NEW SYLLABUS MATHEMATICS WORKBOOK FULL SOLUTIONS

Consultant•Dr Yeap Ban Har Authors • Dr Joseph Yeo • Teh Keng Seng • Loh Cheng Yee • Ivy Chow

- Jacinth Liew • Ong Chan Hong • Low Pei Yun

ANSWERS

Chapter 1 Quadratic Equations and Functions

Basic

1. (a) $(x+3)^{2}=4$

$$
\begin{array}{rlrlrl}
x+3 & = \pm \sqrt{4} & & \\
& = \pm 2 & & \\
x+3 & =2 & \text { or } & x+3 & =-2 \\
x & =2-3 & & x & =-2-3 \\
x & =-1 & & x & =-5
\end{array}
$$

(b) $(2 x+1)^{2}=\frac{4}{25}$

$$
\begin{aligned}
2 x+1 & = \pm \sqrt{\frac{4}{25}} & & \\
& = \pm \frac{2}{5} & & \\
2 x+1 & =\frac{2}{5} & \text { or } & 2 x+1
\end{aligned}=-\frac{2}{5}, ~\left(\begin{array}{rlrl}
2 x & =-\frac{2}{5}-1 \\
2 x & =\frac{2}{5}-1 & 2 x & =-\frac{7}{5} \\
2 x & =-\frac{3}{5} & x & =-\frac{7}{10}
\end{array}\right.
$$

(c) $(3 x-4)^{2}=5$

$$
\begin{array}{rlrlrl}
3 x-4 & = \pm \sqrt{5} & & \\
3 x-4 & =\sqrt{5} & \text { or } & 3 x-4 & =-\sqrt{5} \\
3 x & =\sqrt{5}+4 & & 3 x & =-\sqrt{5}+4 \\
x & =\frac{\sqrt{5}+4}{3} & & x & =\frac{-\sqrt{5}+4}{3} \\
x & =2.08 \text { (to } 2 \text { d.p. } & & x & =0.59 \text { (to } 2 \text { d.p.) }
\end{array}
$$

(d) $\left(\frac{1}{2} x-1\right)^{2}=17$

$$
\begin{array}{rlrl}
\frac{1}{2} x-1 & = \pm \sqrt{17} \\
\frac{1}{2} x-1 & =\sqrt{17} \quad \text { or } \quad \frac{1}{2} x-1 & =-\sqrt{17} \\
\frac{1}{2} x & =\sqrt{17}+1 \quad \frac{1}{2} x & =1-\sqrt{17} \\
x & =2(\sqrt{17}+1) & x & =2(1-\sqrt{17}) \\
x & =10.25(\text { to } 2 \text { d.p. }) & x & =-6.25(\text { to } 2 \text { d.p.) }
\end{array}
$$

2. (a) $x^{2}+5 x-1=0$

$$
\begin{aligned}
x^{2}+5 x & =1 \\
x^{2}+5 x+\left(\frac{5}{2}\right)^{2} & =1+\left(\frac{5}{2}\right)^{2}
\end{aligned}
$$

$$
\left(x+\frac{5}{2}\right)^{2}=1+\frac{25}{4}
$$

$$
\left(x+\frac{5}{2}\right)^{2}=\frac{29}{4}
$$

$$
x+\frac{5}{2}= \pm \sqrt{\frac{29}{4}}
$$

$$
x+\frac{5}{2}=\sqrt{\frac{29}{4}} \quad \text { or } x+\frac{5}{2}=-\sqrt{\frac{29}{4}}
$$

$$
x=\sqrt{\frac{29}{4}}-\frac{5}{2} \quad x=-\sqrt{\frac{29}{4}}-\frac{5}{2}
$$

$$
x=0.193 \text { (to } 3 \quad x=-5.19 \text { (to } 3
$$

s.f.)
s.f.)
(b) $\quad x^{2}-7 x+3=0$

$$
\begin{aligned}
x^{2}-7 x & =-3 \\
x^{2}-7 x+\left(-\frac{7}{2}\right)^{2} & =-3+\left(-\frac{7}{2}\right)^{2} \\
\left(x-\frac{7}{2}\right)^{2} & =-3+\frac{49}{4}
\end{aligned}
$$

$$
\left(x-\frac{7}{2}\right)^{2}=\frac{37}{4}
$$

$$
x-\frac{7}{2}= \pm \sqrt{\frac{37}{4}}
$$

$$
x-\frac{7}{2}=\sqrt{\frac{37}{4}} \text { or } x-\frac{7}{2}=-\sqrt{\frac{37}{4}}
$$

$$
x=\sqrt{\frac{37}{4}}+\frac{7}{2} \quad x=-\sqrt{\frac{37}{4}}+\frac{7}{2}
$$

$$
x=6.54 \text { (to } 3 \text { s.f.) } \quad x=0.459 \text { (to } 3
$$

(c) $x^{2}+8 x+2.5=0$

$$
\begin{align*}
& x^{2}+8 x=-2.5 \\
& x^{2}+8 x+\left(\frac{8}{2}\right)^{2}=-2.5+\left(\frac{8}{2}\right)^{2} \\
& x^{2}+8 x+4^{2}=-2.5+4^{2} \\
&(x+4)^{2}=13.5 \\
& x+4= \pm \sqrt{13.5} \\
& x+4=\sqrt{13.5} \quad \text { or } \quad x+4 \\
& x=-\sqrt{13.5}-4 \\
& x=-0.326 \text { (to } \\
& 3 \text { s.f.) } x=-\sqrt{13.5}-4 \\
&=-7.67 \text { (to } \\
& 3 \text { s.f.) }
\end{align*}
$$

