- to explain how noise can cause pollution

Teaching strategy:

Ask: What kinds of sounds can you hear in a busy street? What sounds do you like? Make a pendulum by tying a bob to a piece of string. Pull it to one side to make it swing. Explain that the to and fro movement that takes to complete one oscillation is called a period. Count the number of oscillations that the pendulum makes in one minute. Calculate the number of oscillations in one second. Explain that the number of oscillations completed in one second is called the frequency of the oscillation. Draw a pendulum on the board. Explain the mean and extreme position of the bob. The distance that the bob travels from the centre to the extreme position is called its amplitude.

Tie a rope to a fixed point. Move the free end from side to side. Explain that a transverse wave is being made. Fix a soft spring at one end and pull it backwards and forwards, waves will travel along the spring. Sections of the spring will be compressed and others will be loose. Explain that the tight coil of the spring is called a compression and the loose coil is called a rarefaction. Such waves are called longitudinal waves. Sound waves are also made in this way. Sound waves are longitudinal waves, which are produced by a vibrating body.

Compressions and rarefaction produced by vibrating bodies produce sound waves that travel in air. Ask: Do you know the speed of sound? What is the speed of light? Which travels faster, sound or light? How do you know? Explain that during a thunderstorm the flash of lightning can be seen before the clap of thunder. Take two balloons and inflate them. Heat one of the balloons till it bursts. Prick the cold balloon with a pin at the same time. Ask: Which balloon made a louder sound? Explain that sound waves travel faster in hot air.

Ask: Can you hear sound through a door? Explain that sound waves need a medium to travel in. Sound can travel in solids, liquids, and gases. The denser the medium, the faster the waves will travel. Explain the experiment of an electric bell in a jar. The sound of the ringing bell will gradually decrease as the air is evacuated from the jar, because sound waves cannot be produced without a medium.

Ask: Which will produce a louder sound, a small drum struck lightly or a big drum struck strongly? Explain that the amplitude of the vibrations produced by the bigger drum will be large and so a louder sound will be produced. Also the bigger drum has a larger surface area, therefore it will produce a louder sound than the smaller drum. **Ask:** Can you hear a louder sound if you stand near a vibrating body or if you are away from it? Explain that sound waves spread in all directions, and the sound becomes weaker as the distance from the vibrating body increases.

Ask: What is the difference between the sound of a whistle and that of a buzzer? Explain that the sound of a whistle is shrill because it has a high pitch. The pitch of the sound depends on the frequency of the sound waves produced by a vibrating body. A fast vibrating body has a high frequency. It produces a shrill sound. Send two children out of the class. Tell them to say 'hello' from behind the door. **Ask:** Can you tell who said 'hello' first? Explain that voices and sounds of musical instruments can be recognized by their timbre. Timbre is the combination of sound waves of different frequencies which collectively make up a particular sound.

Ask: What can you hear when you clap or shout in an empty hall? Why does your voice resound? Explain that when sound waves strike a hard surface, they are reflected back. This reflection of sound is called an echo. Explain how echoes are used in echo sounders in ships to calculate the depth of the sea. Explain how bats use echoes to detect obstructions in the dark.

Ask: How do you feel in a crowded room where everyone is talking? Why do little children begin to cry in a noisy room? What is noise? Explain that noise is an abrupt change in the frequency and amplitude of sound waves. Noise is a kind of pollution that can produce harmful effects in the body. It can cause headache and even deafness. Summarize the lesson.

Answers to Exercises in Unit 10:

- (a) The regular to and fro movement of a pendulum is called an oscillation. The number of oscillations that are completed in one second are called the frequency of an oscillation. The distance that the bob of a pendulum travels from the central to the extreme position in one oscillation is called its amplitude.
 - (b) When a body vibrates its forward movement presses the air in front of it. This is called a compression. When the body moves backwards, the pressed layer of air stretches. This is called a rarefaction. Continuous compressions and rarefactions produced by oscillations make sound waves.
 - (c) Sound travels at a speed of 330 metres per second. Sound waves travel faster through hot air than through cold air, but they are not affected by changes in air pressure.
 - (d) Sound waves cannot travel in a vacuum. Experiment: Attach an electric bell to a battery with wires, and lower it into a bell jar fitted with an exhaust pump. Close the mouth of the jar with a tightly fitted cork. Pump air out of the flask. The sound of the ringing bell will slowly fade away.
 - (e) The loudness of sound depends on the amplitude and the surface area of the vibrating body.
 - (f) The specific quality of a particular sound is called its timbre. It is the combination of sound waves of different frequencies, which collectively make up the voice of a person or the sound of a musical instrument.

2.	(a)	oscillations	(b)	vibrations	(c)	compression	(d)	vacuum	(e)	longitudinal
	(f)	eardrums	(g)	faster	(h)	frequency	(i)	Timbre		
3.	a)	300 m/s, 500 m/	s, 20	0 m/s, 30,000 i	m/s	b) aircraft, 1	nete	orite		
	c)	i) 330 m ii	i) 6	60 m	iii)	3300 m	iv)	33 m		

Additional Exercise:

MCQs

(a) Regular to and	fro movements are called		
waves	oscillations	swings	[oscillations]
(b) The number of	oscillations completed in one see	cond is called the	of the oscillation.
timing	swing	frequency	[frequency]
(c) A bob tied to a	string is called a		
уоуо	orbit	pendulum	[pendulum]
(d) The extreme po	sition of the bob from the centr	al position is called the	
amplitude	frequency	wave	[amplitude]
(e) Oscillations can	be used to make		
swings	pendulums	waves	[waves]
(f) Waves that trave	el in the same direction as the o	scillations are called	waves.
transverse	longitudinal	circular	[longitudinal]
(g)	_ cause sound waves to travel th	hrough air.	
Oscillations	Transformations	Refactions	[Oscillations]
(h) The speed of so	und in air is r	n/s.	
230	330	430	[<i>330</i>]
(i) A shrill sound h	as a pitch.		
high	low	normal	[high]
(j) A sound can be	recognized by its		
frequency	pitch	timbre	[timbre]

Lesson plan

Time: 40 mins

Unit: 10	Teaching objectives	Learning outcomes	Resources/Materials	Activities/CW/HW
Topic: Sound		Students should be able to:		
1. What is sound?	 to define sound to describe oscillations to identify kinds of waves and explain how they are produced 	 define sound describe oscillations and explain how they can be used to make waves explain how different kinds of waves are produced 	A spring wire, a rope, a pendulum, stopwatch	Reading: p 97 Activity: Attach a metal ball to a length of string to make a pendulum. Measure the length of the string. Pull the pendulum about 12cm to one side and let it go. Start the stopwatch at the same time as you let the pendulum go. Count the number of complete swings that the pendulum makes in one minute. Calculate the period and frequency of the oscillation. What is the amplitude of the oscillation? HW: Q1 (a)
Key words: sou: Method: Start ti	nd wave, oscillation, per he lesson by asking: Wh	iod, frequency, amplitude, trai it sounds can vou hear in a bu	nsverse wave, longitudinal sv street? Which sounds d	l wave lo vou like? Make a pendulum bv

one minute. Calculate the number of oscillations in one second. Explain that the number of oscillations completed in one second tying a bob to a piece of string. Pull it to one side to make it swing. Explain that the to and fro movements are called oscillations and the time taken to complete one oscillation is called a period. Count the number of oscillations that the pendulum makes in is called the frequency of the oscillation.