(d)

$$
x^{2}-11 x=7
$$

$$
\begin{aligned}
x^{2}-11 x+\left(-\frac{11}{2}\right)^{2} & =7+\left(-\frac{11}{2}\right)^{2} \\
\left(x-\frac{11}{2}\right)^{2} & =\frac{149}{4} \\
x-\frac{11}{2} & = \pm \sqrt{\frac{149}{4}} \\
x-\frac{11}{2} & =\sqrt{\frac{149}{4}} \text { or } x-\frac{11}{2}
\end{aligned}=-\sqrt{\frac{149}{4}} .
$$

(to 3 s.f.)
3. (a) $2 x^{2}+3 x+1=0$

$$
\begin{aligned}
a & =2, b=3, c=1 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-3 \pm \sqrt{3^{2}-4(2)(1)}}{2(2)} \\
& =\frac{-3 \pm \sqrt{1}}{4} \\
& =\frac{-3 \pm 1}{4} \\
& =\frac{-3+1}{4} \quad \text { or } \quad \frac{-3-1}{4} \\
& =-\frac{1}{2} \quad \text { or } \quad-1
\end{aligned}
$$

(b) $\quad 3 x^{2}=5 x+1$

$$
\begin{aligned}
& 3 x^{2}-5 x-1=0 \\
& a=3, b=-5, c=-1
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(-1)}}{2(3)} \\
& =\frac{5 \pm \sqrt{25+12}}{6} \\
& =\frac{5 \pm \sqrt{37}}{6} \\
& =\frac{5+\sqrt{37}}{6} \quad \text { or } \frac{5-\sqrt{37}}{6} \\
& =1.85 \text { (to } 3 \text { s.f.) or } \quad-0.180 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(c)

$$
7 x=2 x^{2}+4
$$

$$
-2 x^{2}+7 x-4=0
$$

$$
a=-2, b=7, c=-4
$$

$$
\begin{aligned}
x & =\frac{-7 \pm \sqrt{7^{2}-4(-2)(-4)}}{2(-2)} \\
& =\frac{-7 \pm \sqrt{49-32}}{-4} \\
& =\frac{-7 \pm \sqrt{17}}{-4}
\end{aligned}
$$

$$
=\frac{-7+\sqrt{17}}{-4} \quad \text { or } \quad \frac{-7-\sqrt{17}}{-4}
$$

$$
=0.719 \text { (to } 3 \text { s.f.) or } 2.78 \text { (to } 3 \text { s.f.) }
$$

(d) $\quad 3-4 x^{2}=7 x$

$$
\begin{aligned}
& -4 x^{2}-7 x+3=0 \\
& a=-4, b=-7, c=3
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{-(-7) \pm \sqrt{(-7)^{2}-4(-4)(3)}}{2(-4)} \\
& =\frac{7 \pm \sqrt{49+48}}{-8} \\
& =\frac{7 \pm \sqrt{97}}{-8} \\
& =\frac{7+\sqrt{97}}{-8} \quad \text { or } \frac{7-\sqrt{97}}{-8} \\
& =-2.11 \text { (to 3 s.f.) or } 0.356 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

4. (i)

x	-1	0	1	2	3	4	5
y	17	7	1	-1	1	7	17

(ii)

(iii) $x=1.3$ or 2.7
5. (i)

x	-2	-1	0	1	2	3	4	5	6
y	-7	0	5	8	9	8	5	0	-7

(ii)

(iii) $x=-1$ or 5
6. (i) When $y=0$,

$$
(x-2)^{2}-7=0
$$

$$
\begin{array}{rlrlrl}
x-2 & = \pm \sqrt{7} & & \\
x-2 & =\sqrt{7} & \text { or } & x-2 & =-\sqrt{7} \\
x & =\sqrt{7}+2 & & x & =-\sqrt{7}+2 \\
x & =4.65 \text { (to } 3 \text { s.f.) } & x & =-0.646 \text { (to } 3 \text { s.f.) }
\end{array}
$$

\therefore The graph cuts the x-axis at $(4.65,0)$ and
$(-0.646,0)$
When $x=0$,
$y=(0-2)^{2}-7$
$y=4-7$
$y=-3$
\therefore The graph cuts the y-axis at $(0,-3)$.
(ii) Coordinates of the minimum point are $(2,-7)$.
(iii)

(iv) The equation of the line of symmetry $x=2$.
7. (i) When $y=0$,

$$
\begin{array}{rlrl}
-(2 x+1)^{2}+5 & =0 & & \\
-(2 x+1)^{2} & =-5 & & \\
(2 x+1)^{2} & =5 \\
2 x+1 & = \pm \sqrt{5} & & \\
2 x+1 & =\sqrt{5} & \text { or } 2 x+1 & =-\sqrt{5} \\
2 x & =\sqrt{5}-1 & 2 x & =-\sqrt{5}-1 \\
x & =\frac{\sqrt{5}-1}{2} & x & =\frac{-\sqrt{5}-1}{2} \\
& =0.618 \text { (to } 3 & & =-1.62 \text { (to } 3
\end{array}
$$

\therefore The graph cuts the x-axis at $(0.618,0)$ and $(-1.62,0)$.
When $x=0$,
$y=-[2(0)+1]^{2}+5$
$=4$
\therefore The graph cuts the y-axis at $(0,4)$.
(ii) Coordinates of the maximum point are $\left(-\frac{1}{2}, 5\right)$.
(iii)

(iv) The equation of the line of symmetry is $x=-\frac{1}{2}$.
8. (i) When $y=0$,

$$
(x+1)(x-3)=0
$$

$$
x=-1 \text { or } x=3
$$

\therefore Coordinates of A are $(-1,0)$ and coordinates of B are $(3,0)$.
When $x=0$,

$$
\begin{aligned}
y & =(0+1)(0-3) \\
& =-3
\end{aligned}
$$

\therefore Coordinates of C are $(0,-3)$.
(ii)

(iii) The equation of the line of symmetry is $x=1$.

Intermediate

9. (a) $5 x^{2}-2 x=0$

$$
5 x(x-2)=0
$$

$$
\begin{aligned}
5 x & =0 & \text { or } & x-2
\end{aligned}=0
$$

(b) $(x-1)(x+1)=15$

$$
\begin{array}{rlrlr}
x^{2}-1 & =15 & & \\
x^{2}-16 & =0 & & \\
(x+4)(x-4) & =0 & & \\
x+4 & =0 & \text { or } & x-4 & =0 \\
x & =-4 & & x & =4
\end{array}
$$

(c) $\quad x^{2}+4 x=17$
$x^{2}+4 x-17=0$
$a=1, b=4, c=-17$
$x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-17)}}{2(1)}$
$=\frac{-4 \pm \sqrt{16+68}}{2}$
$=\frac{-4 \pm \sqrt{84}}{2}$

$$
\begin{aligned}
& =\frac{-4+\sqrt{84}}{2} \text { or } \frac{-4-\sqrt{84}}{2} \\
& =2.58 \text { (to } 3 \text { s.f.) or }-6.58 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(d) $x(2 x+7)-3(x+2)=0$

$$
\begin{array}{rlrl}
2 x^{2}+7 x-3 x-6 & =0 \\
2 x^{2}+4 x-6 & =0 \\
x^{2}+2 x-3 & =0 \\
& & \\
(x+3)(x-1) & =0 & & \\
x+3 & =0 & \text { or } & x-1
\end{array}=0
$$

(e)
(f)

$$
(3 x-1)^{2}=12 x+18
$$

$$
\begin{array}{r}
9 x^{2}-6 x+1-12 x-18=0 \\
9 x^{2}-18 x-17=0
\end{array}
$$

$$
a=9, b=-18, c=-17
$$

$$
x=\frac{-(-18) \pm \sqrt{(-18)^{2}-4(9)(-17)}}{2(9)}
$$

$$
=\frac{18 \pm \sqrt{324+612}}{18}
$$

$$
=\frac{18 \pm \sqrt{936}}{18}
$$

$$
=2.70 \text { (to } 3 \text { s.f.) or }-0.700 \text { (to } 3 \text { s.f.) }
$$

10. (a) $(x-4)\left(x+\frac{2}{3}\right)=0$

$$
\begin{aligned}
x^{2}+\frac{2}{3} x-4 x-\frac{8}{3} & =0 \\
3 x^{2}+2 x-12 x-8 & =0 \\
3 x^{2}-10 x-8 & =0
\end{aligned}
$$

(b) $\quad(x+0.5)(x-2)=0$
$x^{2}-2 x+0.5 x-1=0$

$$
\begin{aligned}
x^{2}-1.5 x-1 & =0 \\
2 x^{2}-3 x-2 & =0
\end{aligned}
$$

11. (a) $1+\frac{4 x+2}{2 x}=\frac{5}{x}$

$$
\begin{aligned}
\frac{2 x+4 x+2}{2 x} & =\frac{5}{x} \\
\frac{6 x+2}{2 x} & =\frac{5}{x} \\
6 x^{2}+2 x & =10 x \\
6 x^{2}-8 x & =0 \\
2 x(3 x-4) & =0
\end{aligned}
$$

$2 x=0 \quad 3 x-4=0$
$x=0$ (rejected) $\quad x=\frac{4}{3}$
$=1 \frac{1}{3}$
(b) $2 x-\frac{2+3 x}{4}=\frac{2}{x}$

$$
\begin{aligned}
\frac{8 x-(2+3 x)}{4} & =\frac{2}{x} \\
\frac{8 x-2-3 x}{4} & =\frac{2}{x} \\
\frac{5 x-2}{4} & =\frac{2}{x}
\end{aligned}
$$

$$
5 x^{2}-2 x=8
$$

$$
5 x^{2}-2 x-8=0
$$

$$
a=5, b=-2, c=-8
$$

$$
x=\frac{-(-2) \pm \sqrt{2^{2}-4(5)(-8)}}{2(5)}
$$

$$
=\frac{2 \pm \sqrt{4+160}}{10}
$$

$$
=\frac{2 \pm \sqrt{164}}{10}
$$

$$
=\frac{2+\sqrt{164}}{10} \text { or } \frac{2-\sqrt{164}}{10}
$$

$$
=1.48 \text { (to } 3 \text { s.f.) or }-1.08 \text { (to } 3 \text { s.f.) }
$$

(c)

$$
\left.\begin{array}{rl}
\frac{6}{x}+\frac{1}{x-6} & =1 \\
\frac{6(x-6)+x}{x(x-6)} & =1 \\
6 x-36+x & =x^{2}-6 x \\
7 x-36 & =x^{2}-6 x \\
x^{2}-13 x+36 & =0 \\
(x-9)(x-4) & =0 \\
x-9 & =0 \quad \text { or } \quad x-4 \\
x & =0 \\
x & x
\end{array}\right)
$$