Draw a pendulum on the board. Demonstrate the mean and extreme positions of the bob. The distance that the bob travels from the centre to the extreme position is called its amplitude.

Fix one end of a soft spring to a wall and pull it towards you. Let the spring go. Waves will travel along the spring. Some sections of the spring will be compressed while others will be loose. Explain that the tight portion of the spring is called a compression, Tie a rope to a fixed point on a wall. Move the free end from side to side. Explain that a transverse wave is being formed. while the loose part is called a rarefaction. Such waves are called longitudinal waves.

Lesson plan

Time: 40 mins

Unit: 10 Topic: Sound	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
2. Sound waves	 to explain how sound is produced to explain that the speed of sound differs in solids, liquids, and gases 	 explain how sound is produced describe the speed of sound in different mediums 	Bell jar, exhaust pump, clock, balloons, pin, a burner	Reading: p 98, 99 Activity: 1, 2, 3, 4 CW: Q3 HW: Q1 (b) (c) (d)
	• to explain that sound waves travel in a medium	• explain that sound waves need a medium to travel in		
Key words: compre	ession, rarefaction, wave, vacuu	Ш		
Method: Ask: How waves that are prod	/ are sound waves produced? WI uced by vibrating bodies. Comp	hat kind of waves are sound wave pressions and rarefactions made l	es? Explain that sound wa oy vibrating bodies produ	ives are longitudinal ce sound waves.
Ask : Do you know Explain that during	the speed of sound? What is the a thunder storm, the flash of li	speed of light? Which travels fas ghtning can be seen before the cl	ter, sound or light? How ap of thunder is heard.	do you know?
Ask : Can you hear solids, liquids, and _§	sounds through a closed door? gases. The denser the medium,	Explain that sound waves need a the faster the waves travel, and the	medium to travel in. Sou ne louder the sound.	nd can travel in

Discuss the experiment: Sound waves in a vacuum (p 99). Explain that the ticking sound of the clock will gradually decrease as the

air is evacuated from the bell jar, because sound waves cannot be produced without a medium.

Inflate two balloons. Heat one balloon till it bursts and simultaneously prick the other balloon with a pin. Ask: Which balloon

made a louder sound? Explain that sound waves travel faster in warm air than in cold.

OXFORD UNIVERSITY PRESS 92

Date:				Time: 40 mins
Unit: 10 Topic: Sound	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
3. Characteristics of sound	 to describe the characteristics of sound 	 describe the characteristics of sound characteristics on which the factors on which the quality of sound depends 	A drum, a pipe, a guitar	Reading: p 99, 100 Activity: 5, 6, 7 CW: Q2 HW: Q1 (e) (f)
Key words: loudness, pitc	ch, timbre, vibration			
Method : Ask : Which one Explain that the amplitude Also, the larger drum has a	will produce a louder so e of the vibrations produ a larger surface area; the	und: a small drum struck light ced by the bigger drum will be refore it will produce a louder	ly, or a big drum struck wit large and so a louder soun sound.	h greater force? d will be produced.
Ask: Can you hear a loud spread in all directions, an	er sound better if you stand the sound becomes fai	nd near a vibrating body or fu nter as the distance from the v	rther away from it? Explain ibrating body increases.	that sound waves
Ask : What is the differenc because it has a high pitch A fast vibrating body has <i>z</i>	e between the sound of a 1. The pitch of the sound a high frequency: it produ	whistle and that of a buzzer? depends on the frequency of t aces a shrill sound.	Explain that the sound of the sound waves produced t	ae whistle is shrill oy the vibrating body.
Send two students out of 1	the classroom. Ask them	to say hello from behind the c	losed door. Ask: Who said h	hello first?
Explain that voices and th waves of different frequence	e sounds of musical instr cies which collectively ma	uments can be recognized by ake up a particular sound.	their timbre. Timbre is the e	combination of sound

Lesson plan

Time: 40 mins

Unit: 10 Topic: Sound	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
 Echo Sound pollution 	 to explain an echo to explain how echoes can be useful to explain the difference between music and noise to discuss noise pollution 	 explain how an echo is produced explain how echoes are used explain the difference between noise and musical sounds describe the causes and effects of noise pollution 	Diagrams and charts to show how an echo is produced Pictures of echo sounders Pictures of congested roads, blaring music, etc. to show noise pollution	Reading: p 100 CW: Q. Define an echo. How are echoes used by a. fishermen? b. bats? c. radar?
Key words: echo, eci Method: Ask: What Explain that when so echoes are used by ec	ho sounder, echo detectior can you hear when you cla und waves strike a hard su cho sounders in ships to ca	ı, radar, noise pollution ip or shout in an empty hall? W rface, they are reflected. This r lculate the depth of the sea, an	hy does your voice resound eflection of sound is called id how bats use echoes to d	۱؟ an echo. Explain how etect obstructions in the
dark.				

Explain that noise is an abrupt or sudden change in the frequency and amplitude of sound waves. Noise is a kind of pollution that Ask: How do you feel when everyone in a crowded room is talking? Why do children begin to cry in a noisy room? What is noise?

can produce harmful effects in the body. It can cause headache and even deafness.

Date:

Lesson plan

Unit 10: Sound

Name: _____

	Α	В
a.	Sound waves are caused by	330 m/s.
b.	Sound waves travel at a speed of	vibrations.
c.	Sound waves travel faster through	air pressure.
d.	The speed of sound is not affected by	vacuum.
e.	Sound waves cannot travel through	hot air.
f.	The loudness of sound depends on	high frequency.
g.	Shrill sounds have a	on the amplitude of the vibrating body.
h.	The combination of sound waves of different frequencies that make up the voice of a person or the sound of a musical instrument is called	high pitch.
i.	A fast vibrating body has a high	timbre.

1. Match the items in lists A and B to complete the sentences.

- 2. The echo sounder of a ship sends a burst of sound waves towards the seabed. 0.2 seconds later the reflected sound waves are picked up by the ship. [hint: use the formula: speed = distance/time]
 - a. How long did it take the waves to reach the seabed?
 - b. If the speed of sound in water is 1400 m/s, how deep is the seabed at this point?