(d)

$$
2 x-1=\frac{8 x-7}{x+1}
$$

$$
(2 x-1)(x+1)=8 x-7
$$

$$
2 x^{2}+2 x-x-1=8 x-7
$$

$$
2 x^{2}+x-1=8 x-7
$$

$$
2 x^{2}-7 x+6=0
$$

$$
(2 x-3)(x-2)=0
$$

$$
2 x-3=0 \quad \text { or } \quad x-2=0
$$

$$
2 x=3 \quad x=2
$$

$$
x=\frac{3}{2}
$$

$$
=1 \frac{1}{2}
$$

(e) $\frac{x}{x-1}-\frac{2}{2-3 x}=\frac{5}{2}$

$$
\frac{x(2-3 x)-2(x-1)}{(x-1)(2-3 x)}=\frac{5}{2}
$$

$$
\frac{2 x-3 x^{2}-2 x+2}{(x-1)(2-3 x)}=\frac{5}{2}
$$

$$
\frac{2-3 x^{2}}{(x-1)(2-3 x)}=\frac{5}{2}
$$

$$
2\left(2-3 x^{2}\right)=5(x-1)(2-3 x)
$$

$$
4-6 x^{2}=5\left(2 x-3 x^{2}-2+3 x\right)
$$

$$
=5\left(5 x-3 x^{2}-2\right)
$$

$$
=25 x-15 x^{2}-10
$$

$$
\begin{aligned}
& 3 x(x+4)=2 x(x-4) \\
& 3 x^{2}+12 x=2 x^{2}-8 x \\
& 3 x^{2}-2 x^{2}+12 x+8 x=0 \\
& x^{2}+20 x=0 \\
& x(x+20)=0 \\
& x=0 \quad \text { or } \quad x+20=0 \\
& x=-20
\end{aligned}
$$

$$
\begin{array}{rlrlrl}
9 x^{2}-25 x+14 & =0 & & \\
(x-2)(9 x-7) & =0 & & \\
x-2 & =0 & \text { or } & 9 x-7 & =0 \\
x & =2 & & 9 x & =7 \\
& & x & =\frac{7}{9}
\end{array}
$$

(f)

$$
\begin{aligned}
\frac{1}{x^{2}-9}-\frac{2}{3-x} & =0 \\
\frac{1}{(x+3)(x-3)}-\frac{2}{3-x} & =0 \\
\frac{1}{(x+3)(x-3)}+\frac{2}{x-3} & =0 \\
\frac{1+2(x+3)}{(x+3)(x-3)} & =0 \\
1+2 x+6 & =0 \\
2 x+7 & =0 \\
2 x & =-7 \\
x & =-\frac{7}{2} \\
& =-3 \frac{1}{2}
\end{aligned}
$$

12. (a) $6 x^{2}-x-15=0$

$$
\begin{aligned}
(3 x-5)(2 x+3) & =0 & & \\
3 x-5 & =0 & \text { or } & 2 x+3
\end{aligned}=0=1 \text { (} \begin{array}{rlrl}
3 x & =5 & 2 x & =-3 \\
x & =\frac{5}{3} & x & =-\frac{3}{2} \\
& =1 \frac{2}{3} & &
\end{array}
$$

(b) $6(y-3)^{2}-(y-3)-15=0$

Let $y-3=x$.
Using (a),

$$
\begin{aligned}
\therefore y-3 & =1 \frac{2}{3} & y-3 & =-1 \frac{1}{2} \\
y & =4 \frac{2}{3} & y & =1 \frac{1}{2}
\end{aligned}
$$

13. $5-2 x-x^{2}=5-\left(x^{2}+2 x\right)$

$$
\begin{aligned}
& =5-\left[x^{2}+2 x+\left(\frac{2}{2}\right)^{2}-\left(\frac{2}{2}\right)^{2}\right] \\
& =5-\left[(x+1)^{2}-1\right] \\
& =5-(x+1)^{2}+1 \\
& =6-(x+1)^{2}
\end{aligned}
$$

(i) Maximum value is 6 .
(ii) $5-2 x-x^{2}=0$
$6-(x+1)^{2}=0$

$$
\begin{aligned}
(x+1)^{2} & =6 \\
x+1 & = \pm \sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
x & =\sqrt{6}-1 & \text { or } & -\sqrt{6}-1 \\
& =1.45 \text { (to } 3 \text { s.f.) } & & -3.45 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) When $x=0$,

$$
\begin{aligned}
y & =5-2(0)-0^{2} \\
& =5
\end{aligned}
$$

The graph cuts the y-axis at $(0,5)$.

14. (i) $h=-2, k=5$
(ii) $y=(x+2)^{2}+5$

When $x=0$,

$$
\begin{aligned}
y & =(0+2)^{2}+5 \\
& =9
\end{aligned}
$$

The graph cuts the y-axis at $(0,9)$.

15. $y=(3-2 x)(2 x+7)$

When $x=0$,

$$
\begin{aligned}
y & =(3)(7) \\
& =21
\end{aligned}
$$

The graph cuts the y-axis at $(0,21)$.
When $y=0$,

$$
\begin{aligned}
(3-2 x) & (2 x+7) & =0 & & \\
3-2 x & =0 & \text { or } & 2 x+7 & =0 \\
2 x & =3 & & 2 x & =-7 \\
x & =1 \frac{1}{2} & & x & =-3 \frac{1}{2}
\end{aligned}
$$

The graph cuts the x-axis at $\left(1 \frac{1}{2}, 0\right)$ and $\left(-3 \frac{1}{2}, 0\right)$.

$$
\begin{aligned}
x & =\frac{1 \frac{1}{2}+\left(-3 \frac{1}{2}\right)}{2} \\
& =-1 \\
\therefore y & =[3-2(-1)][2(-1)+7] \\
& =5(5) \\
& =25
\end{aligned}
$$

The coordinates of the maximum point are $(-1,25)$.

16. (i) $y=(x-1)(x-5)$
$=x^{2}-6 x+5$
$\therefore a=-6, b=5$
(ii) When $x=0$,
$y=0^{2}-6(0)+5$
$=5$
\therefore Coordinates of M are $(0,5)$.
17. (i) When $x=-1$,

$$
\begin{aligned}
p & =24+3(-1)-2(-1)^{2} \\
& =24-3-2 \\
& =19
\end{aligned}
$$

(ii)

x	-3	-2	-1	0	1	2	3	4	5
y	-3	10	19	24	25	22	15	4	-11

(iii) $x=-2.85$ or 4.25
18. (i) $A C=(8-x) \mathrm{m}$
(ii) Using Pythagoras' Theorem,

$$
\begin{aligned}
A C^{2}+B C^{2} & =A B^{2} \\
(8-x)^{2}+x^{2} & =7^{2} \\
64-16 x+x^{2}+x^{2} & =49 \\
2 x^{2}-16 x+15 & =0 \text { (shown) }
\end{aligned}
$$

(iii) $2 x^{2}-16 x+15=0$

$$
\begin{aligned}
a & =2, b=-16, c=15 \\
x & =\frac{-(-16) \pm \sqrt{(-16)^{2}-4(2)(15)}}{2(2)} \\
& =\frac{16 \pm \sqrt{256-120}}{4} \\
& =\frac{16 \pm \sqrt{136}}{4} \\
& =\frac{16+\sqrt{136}}{4} \quad \text { or } \frac{16-\sqrt{136}}{4} \\
& =6.92 \text { (to } 2 \text { d.p.) } \text { or } 1.08 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

(iv) 1.08
19. (i) Number of boxes of cookies he bought
$=\frac{600}{x}$
(ii) Total sum received from the sale of the cookies

$$
=\$\left(\frac{600}{x}-2\right)(x+2)
$$

(iii)

$$
\left(\frac{600}{x}-2\right)(x+2)-600=72
$$

$$
\left(\frac{600}{x}-2\right)(x+2)=672
$$

$$
(600-2 x)(x+2)=672 x
$$

$600 x+1200-2 x^{2}-4 x-672 x=0$

$$
1200-76 x-2 x^{2}=0
$$

$$
2 x^{2}+76 x-1200=0
$$

$$
x^{2}+38 x-600=0(\text { shown })
$$

(iv) $x^{2}+38 x-600=0$
$(x-12)(x+50)=0$
$x=12$ or $x=-50$ (rejected)
(v) Selling price of each box of cookies $=12+2$
20. (i) Number of concert tickets $=\frac{2820}{x}$
(ii) Number of concert tickets $=\frac{2820}{x-20}$
(iii) $\frac{2820}{x-20}-\frac{2820}{x}=3$

$$
2820 x-2820(x-20)=3 x(x-20)
$$

$$
2820 x-2820 x+56400=3 x^{2}-60 x
$$

$$
3 x^{2}-60 x-56400=0
$$

$$
x^{2}-20 x-18800=0(\text { shown })
$$

(iv) $x^{2}-20 x-18800=0$

$$
a=1, b=-20, c=-18800
$$

$$
x=\frac{-(-20) \pm \sqrt{(-20)^{2}-4(1)(-18800)}}{2(1)}
$$

$$
=\frac{20 \pm \sqrt{75600}}{2}
$$

$$
=147.5 \text { (to } 1 \text { d.p.) or }-127.5 \text { (to } 1 \text { d.p.) }
$$

(v) Maximum number of tickets
$=\frac{3000}{147.5}$
$=20$ (round down to the nearest integer)
21. (i) Numbers of litres of petrol used $=\frac{100}{x}$
(ii) Number of litres of petrol used $=\frac{100}{x+4}$
(iii) $\frac{100}{x}-\frac{100}{x+4}=5$

$$
100 x+400-100 x=5 x(x+4)
$$

$$
\begin{aligned}
5 x^{2}+20 x-400 & =0 \\
x^{2}+4 x-80 & =0(\text { shown })
\end{aligned}
$$

(iv) $x^{2}+4 x-80=0$
$a=1, b=4, c=-80$
$x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-80)}}{2(1)}=\frac{-4 \pm \sqrt{336}}{2}$ $=7.17$ (to 3 s.f.) or -11.2 (to 3 s.f.)
(v) Number of litres of petrol used $=\frac{100}{7.17+4}$

$$
=8.95 \text { (to } 3 \text { s.f.) }
$$

22. (i) Amount of Japanese yen that he received
$=\frac{4000}{x}$
(ii) Amount of Japanese yen that he now received $=\frac{2500}{x-0.05}$
(iii) $\quad \frac{4000}{x}+\frac{2500}{x-0.05}=92000$

$$
4000 x-200+2500 x=92000 x(x-0.05)
$$

$$
6500 x-200=92000 x^{2}-4600 x
$$

$92000 x^{2}-11100 x+200=0$

$$
920 x^{2}-111 x+2=0(\text { shown })
$$

(iv) $920 x^{2}-111 x+2=0$
$a=920, b=-111, c=2$
$x=\frac{-(-111) \pm \sqrt{(-111)^{2}-4(920)(2)}}{2(920)}$
$=\frac{111 \pm \sqrt{4961}}{1840}$
$=0.0986$ (to 3 s.f.) or 0.0220 (to 3 s.f.)
(v) $\mathrm{S} \$ 0.0986-\mathrm{S} \$ 0.05=\mathrm{S} \$ 0.0486$