Worksheet 1

٦

Date: _____

Teaching objectives:

- to describe outer space
- to discuss the heavenly bodies in space
- to define a satellite
- to explain the difference between natural and artificial satellites
- to describe the different kinds of artificial satellites and their orbits
- to explain the functions of various satellites in space

Teaching strategy:

Ask: What is the sky? Why does the sky appear blue? What is space? Does space have an atmosphere? Explain what space is. Discuss that space contains dangerous rays and particles travelling at high speed. Show the students, charts of space and the heavenly bodies and discuss the formation, structure, and movement of each.

Ask: What is a star? What is the Sun? What are stars made up of? Explain the formation of stars from nebulae by the pull of gravity. **Ask:** What do you see in the sky on a moonless night? Discuss the Milky Way Galaxy and what it is composed of. Discuss the difference between stars, planets, and moons. **Ask:** How far has man been able to travel into space? Discuss space travel and the space craft that are used to travel into space. **Ask:** What is the Moon? What are planets?

Explain what satellites are and explain the difference between natural and artificial satellites. **Ask:** How can an artificial satellite remain in orbit in space? Discuss the Earth's gravity in relation to the motion of a satellite. Explain the orbits of artificial satellites and the use of different kinds of satellites for various purposes.

Ask: Who was the first man to travel in space? Which was the first animal to go into space? Discuss space travel history with the students. Ask them to find information about space travel from the Internet and from magazines and science journals.

Perform the activities. Summarize the lesson.

Answers to Exercises in Unit 11:

- 1. a) We get information about distant planets from robot spacecraft called 'space probes'.
 - b) A satellite can be defined as any object, either man-made or natural, that orbits or circles around something else. For example the Moon is a satellite of the Earth.
 - c) Artificial satellites are satellites that are put into orbit by man. The motion of a satellite is directly related to the Earth's gravity. Once launched in the appropriate orbit these satellites orbit around the Earth without any propulsion speed because they have specific orbital speed to move around the Earth, depending on their distance from the centre of the Earth.
 - d) The first artificial satellite was Sputnik I which was launched by the Soviet Union on 4th October, 1957.
 - e) An orbit around the Earth is called a 'geo-centric orbit'.

Polar orbit: The satellite is in orbit over the Earth's poles. It travels from north to south around one side of the Earth, and then back north around the other side. The Earth is also spinning beneath the satellite so it appears that the satellite is traveling in a spiral track over the Earth's surface.

Geostationary orbit: The satellite travels eastwards in an orbit directly above the equator. It is at a height of about 36,000 km and takes one day to make one complete orbit. Because the Earth is spinning beneath it in the same direction, so it appears to remain stationary at one point on the equator.

2.	Object	Description
	Navigation satellite	transmits data to ships and aircraft to locate their positions
	Communication satellite	relays telephone messages, radio, and TV signals
	Astronomical satellite	designed to study heavenly bodies
	Earth observation satellite	sends back information about the Earth and its surroundings
	Space station	a large space craft that stays in orbit all the time

- 3. Refer to page 106 of the Pupil's Book.
- 4. GPS is a space-based global navigation system. It provides location and time information in all kinds of weather, at anytime, and anywhere on the Earth.

Additional Exercise:

MCQs

(a)	Space is the area beyond	l the Earth's atmosphere whe	ere there is no	
	air water	light	[air]	
(b)	Great clouds of dust and	l gas in space are called		
	stars	planets	nebulae	[nebulae]
(c)	A galaxy is a band of	spinning in sp	pace.	
	stars	planets	moons	[stars]

(d)	Robot space craft are ca	alled		
	satellites	probes	space stations	[probes]
(e)	Any object that that ort	oits or circles around somethi	ng else is called a	·
	planet	satellite	comet	[satellite]
(f)	An orbit of a satellite an	cound the Earth is called a $_$		
	polar orbit	geocentric orbit	geostationary orbit [geocentric orbit]
(g)	An orbit of a satellite of	ver the Earth's poles is called	a	
	polar orbit	geostationary orbit	geocentric orbit	[polar orbit]
(h)	Landsat is an Earth obs	ervation satellite which has a	n orbit time of	•
	1 hr	1½ hr	1 ³ / ₄ hr	[1¾ hr]
(i)	within 100 metres.	tes transmit data so that ship	s and aircraft can locate the	ir positions to
	Earth observation	Navigation	Astronomical	[Navigation]
(j)	A stat	ion is a large spacecraft whic	h stays in orbit all the time.	
	bus	train	space	[space]

Lesson plan

Date:

Time: 40 mins

Unit: 11 Topic: Exploring space	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
1. Probes and satellites	 to explain what a space probe does to explain how a satellite works 	 describe a space probe and explain its functions describe various kinds of satellite and explain their orbits 	Pictures of space probes, natural and artificial satellites Diagrams of the orbits of satellites	Reading: p 105, 106 CW: Q1 (a) (b) Q3 HW: Q1 (c) (d) (e)
Key words: space probe, Method: Show the stude	, satellite, natural satellite, ents pictures of space prob	artificial satellite, geocentric or es.	bit, polar orbit, geostation	ary orbit
Ask : How have scientists anyone been to the Moor into space. These robot s planets they visit.	learned about the planets n? Explain that astronauts pacecraft are called space j	and other heavenly bodies in s have travelled to the Moon, bu probes. Space probes carry can	pace? How far is the Moo t robot spacecraft have tra ıeras and different instrun	n from the Earth? Has velled much further nents to study the
Ask: What is a satellite? I	Explain that a satellite is an	ly object that circles or orbits a	round another object.	
Ask: What does the Moo Earth are called natural s	n orbit? What does the Eau atellites, and so are asteroi	rth orbit? Does the Sun orbit a ids, comets, etc.	round anything? Explain t	hat the Moon and the
Ask: What is a rocket? W artificial satellites are and	hat is a spaceship? With th I how they are used to coll	e help of pictures explain abou ect information about space an	t space travel and spacecra d the planets.	aft. Discuss what
Ask : What is an orbit? W: around the Earth. Explai	ith diagrams and pictures (n the orbits of artificial sat	explain the orbit of the Earth a cellites and what they are used 1	round the Sun and the orb or.	it of the Moon

Lesson plan

Date:

Time: 40 mins

Unit: 11 Topic: Exploring space	Teaching objectives	Learning outcomes Students should be able to:	Resources/Materials	Activities/CW/HW
2. Uses of satellites	• to explain the uses of satellites	 explain how different kinds of satellites are useful 	Pictures of different kinds of artificial satellite	Reading: p 106, 107 CW: Q2 HW: Q4
Key words: communicati positioning system	ion satellite, Earth observat	ion satellite, navigation satellit	e, astronomical satellite, s	pace station, global
Method : With the help of Earth. Ask : How and whe the time.	f pictures, explain the uses of the uses of the content of the second scientists stay in space	of different kinds of satellite th ce? Explain that scientists can a	at are used for gathering i stay in a large spacecraft t	nformation about the hat stays in orbit all
Ask: How do mobile phot	nes work? How can you tall	k to people in far off countries	using a mobile phone?	
Explain that GPS is a space	ce-based global navigation	system that provides reliable lo	cation and time informat	ion in all kinds

of weather, and at all times, anywhere on or near the Earth. GPS stands for Global Positioning System. It is widely used for commerce, banking, science and mobile phone operation. Name: _____ Date: _____

1. Draw lines to match each object to its description:

	Object	Description
a.	space probe	a large spacecraft that stays in orbit all the time
b.	satellite	a space-based global positioning system that provides reliable location and time information at all times anywhere on or near the Earth
c.	artificial satellite	an object that orbits or circles around another
d.	geocentric orbit	robot spacecraft that carries cameras and instruments
e.	space station	satellites that are put into orbit by man
f.	GPS	a large spacecraft that stays in orbit all the time

Test paper 1

Test paper 1

Time 2¹/₂ hours

Total marks: 100

[10]

[10]

- 1. Attempt the following questions. (All questions carry equal marks.)[50]
 - (a) How does a scientist find answers to questions?
 - (b) Describe how the transport of materials takes place in plants.
 - (c) Define respiration. Name the parts of the human respiratory system.
 - (d) Describe the structure of the human heart.
 - (e) What is the nervous system made up of?
 - (f) What is 'sensitivity'? How do single-celled organisms respond to changes in their environment?
 - (g) What are tropic movements? How do auxins control tropic responses in plants?
 - (h) What is coordination? How is co-ordination brought about in our bodies?
 - (i) How do green plants manufacture their food? What are the things necessary for photosynthesis to take place?
 - (j) How can you test a leaf for the presence of starch?
- 2. Fill in the blanks to complete the statements.
 - (a) Scientific equipment is called _____.
 - (b) ______ of animals and plants are kept in a laboratory.
 - (c) Xylem in plants is made up of long dead cells called _____
 - (d) ______ is the evaporation of water from the leaves of a plant.
 - (e) A thin-walled blood vessel which forms a connection between an artery and a vein is called a
 - (f) Food is broken down into simple soluble substances by the action of ______
 - (g) The nervous system is made up of specialized cells called _____.
 - (h) The eye is a _____ organ which helps us to see.
 - (i) ______ are chemical substances in plants that speed up stem growth.
 - (j) The ______ is an organ that controls all the parts of the body.

3. Differentiate between:

- i) a villus an alveolus
- ii) an artery a vein
- iii) an animal cell a plant cell
- iv) photosynthesis respiration

- 4. Attempt any two questions:
 - i) Draw and label the parts of the eye
 - ii) Draw the apparatus that can be used to show that oxygen is given out during the process of photosynthesis.
 - iii) Draw a diagram of the cycle of photosynthesis and respiration showing how these processes help to maintain a balance in the atmosphere.
- 5. Label any two of the following diagrams:

A. B. C.

> OXFORD UNIVERSITY PRESS

[20]

[10]

Test paper 1

Answers to Test paper 1

- 1. a) A scientist solves a scientific problem by locating the problem, collecting information, performing experiments, recording the observations, and then drawing a conclusion.
 - b) Materials are circulated in plants in a system of tubes called the vascular system. The vascular system is composed of specialized tissues called xylem and phloem. Xylem is made up of long, dead cells called vessels, which have thick walls. They carry water and dissolved minerals from the roots, through the stem to the veins in the leaves.

Phloem is made up of long, thin-walled tubes called sieve tubes. Sieve tubes are made up of living cells whose horizontal walls have tiny holes like a sieve. Food flows from the leaves to other parts of the plant through the sieve tubes.

- c) Respiration is the process by which food is oxidized in the body cells to produce energy. Oxygen is taken into the body from the air and carbon dioxide is given out. The respiratory system is composed of the nose, windpipe or trachea, bronchi, bronchioles, and air sacs or alveoli.
- d) The human heart is a muscular organ found in the centre of the chest. It has four chambers. The upper two chambers or atria are thin-walled, while the lower two chambers or ventricles are thick-walled. By the pumping action of the heart, the oxygenated blood is circulated to all parts of the body, and the deoxygenated blood from the cells is taken to the lungs for removal of carbon dioxide and for getting fresh oxygen.
- e) The brain is a part of the central nervous system and is the main control centre of the whole body. It is made up of nervous tissue which is hollow.

The brain is located in the skull in a bony box called the cranium. It receives messages from the sense organs and sends orders to the muscles to produce suitable responses.

The spinal cord is also a part of the central nervous system. It is a thick cord made of nervous tissue which passes through the backbone or vertebral column. It is connected to the brain at the top, and as it passes down the vertebral column it gives off millions of branches called nerves which carry messages between the body and the central nervous system. Nerves are actually bundles of neurons which are covered by a tough covering or sheath. The nerves which carry messages from the sense organs to the central nervous system are called sensory nerves. The nerves which carry messages to the muscles are called motor nerves.

f) All living organisms are sensitive to changes inside and outside their bodies. Animals respond to changes in their environment by moving elsewhere. Plants respond to changes in their surroundings by moving their parts.

In some simple, unicellular organisms such as amoeba, chlamydomonas, and euglena, the cytoplasm as a whole is sensitive. The eye-spots in euglena and chlamydomonas help them to detect changes in light intensity, enabling them to move away from bright light.

g) The response or bending of the shoot towards light is called phototropism. This response is necessary because plants need light to make food. The shoot grows towards the light and the leaves turn their upper surfaces towards it. The bending or growth of the roots towards the soil is called geotropism.

The responses of the root and shoot are controlled by a chemical substance called auxin. Auxin is made in the cells found at the tip of the root and shoot. Auxin speeds up stem growth and slows down root growth.

Test paper 1

The activity of auxin is affected by light. When light falls on a plant from above, the stem grows straight. When light comes from one side, the auxin collects on the opposite side. This causes the stem to bend towards light.

h) All the organs of the body work in coordination with each other. This means that they do their work at the right time and at the right speed, to serve the body as a whole. Without coordination, the whole body would just be a collection of organs.

If we observe carefully, we find that our body is performing many functions at the same time. Food is being digested; the blood is circulating the digested food and oxygen to all parts of the body; the kidneys are removing the waste; the lungs are taking in oxygen and removing carbon dioxide.

Brain plays a very important part in the body's coordination. It receives messages from the muscles and sense organs and it sends back messages in return. This is how it controls all the different parts of the body so that they can work together.

Coordination is also brought about by chemical substances called hormones which are produced in a set of glands called the endocrine glands. The endocrine glands release tiny amounts of hormones which circulate with the blood.

Certain parts of the body called target organs respond to the hormones. They control different parts of the body to bring about various responses such as fear, happiness, blushing, etc. Responses to hormones may last for a few minutes or may go on for many years.

i) The process by which green plants make their food is called photosynthesis. Photo means *light* and synthesis means *putting together*. So photosynthesis means *putting together* by *light*. For photosynthesis to take place, a plant must have four things: carbon dioxide, water, chlorophyll, and light.