Exchange rate on the day of his journey is
$¥ 1=$ S $\$ 0.0486$
($x \neq 0.0220$ because the exchange rate cannot be negative)
23. (a) (i) $\frac{1}{x}$
(ii) $\frac{1}{x-4}$
(b) $\frac{1}{x}+\frac{1}{x-4}=\frac{1}{6}$
$\frac{x-4+x}{x(x-4)}=\frac{1}{6}$
$6(2 x-4)=x(x-4)$

$$
12 x-24=x^{2}-4 x
$$

$x^{2}-16 x+24=0$ (shown)
(c) (i) $x^{2}-16 x+24=0$

$$
a=1, b=-16, c=24
$$

$$
\begin{aligned}
x & =\frac{-(-16) \pm \sqrt{(-16)^{2}-4(1)(24)}}{2(1)} \\
& =\frac{16 \pm \sqrt{160}}{2} \\
& =14.3 \text { (to s.f.) or } 1.68 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $x \neq 1.68$ because the time taken by Tap B to fill the pool cannot be negative.
(d) Time taken by Tap $B=14.3-4$

$$
\begin{aligned}
& =10.3 \mathrm{~h} \\
& =10 \mathrm{~h} 18 \mathrm{~min}
\end{aligned}
$$

24. (a) $\frac{300}{x} \mathrm{~h}$
(b) (i) $\frac{300}{x+4} \mathrm{~h}$
(ii) $\frac{300}{x}-\frac{300}{x+4}=\frac{50}{60}$

$$
\frac{300(x+4)-300 x}{x(x+4)}=\frac{5}{6}
$$

$$
\frac{300 x+1200-300 x}{x(x+4)}=\frac{5}{6}
$$

$$
\frac{1200}{x(x+4)}=\frac{5}{6}
$$

$$
7200=5 x^{2}+20 x
$$

$$
5 x^{2}+20 x-7200=0
$$

$$
x^{2}+4 x-1440=0(\text { shown })
$$

(iii) $x^{2}+4 x-1440=0$
$(x-36)(x+40)=0$
$x=36$ or $x=-40$
$x=-40$ is rejected since speed cannot be negative.
(iv) Time taken $=\frac{300}{36+4}$

$$
=7.5 \mathrm{~h}
$$

\therefore Time at which the ship reached Port $Q=1630$
25. (a) (i) Breadth of rectangle $=2 x \mathrm{~m}$

Area of rectangle $=(4 x)(2 x)$

$$
=8 x^{2} \mathrm{~m}^{2}
$$

(ii) Length of square $=\frac{80-12 x}{4}$

$$
=(20-3 x) \mathrm{m}
$$

(iii) Area of square $=(20-3 x)^{2}$

$$
=\left(400-120 x+9 x^{2}\right) \mathrm{m}^{2}
$$

(b) $y=400-120 x+9 x^{2}+8 x^{2}$

$$
=17 x^{2}-120 x+400(\text { shown })
$$

(c) When $x=6$,

$$
y=17(6)^{2}-120(6)+400
$$

$$
=292
$$

$\therefore a=292$
(d)

(e) (i) When $x=1.5, y=260$.
(ii) When $y=200, x=2.70$ or $x=4.35$.
(iii) $x=3.50$
26. (a)

(b) (i) Maximum height reached by the ball $=24.5 \mathrm{~m}$
(ii) When $h=18 \mathrm{~m}, t=0.7 \mathrm{~s}$ and $t=2.3 \mathrm{~s}$
(c) Extend the curve from $t=3$ such that it meets the horizontal t-axis.
The value of t at the intersection gives the approximate time when the ball hits the ground.
27. (a) When $t=3$,
$H=-2(3)^{2}+5(3)+25$
$=22$
$\therefore p=22$
(b)

(c) (i) When $t=0, H=25$.
\therefore The height of the cliff is 25 m .
(ii) Maximum height of the stone above ground $=28.25 \mathrm{~m}$
(iii) When $H=25$,
$t=0$ or $t=2.45$
(rejected)
\therefore The stone is again at the same vertical level as the top of the cliff at $t=2.45 \mathrm{~s}$.

Advanced

28. (i) Consider the hot water tap.
$x \mathrm{~m}^{3}$ in 1 minute
$1 \mathrm{~m}^{3}$ in $\frac{1}{x}$ minutes
$2 \mathrm{~m}^{3}$ in $\frac{2}{x}$ minutes
Consider the cold water tap.
$y \mathrm{~m}^{3}$ in 1 minute
$1 \mathrm{~m}^{3}$ in $\frac{1}{y}$ minutes
$2 \mathrm{~m}^{3}$ in $\frac{2}{y}$ minutes

Consider both taps.
$(x+y) \mathrm{m}^{3}$ in 1 minute
$1 \mathrm{~m}^{3}$ in $\frac{1}{x+y}$ minutes
$2 \mathrm{~m}^{3}$ in $\frac{2}{x+y}$ minutes

$$
\begin{aligned}
\frac{2}{x}-\frac{2}{y} & =4 \\
2 y-2 x & =4 x y \\
y-x & =2 x y \\
y-2 x y & =x \\
y(1-2 x) & =x
\end{aligned}
$$

$$
y=\frac{x}{1-2 x}-(1)
$$

$$
\frac{2}{x+y}=3 \frac{1}{3}
$$

$$
=\frac{10}{3}
$$

$$
6=10 x+10 y
$$

$5 x+5 y=3-(2)$
Substitute (1) into (2):

$$
\begin{aligned}
5 x+\frac{5 x}{1-2 x} & =3 \\
5 x(1-2 x)+5 x & =3(1-2 x) \\
5 x-10 x^{2}+5 x & =3-6 x \\
10 x^{2}-16 x+3 & =0 \text { (shown) }
\end{aligned}
$$

(ii) $10 x^{2}-16 x+3=0$

$$
a=10, b=-16, c=3
$$

$$
\begin{aligned}
x & =\frac{-(-16) \pm \sqrt{(-16)^{2}-4(10)(3)}}{2(10)} \\
& =\frac{16 \pm \sqrt{136}}{20} \\
& =1.38 \text { (to } 2 \text { d.p.) or } 0.22 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