Process of photosynthesis

Air, containing carbon dioxide, gets into the leaf through millions of stomata. The air then goes into the spaces between the cells that make food. Water and minerals come from the soil. The carbon dioxide dissolves in the water on the cell walls and passes into the cells with the water. The cells that make food contain the green material chlorophyll.

Inside a leaf, the cells that contain chlorophyll make carbohydrates. This is a chemical change which can only take place in the presence of light.

Carbon dioxide + water $\xrightarrow{\text{(sunlight)}}$ glucose and oxygen

Glucose made in the leaves is changed into starch so that it can be stored in the cells.

j) Experiment: <u>Test for starch</u>

Method: Cut off a leaf which has been kept in the in the light for a few hours. Boil the leaf for one minute to kill the cells. Put the leaf into a test tube with a little alcohol. Then place the tube in a beaker of hot water for 5 minutes. This will remove all the chlorophyll inside the leaf. When the leaf becomes transparent, remove it from the test tube and wash it with warm water. Put the leaf on a white tile and add a few drops of iodine solution. The colour of the iodine should turn dark blue indicating that the leaf contains starch.

- 2. apparatus, Specimen, vessels, Transpiration, capillary, enzymes, neurons, sensory, Auxins, brain.
- 3. i) A villus is a finger-like projection in the intestine, which helps to absorb digested food. An alveolus is a balloon-like structure in the lungs which helps to exchange gases.
 - ii) An artery is a blood vessel that takes blood away from the heart. It has thick muscular walls.

A vein is a blood vessel that takes blood to the heart. It has thin walls and it has valves which ensure the flow of blood in one direction only.

iii) An animal cell has no definite shape. It has a thin cell membrane. The nucleus is in the centre of the cell. It has small vacuoles scattered in the cytoplasm.A plant cell has a thick cell wall made of cellulose. It has a large central vacuole which is filled

A plant cell has a thick cell wall made of cellulose. It has a large central vacuole which is fille with cell sap. Its nucleus is to one side.

iv) The process by which green plants make glucose from simple substances like carbon dioxide and water, in the presence of sunlight, is called photosynthesis. It is a building-up process. The process by which food is broken down to release energy is called respiration. Carbon dioxide and water are produces as a result and energy is released in the form of heat.

Q4 and Q5: see Pupil's Book
Test paper 2

Time 2¹/₂ hours

Total marks: 100

[40]

[20]

[30]

[10]

1. Attempt any 8 questions. (all questions carry equal marks.)

- a) What is the atmosphere? What is the fraction of the different gases found in it?
- b) Describe a barometer. How is the weather affected by changes in air pressure?
- c) Describe an atom. How are electrons distributed in an atom?
- d) What is a solution? What are the various kinds of solutions?
- e) Describe the formation of ionic bonds.
- f) Describe the formation of covalent bonds.
- g) What are the various types of mixtures?
- h) Describe the various methods of separating mixtures.
- i) Write the symbols and formulae of the following elements and compounds: carbon, calcium, chlorine, zinc, copper, gold, silver, iron, mercury, sodium, sodium chloride, carbon dioxide, water, glucose, calcium oxide.
- j) What is the difference between ionic and covalent compounds?

2. Attempt any two questions.

- a) Prove by an experiment that the air exerts pressure.
- b) How would you separate a mixture of salt, sand, and iron filings?
- c) How can we separate the components of a mixture of coloured compounds such as black ink?
- d) How could you obtain pure solvent from a solution?

3. Differentiate between:

- a) Symbol and formula
- b) Mixture and compound
- c) Atom and ion
- d) Suspension and emulsion
- e) Mass number and atomic number
- 4. Draw the following atoms:

hydrogen	atomic number 1	mass number 1
chlorine	atomic number 17	mass number 35

Answers to Test paper 2

1. a) The Earth is surrounded by a layer of air which is like a huge ocean. It extends hundreds of kilometres above the surface of the Earth. This ocean of air is called the atmosphere. The atmosphere is made up of several layers of air, containing mixtures of different gases.

About one-fifth of the air is oxygen, nearly four-fifths is a gas called nitrogen, and the rest is made up of argon, carbon dioxide, and small amounts of other gases.

The troposphere is the layer nearest to the surface of the Earth. It is about 10 kilometres thick at the Poles and 16 kilometres thick at the Equator. One-fifth of the troposphere is made up of oxygen and four-fifths of it is made up of nitrogen. Other gases, such as carbon dioxide, argon, etc. are present in very small quantities.

The tropopause is above the troposphere. It is the boundary between the troposphere and the stratosphere. Going upward from the surface, it is the point where air ceases to cool with height, and becomes almost completely dry. It does not have enough oxygen for living things to survive in.

The stratosphere is above the troposphere. It is 3 kilometres thick and it contains a gas called ozone which is like oxygen. It forms a protective shield around the Earth which stops the harmful rays of the Sun from reaching it.

The top layer of the atmosphere is called the ionosphere. There is very little air pressure present in it. About 1600 kilometres above the Earth the atmosphere fades into Space.

b) A simple barometer consists of a long glass tube which is sealed at one end. It is filled with mercury and inverted in a dish containing mercury. The height of the column of mercury in the glass tube measures the atmospheric pressure which is equal to 760 millimetres of mercury at sea level.

The height of the mercury column moves up when the pressure increases, and moves down when the pressure decreases.

A simple barometer consists of a long glass tube which is sealed at one end. It is filled with mercury and inverted in a dish containing mercury. The height of the column of mercury in the glass tube measures the atmospheric pressure which is equal to 760 millimetres of mercury at sea level.

The height of the mercury column moves up when the pressure increases, and moves down when the pressure decreases.

Changes in air pressure cause changes in weather. On the surface of the Earth, air always moves from areas of high pressure to areas of low pressure. Temperature has a great effect on air pressure. As warm air rises, it produces an area of low pressure near the ground. Cooler air moves down to take its place. Rainclouds are formed in low pressure areas. Low pressure causes strong dust storms and hurricanes because air rushes from regions of high pressure to regions of low pressure. When there is high pressure the weather is often sunny and fine.

c) The word atom is derived from the Greek word *atomos*, which means indivisible. An ancient Greek philosopher named Democritus suggested that all matter is composed of tiny indivisible particles called atoms. Modern research has shown that the atom is made up of tiny particles called electrons, protons, and neutrons.

Electron is a particle of the atom. It is negatively charged and it revolves around the nucleus in a specific path called an orbit. Proton is a positively charged particle which is present in the nucleus of the atom. Neutron is a neutral particle which is found in the nucleus of the atom. It has no charge. It is equal in mass to a proton.