(iii) When $x=1.38$,
$y=\frac{1.38}{1-2(1.38)}<0$
Since the time taken cannot be a negative value, $x \neq 1.38$.
When $x=0.22$,

$$
\begin{aligned}
\text { time taken } & =\frac{2}{0.22} \\
& =9 \text { minutes (to the nearest minute) }
\end{aligned}
$$

New Trend

29. (i) $x^{2}-5 x+2=x^{2}-5 x+\left(-\frac{5}{2}\right)^{2}+2-\left(-\frac{5}{2}\right)^{2}$

$$
\begin{aligned}
& =\left(x-\frac{5}{2}\right)^{2}+2-\frac{25}{4} \\
& =\left(x-\frac{5}{2}\right)^{2}-\frac{17}{4}
\end{aligned}
$$

(ii) $x^{2}-5 x+2=0$

$$
\begin{aligned}
& \left(x-\frac{5}{2}\right)^{2}-\frac{17}{4}=0 \\
& \left(x-\frac{5}{2}\right)^{2}=\frac{17}{4} \\
& x-\frac{5}{2}= \pm \sqrt{\frac{17}{4}} \\
& x=\sqrt{\frac{17}{4}}+\frac{5}{2} \quad \text { or } x
\end{aligned} \begin{aligned}
& =-\sqrt{\frac{17}{4}}+\frac{5}{2} \\
=4.56 & =0.44 \text { (to } 2 \text { d.p. })
\end{aligned}
$$

(iii)

30. (a) $50 \mathrm{~km} \div\left(\frac{x}{60}\right) \mathrm{h}$

$$
=\frac{3000}{x} \mathrm{~km} / \mathrm{h}
$$

(b) $70 \mathrm{~km} \div\left(\frac{x+25}{60}\right) \mathrm{h}$

$$
=\frac{4200}{x+25} \mathrm{~km} / \mathrm{h}
$$

(c) $\quad \frac{3000}{x}-\frac{4200}{x+25}=10$

$$
\begin{aligned}
\frac{3000 x+75000-4200 x}{x(x+25)} & =10 \\
75000-1200 x & =10\left(x^{2}+25 x\right) \\
x^{2}+25 x & =7500-120 x \\
x^{2}+145 x-7500 & =0 \text { (proven) }
\end{aligned}
$$

(d) $x^{2}+145 x-7500=0$

$$
\begin{aligned}
x & =\frac{-145 \pm \sqrt{145^{2}-4(1)(-7500)}}{2} \\
& =\frac{-145 \pm \sqrt{51025}}{2} \\
& =40.444 \text { (to } 3 \text { d.p.) or }-185.444 \text { (to } 3 \text { d.p.) }
\end{aligned}
$$

(e) Since the time taken cannot be a negative value,
$x \neq-185.444$.
When $x=40.444$,
total time taken $=\left(\frac{40.444+40.444+25}{60}\right) \mathrm{h}$

$$
=1.7648 \mathrm{~h}
$$

Average speed $=\frac{120 \mathrm{~km}}{1.7648 \mathrm{~h}}$

$$
=68.0 \mathrm{~km} / \mathrm{h} \text { (to } 3 \text { s.f.) }
$$

31. (a) $x^{2}-10 x+16=x^{2}-10 x+\left(-\frac{10}{2}\right)^{2}+16-\left(-\frac{10}{2}\right)^{2}$

$$
\begin{aligned}
& =(x-5)^{2}+16-25 \\
& =(x-5)^{2}-9
\end{aligned}
$$

(b) Minimum value is -9 .
(c) Line of symmetry is $x=5$.
32. (a) Using Pythagoras' Theorem,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =x^{2}+\left(\frac{2 x}{3}\right)^{2} \\
& =x^{2}+\frac{4 x^{2}}{9} \\
& =\frac{13 x^{2}}{9} \text { (shown) }
\end{aligned}
$$

(b) Using Pythagoras' Theorem,

$$
\begin{gathered}
A C^{2}+C G^{2}=A G^{2} \\
\frac{13 x^{2}}{9}+(x+4)^{2}=20^{2} \\
\frac{13 x^{2}}{9}+x^{2}+8 x+16=400 \\
13 x^{2}+9 x^{2}+72 x+144=3600 \\
22 x^{2}+72 x-3456=0 \\
11 x^{2}+36 x-1728=0 \text { (shown) } \\
\text { (c) } x=\frac{-36 \pm \sqrt{36^{2}-4(11)(-1728)}}{2(11)} \\
=\frac{-36 \pm \sqrt{77328}}{22} \\
=11.0036 \text { (to } 4 \text { d.p.) or }-14.2763 \text { (to } 4 \text { d.p.) }
\end{gathered}
$$

(d) Since the length of the cuboid cannot be a negative value, $x \neq-14.2763$.

$$
\begin{aligned}
\text { Volume } & =11.0036\left(\frac{2}{3} \times 11.0036\right)(15.0036) \\
& =1210 \mathrm{~cm}^{3}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

33. (a) $\frac{900}{x} \min$
(b) $\frac{900}{x+12} \mathrm{~min}$
(c) $\frac{900}{x}-\frac{900}{x+12}=18$
$900 x+10800-900 x=18\left(x^{2}+12 x\right)$

$$
18 x^{2}+216 x-10800=0
$$

$$
x^{2}+12 x-600=0(\text { shown })
$$

(d) $x^{2}+12 x-600=0$

$$
\begin{aligned}
x & =\frac{-12 \pm \sqrt{12^{2}-4(1)(-600)}}{2(1)} \\
& =\frac{-12 \pm \sqrt{2544}}{2} \\
& =19.2 \text { (to } 1 \text { d.p.) or }-31.2 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(e) Since the rate of filling the mattress with water cannot be a negative value, $x \neq-31.2$
Time taken using the large tap $=\frac{900}{19.2+12} \mathrm{~min}$

$$
=28 \mathrm{~min} 51 \mathrm{~s}
$$

(to the nearest second)
34. (a)