The number of protons in an atom is called its atomic number. For example, an oxygen atom has eight protons so its atomic number is 8. The sum of the number of protons and neutrons in an atom is called its mass number or atomic mass.

Electrons in an atom revolve around the nucleus in definite paths called orbits or shells, namely K, L, M, N. The number of electrons in the K shell is 2, in the L shell 8, in the M shell 18, and so on. The last or outermost shell cannot contain more than 8 electrons. As an example, the number of electrons in a sodium atom is 11. The distribution of electrons is: 2 electrons in K, 8 electrons in L and 1 electron in the outermost shell, M.

d) A solution is a mixture in which a solid is dissolved in a liquid. The solid is called the solute and the liquid is called the solvent. For example, if we dissolve sugar in water, sugar is the solute and water is the solvent. In a solution, the particles of the solute cannot be seen and the solution is clear.

An aqueous solution is a mixture of water and any substance that is solvent in it. For example, a solution of water and common salt or sugar.

A dilute solution is one in which a smaller amount of solute is dissolved in the solvent.

A concentrated solution is one in which a lot of solute is dissolved in the solvent. For example, one table spoon of salt in two cups of water is more dilute than three tablespoons of salt in two cups of water.

Concentrated solutions can be mixed with solvents to make dilute solutions, e.g. Fruit juice concentrates can be mixed with water to dilute them.

- e) When an atom loses or gives away an electron, it becomes a positively charged ion. On the other hand, when an atom gains or receives an electron, it becomes a negatively charged ion. If two atoms come close to each other, one of the atoms gives away an electron to the other and becomes a positive ion, while the atom that receives the electron becomes a negative ion. The electrostatic force that holds these ions together to form a compound is called an ionic bond.
- f) When atoms come close to each other and begin sharing electrons, a covalent bond is formed. For example, one oxygen atom shares a pair of electrons with two hydrogen atoms to form a molecule of water.
- g) Mixtures are of the following types:
 - 1. Liquid and gas: For example, soda water which is a mixture of carbon dioxide and water.
 - 2. Liquid and solid: Lemon juice and sugar are a mixture of a liquid and a solid.
 - 3. Liquid and liquid: Vinegar and water are a mixture of two liquids.
 - 4. Solid and solid: For example, copper and nickel are mixed to form metals from which coins are made.
 - 5. Gas and gas: For example, air is a mixture of many gases.
- h) The components of a mixture can be separated easily using the following simple methods.
 - i. Filtration: When a solution is passed through filter paper, the solid particles are left behind on the filter paper and the clear liquid passes through it. This liquid is called the filtrate.
 - ii. Evaporation: If the solute is soluble in the solvent, it can be separated from the solvent by evaporating the solvent by heating the solution. When the solvent evaporates, the solid is left behind.
 - iii. Crystallization: When a solution is heated until most of the solvent evaporates, a saturated solution is left behind. The solution is then allowed to cool slowly so that crystals of the solid are formed. These crystals can be dried between folds of filter paper.

Distillation: This is a way of obtaining a pure solvent from a solution

- i) C, Ca, Cl, Zn, Cu, Au, Ag, Fe, Hg, Na, NaCl, CO₂, H₂O, C₆H₁₂ O₂₂, CaO
- j) Properties of ionic compounds
 - i. They are usually hard solids.
 - ii. They have high melting and boiling points.
 - iii. They are generally soluble in water.
 - iv. In molten or solution form, they are good conductors of electricity.

Properties of covalent compounds

- i. They exist in all three states: solid, liquid, and gas.
- ii. They do not conduct electricity.
- iii. They have low melting and boiling points.
- iv. They are volatile; that is, they evaporate easily.
- v. They are soluble in covalent solvents.
- 2. a) Experiments to prove that air exerts pressure
 - i. Take an empty tin can and heat it to remove all the air inside. Now screw on the cap tightly. The can will crumple due to outside air pressure.
 - ii. Fill a glass tumbler to the brim with water. Place a piece of cardboard on it and invert it. Remove your hand. The cardboard will not fall because the air will be exerting pressure on it from below.
 - b) Experiment: To separate a mixture of salt, sand, and iron filings

Method:

Stir the mixture with a bar magnet. The iron filings will stick to it. Now add water to the mixture of salt and sand and stir gently. Salt will dissolve in water. Pass the solution through a filter paper. The sand particles will be left behind on the filter paper. The filtrate contains salt and water. Heat the filtrate until most of the water has evaporated. Allow the solution to cool slowly; crystals of salt will form.

c) Paper chromatography can be used to separate a mixture of coloured substances, such as those found in black ink.

Experiment

Add a small drop of black ink to the centre of a piece of filter paper and allow it to dry. Add three or four more drops on the same spot. Add some water onto the spot, one drop at a time. The ink spreads out making coloured rings on the paper. The number of rings indicates the number of different coloured substances the ink contains.

d) Distillation is a way of obtaining a pure solvent from a solution.

Experiment

Set up the apparatus.

The solution is heated in the flask. It boils and steam rises into the condenser. Salt is left behind. The condenser is cold, so the steam condenses into water inside it. The water drips into the beaker. It is completely pure and is called distilled water.

3. a) A symbol is a short form name of an element. A formula is the name of a compound written in symbols. For example: the symbol for calcium is Ca and the formula for calcium oxide is CaO.

- b) A mixture is not a pure substance. It contains two or more substances which are not chemically combined. Each substance retains its properties and the components can be separated easily. For example, when salt and sugar are put together they form a mixture.When two or more atoms combine chemically with each other, they form a compound. For example, sodium and chlorine combine to form sodium chloride (common salt).
- c) An atom is a neutral particle. The number of the positively charged protons in the nucleus of the atom is equal to the number of the negatively charged electrons in the outer orbits of the atom.

When an atom loses or gains electrons it becomes a charged particle called an ion. When an atom loses an electron it becomes a positively charged ion. When an atom gains electrons it becomes a negatively charged ion.

- d) A suspension is a mixture in which the particles of the solute are not soluble in the solvent and can be seen floating in it. For example, if chalk is mixed with water, the particles of chalk will be seen floating in the water and the solvent will appear to be milky. If the particles of a solute are heavy and sink to the bottom of the solvent, they form a layer called sediment. When oil is added to water and shaken, it forms tiny droplets in the water making a milky solution which is called an emulsion.
- e) The number of protons in an atom is called its atomic number. For example, an oxygen atom has eight protons so its atomic number is 8.

The sum of the number of protons and neutrons in an atom is called its mass number or atomic mass.

For example, a carbon atom has six protons and six neutrons, so its mass number is 12. The atomic number and mass number of an atom is written so that, where X is the name of the

atom, A is the mass number and Z is the atomic number $\frac{A}{Z}X$.

For example: $\frac{12}{6}$ C

This represents a carbon atom in which the atomic number is 6 and the mass number is 12.

4. Refer to Pupil's Book.

Test paper 3

Time 2¹/₂ hours

Total marks: 100

[40]

[25]

[25]

- 1. Attempt any 8 questions. (All questions carry equal marks.)
 - a) Where does all the energy on Earth come from? Describe the various kinds of energy.
 - b) How is energy transferred in an environment?
 - c) What is a machine? What is the mechanical advantage of a machine?
 - d) Write short notes on any three: lever, inclined plane, wedge, screw, wheel and axle, pulley.
 - e) What is a block and tackle? How does it increase the lifting force?
 - f) Describe a gear. What are gears used for?
 - g) Define reflection of light. What are the laws of reflection? What are the characteristics of an image formed by a plane mirror?
 - h) How are sound waves produced? What are the characteristics of sound?
 - i) What are artificial satellites?
 - j) Describe some uses of artificial satellites.
- 2. Differentiate between:
 - a) Potential and kinetic energy
 - b) Image formed by a convex mirror and an image formed by a concave mirror
 - c) Period and frequency of sound waves
 - d) Probes and satellites
 - e) Geostationary orbit and polar orbit of satellites
- 3. Answer any 4 Questions:
 - a) Draw a concave mirror and label the following on it: radius of curvature, principal focus, focal length, centre of curvature, pole. Draw lines to show the kind of image that will be formed, if the object is placed in front of it.
 - b) Prove the laws of reflection by an experiment
 - c) Prove by an experiment that sound does not travel through vacuum.
 - d) Draw lines to show the polar and geostationary orbits of satellites.
 - e) Draw a periscope and draw lines to show it can be used to observe objects.
- 4. Fill in the blanks to complete the statements:
 - a) Oil and coal are called _____
 - b) The energy needed to run machines and engines is provided by burning
 - c) Moving particles have ______ energy.
 - d) The squeezing together of atoms is called _____
 - e) The amount of effort applied to work is called _____
 - f) The image of an object which can be formed is called a _____ image.

[10]

- g) A ______ mirror gives a wide view.
- h) Sound cannot travel through _____
- i) A fast-vibrating body has a high ______ and it produces a shrill sound.
- j) ______ satellites relay telephone messages and radio and television signals.

Answers to Test paper 3

a) Energy is the ability to work. All the energy on Earth comes from the Sun. The Sun's energy is called solar energy. It changes into other kinds of energy when it reaches the Earth.
Electricity is the most convenient form of energy. It is clean to use. It can travel over long distances along wires. It can easily be changed into other forms of energy, such as heat and light. Most of the electricity we use in our homes is made by generators at power stations. Sound is a type of energy. When an object vibrates, it makes the air around it vibrate. The vibrations travel through the air as sound waves. The sound waves move sound energy from one place to another. All moving things make sound. A jet engine produces a great deal of sound energy. Firecrackers produce a lot of noise when they explode.

Fireworks are made of gunpowder and other explosive chemicals. These chemicals contain a lot of energy. Fireworks use this chemical energy. When gunpowder burns, it releases large amounts of energy in the form of sound, heat, and light.

Engines use the chemical energy of petrol. Petrol is burned inside the engine. A lot of kinetic and heat energy is released. Chemical energy in food is used by humans and animals to work and to keep warm.

The atoms of some metals can be changed or split to make new atoms. The nucleus of a uranium atom can be split into two. This breaking apart is called fission. When the nucleus of a uranium atom splits, some of its neutrons escape. These neutrons crash into other uranium atoms causing them to split. This splitting of the atom releases huge amounts of heat called nuclear energy. This heat is used to produce electricity.

Some atoms cannot be split, but they can be squeezed together. This process is called fusion. Hydrogen atoms can be squeezed together, at very high temperatures, to form large atoms. This fusion process releases large amounts of energy. This energy can be controlled and used to produce electricity. Solar energy is produced by the fusion of hydrogen atoms, which crash into each other, making larger atoms of helium gas.

The human body uses energy all the time. Energy is needed for work and play, to keep warm in winters; it is used even when you are sleeping. The energy for your body comes from the food you eat. Food contains chemical energy. Some foods like lettuce and tomatoes contain less energy. Bananas, white rice, eggs, meat, and butter contain a lot of energy. Energy from food is released only after it has been broken down or digested in the body. Fats and carbohydrates produce heat energy for the body. Proteins also produce energy for muscle growth and repair.

b) At the beginning of any food chain is a plant using sunlight to convert water and carbon dioxide into carbohydrate. Animals then feed on plants and use the carbohydrates for energy to grow and move. These animals in turn may be eaten by other animals and so energy passes along the food chain. However, at each stage in the food chain energy is lost. When a rabbit eats a lettuce only a small part of the energy is saved as new growth. Most is used to keep the rabbit alive, and some is just not absorbed from the lettuce during digestion. The same energy waste happens at other stages in the food chain. Because of this waste, the number of animals at each stage in the chain decreases.

c) A machine is a device which helps us with our work. For instance, a car helps us to travel long distances in a short period of time. A clock helps us to measure time.

Machines cannot work on their own, as they need some kind of energy to function. A car needs petrol to burn as fuel and a sewing machine is driven by an electric motor. The kinds of energy which are needed to run machines can be mechanical, electrical, or chemical. All machines need a steady supply of energy to keep them working.

Machines provide a mechanical advantage, which is the extra force that is gained by using simple machines. In other words, less effort needs to be applied to do more work.

d) <u>Lever</u>

A lever is a simple machine in the form of an arm which can lift a heavy load by applying very little effort. The point on which a lever rests and about which it turns is called the fulcrum. The fulcrum can be anywhere along the length of the arm. The power that is applied to lift the load is called the effort and the weight that is lifted is called the load.

Inclined plane

A heavy load can be raised easily by pulling it along a sloping surface rather than by lifting it. For example, a sloping plank can be used to push a wheelbarrow over steps.

Wedge

A wedge is actually two inclined planes put together. It is a simple machine which changes the direction of a force as well as increases it. An axe is a wedge which is used as a cutting machine. The downward movement of the axe creates a strong sideways force that splits the wood. A sharp axe has a greater splitting force than a blunt one.

<u>Screw</u>

A screw is a simple machine that is used to hold two things together. It is made up of a flathead attached to a rod which is pointed at one end. The rod has spiral grooves or threads on it. The screw is a special kind of inclined plane with a huge mechanical advantage. When you turn the head of a screw with a screwdriver, the spiral rod travels quite a long distance. It increases the force applied many times. Nuts and bolts are used to hold two or more parts together. A carjack, in which the screw raises an arm to lift up the car, is another example.

Wheel and axle

A wheel is a circular frame that turns. The axle is a rod that passes through a hole in the wheel. A wheel and an axle can be made to work if a rope is wound round them. A load attached to the axle-end of the rope will be pulled up if effort is applied to the wheel-end of the rope, as is done when drawing water from a well.

Pulley

A pulley is a simple machine made up of wheels. A pulley wheel turns on an axle. There is a groove around the rim of the pulley which holds the rope. A pulley is used for lifting heavy loads. One end of the rope is attached to the object to be lifted and effort is applied at the free end. It changes the direction of the pull. Since pulling is easier than lifting, the work becomes easier. The lifting force can be doubled if two pulleys are used.

e) A system with more than one pulley is known as a block and tackle. The pulleys are the blocks and the rope is the tackle.

You can increase the lifting-force by increasing the number of pulleys in a block and tackle; one is fixed to an overhead beam, while the other is fixed to the load. The rope is fixed to the beam too. Then it goes under the load pulley and over the fixed pulley. You pull on the free end.

- f) Inside machines, wheels often have notches or cogs, cut around the edge. Wheels like these are called gears. Each gear fits with another to pass on the motion of the machine. They are also useful for changing the direction and speed of movement.
- g) When rays of light fall on a polished surface like a plane mirror, they bounce back in such a way that they can produce an image. This bouncing back of light is called reflection.When rays of light coming from an object fall on a mirror, they follow certain laws, according to which an image is formed.

Laws of reflection

- 1. The incident ray, reflected ray, and normal ray all lie in the same plane; that is, they can be drawn on a flat piece of paper.
- 2. The angle of incidence is equal to the angle of reflection.

Characteristics of an image formed by a plane mirror

- 1. The image is upright.
- 2. The image is laterally inverted.
- 3. The image is of the same size as the object.
- 4. The image is formed as far behind the mirror as the object is in front of it.
- 5. The image formed is virtual in nature, that is to say, it cannot be made on a screen.
- h) When a body vibrates, it moves to and fro. Its forward movement presses the air pendulum in front of it. This is called a compression. When the body moves backward, the pressed layer of air stretches—this state is referred to as a rarefaction.

Continuous compressions and rarefactions produced by oscillations make sound waves. Sound waves are longitudinal waves. The oscillations which cause them are in the same direction as the motion of the wave.

The loudness of a sound depends on the amplitude of the vibrating body. If the amplitude is large, the result will be a loud sound. The loudness of sound also depends on the surface area of the vibrating body. A small drum will produce a softer sound than a big one. The distance from the vibrating body is another factor which influences the loudness of sound. As sound waves spread in all directions, they become weaker. Hence, if we stand near a vibrating body, we will hear a louder sound than if we are standing away from it

Another quality of sound is the pitch. Shrill sounds have a high pitch, while flat sounds have a low pitch. The pitch of a sound depends on the frequency of the sound waves produced by the vibrating body. A fast-vibrating body has a high frequency and produces a shrill sound. When we hear an orchestra playing, we can make out the sounds of the various instruments being played. We can also recognize the voice of a person we know. The specific quality of particular sounds is called timbre. Timbre is the combination of sound waves of different frequencies, which collectively make up the voice of a person or the sound of a musical

- instrument.
- Artificial satellites are satellites which are put into orbit by man. The first artificial satellite was Sputnik I which was launched by the Soviet Union on 4th October, 1957. Sputnik II was launched on 3rd November, 1957. It carried the first living passenger, a dog named Laika. The motion of a satellite or space station is directly related to the Earth's gravity. Once launched in the appropriate orbit these man-made spacecraft orbit the Earth without any

propulsion speed, because satellites have specific orbital speed to move around the Earth, depending on their distance from the centre of the Earth.

j) Satellites called communication satellites are used to relay telephone messages and radio and television signals. It is due to satellites such as these that we are able to watch live events like sports being played anywhere in the world, on our television sets.

Some artificial satellites carry instruments that gather and send back information about the Earth and its surroundings. This information is of great value to weather-forecasters, scientists, military planners, farmers, fishermen, etc. Landsat is one of many such stations. It has an orbit time of $1\frac{3}{4}$ hours. As it passes overhead, Landsat views a strip of the Earth's surface. The information collected is used to study such things as water pollution, the effects of industry on the environment, and to distinguish different types of crops. Landsat images are also used for map-making.

Navigation satellites transmit data so that ships and aircraft can locate their position to within 100 metres.

Astronomical satellites are designed to study heavenly bodies.

2. a) Atoms and molecules move about or vibrate all the time. Moving atoms have energy called kinetic energy. When an iron bar is cold, its atoms vibrate very slowly. If the bar is heated, its atoms start to move faster and faster. When the piece of iron becomes very hot, the atoms have so much kinetic energy that they break away from each other. Then the solid iron melts and becomes liquid iron.

Potential energy is the stored energy of a body, as a result of its position. A ball put on a high shelf has more potential energy than if it is placed on the floor. The ball gains extra energy because work is done when the ball was placed on the shelf. Potential or stored energy can be changed into kinetic or moving energy. If we push the ball from the shelf onto a pile of sand, it will make a pit in it. The potential energy of the ball on the shelf turns into kinetic energy when it is pushed. When you wind up a toy, energy is stored in the toy's spring. The potential energy changes into kinetic energy as the spring unwinds. It makes the toy work.

b) If an object is close to a concave mirror, an upright and magnified (large) image is formed. As with a flat mirror, the image cannot be picked up on a screen. Such an image is called a virtual image.

If an object is far away from a concave mirror, a small, inverted (upside down) image is formed. It can be picked up on a screen and is called a real image.

A convex mirror forms an upright, virtual image of an object placed in front of it. The image is smaller than the object and close to the mirror.

- c) The pendulum of a clock keeps time because it moves backwards and forwards regularly. This type of movement is called an oscillation. The time taken for one complete oscillation is called the period. The number of oscillations that are completed in one second is called the frequency of the oscillation.
- d) Robot spacecrafts are called space probes. Space probes carry cameras and many kinds of instruments to study the planets they visit. Most probes study a planet as they fly past it. But some actually land on the planet and report back from its surface.A satellite can be defined as any object, either man-made or natural, that orbits or circles

A satellite can be defined as any object, either man-made or natural, that orbits or circles around something else. For example, the Moon orbits around the Earth and is thus a satellite

of the Earth. The Earth orbits around the Sun and is a satellite of the Sun. Other examples of naturally occurring satellites include comets, asteroids, and other planets.

e) In polar orbits the satellite is in orbit over the Earth's poles. It travels from north to south around one side of the Earth, and then back from south to north on the other side. The Earth is also spinning beneath the satellite; hence it appears that the satellite is travelling in a spiral track over the Earth's surface.

In a geostationary orbit the satellite travels eastwards in an orbit directly above the Equator. It is at a height of about 36,000km and takes one day to make one complete orbit. Since the Earth is spinning beneath it in the same direction, it appears to remain stationary at one point on the Equator.

- 3. Refer to Pupil's Book.
- 4. fuel, fuel, kinetic, fusion, power, real, concave, vacuum, pitch, Communication

Notes			