(b) Equation of the line of symmetry: $x=\frac{-2+5}{2}$

$$
=1 \frac{1}{2}
$$

(c) When $x=1 \frac{1}{2}$,

$$
\begin{aligned}
y & =-\left(1 \frac{1}{2}+2\right)\left(1 \frac{1}{2}-5\right) \\
& =12 \frac{1}{4}
\end{aligned}
$$

\therefore Coordinates of the turning point are $\left(1 \frac{1}{2}, 12 \frac{1}{4}\right)$.

Basic

1. $\mathrm{g}(x)=3 x^{2}+5$
(i) $\mathrm{g}(a)=3 a^{2}+5$
(ii) $\mathrm{g}(a+2)=3(a+2)^{2}+5$

$$
\begin{aligned}
& =3\left(a^{2}+4 a+4\right)+5 \\
& =3 a^{2}+12 a+12+5 \\
& =3 a^{2}+12 a+17
\end{aligned}
$$

(iii) $\mathrm{g}(a+2)-\mathrm{g}(a-2)$
$=3 a^{2}+12 a+17-\left[3(a-2)^{2}+5\right]$
$=3 a^{2}+12 a+17-3\left(a^{2}-4 a+4\right)-5$
$=3 a^{2}+12 a+17-3 a^{2}+12 a-12-5$
$=24 a$
2. $\mathrm{h}(x)=12 x^{2}-11 x+2$
(i) $\mathrm{h}(2 c)-\mathrm{h}(c)$
$=\left[12(2 c)^{2}-11(2 c)+2\right]-\left[12 c^{2}-11 c+2\right]$
$=\left(48 c^{2}-22 c+2\right)-12 c^{2}+11 c-2$
$=36 c^{2}-11 c$
(ii) $12 c^{2}-11 c+2=0$
$(3 c-2)(4 c-1)=0$
$3 c-2=0$ or $4 c-1=0$

$$
c=\frac{2}{3} \quad c=\frac{1}{4}
$$

(iii) $\mathrm{h}\left(c^{2}\right)+\mathrm{h}(c)=12 c^{4}-11 c^{2}+2+12 c^{2}-11 c+2$

$$
=12 c^{4}+c^{2}-11 c+4
$$

3. $\mathrm{f}(x)=m x+c$

$$
\mathrm{f}(2)=2 m+c=7 \quad-(1)
$$

$$
\begin{equation*}
\mathrm{f}(-3)=-3 m+c=-8 \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
(1)-(2): 5 m & =15 \\
m & =3
\end{aligned}
$$

Substitute $m=3$ into (1):

$$
2(3)+c=7
$$

$$
c=1
$$

$\therefore m=3, c=1$
$\mathrm{f}(x)=3 x+1$
$f(5)=3(5)+1$

$$
=16
$$

$$
f(-11)=3(-11)+1
$$

$$
\begin{aligned}
& =-33+1 \\
& =-32
\end{aligned}
$$

4. $\mathrm{f}(x)=-2 x+3$

Let $y=-2 x+3$.

$$
\begin{aligned}
-2 x & =y-3 \\
x & =-\frac{1}{2}(y-3)
\end{aligned}
$$

$\mathrm{f}^{-1}(x)=-\frac{1}{2}(x-3)$
5. $\mathrm{f}(x)=\frac{5}{7} x-2$

Let $y=\frac{5}{7} x-2$.
$\frac{5}{7} x=y+2$

$$
x=\frac{7}{5}(y+2)
$$

$\mathrm{f}^{-1}(x)=\frac{7}{5}(x+2)$
6. $\mathrm{f}(x)=9 x-3$

Let $y=9 x-3$.
$9 x=y+3$

$$
x=\frac{1}{9}(y+3)
$$

$$
\mathrm{f}^{-1}(x)=\frac{1}{9}(x+3)
$$

$$
\mathrm{f}^{-1}(5)=\frac{1}{9}(5+3)
$$

$$
=\frac{8}{9}
$$

7. $\mathrm{g}(x)=8 x-12$

When $\mathrm{g}(x)=52$,

$$
\begin{aligned}
8 x-12 & =52 \\
8 x & =64 \\
x & =8
\end{aligned}
$$

When $\mathrm{g}(x)=-14$,

$$
\begin{aligned}
8 x-12 & =-14 \\
8 x & =-2 \\
x & =-\frac{1}{4}
\end{aligned}
$$

8. $\mathrm{h}(x)=a x^{2}+b x+5$

$$
\mathrm{h}(4)=a(4)^{2}+b(4)+5
$$

$$
=16 a+4 b+5
$$

$16 a+4 b+5=33$

$$
16 a+4 b=28
$$

$$
\begin{equation*}
4 a+b=7 \tag{1}
\end{equation*}
$$

$\mathrm{h}(-2)=a(-2)^{2}+b(-2)+5$
$=4 a-2 b+5$
$4 a-2 b+5=25$

$$
\begin{equation*}
4 a-2 b=20 \tag{2}
\end{equation*}
$$

From (1): $b=7-4 a$
Substitute (3) into (2):

$$
\begin{align*}
4 a-2(7-4 a) & =20 \tag{3}\\
4 a-14+8 a & =20 \\
12 a & =34 \\
a & =2 \frac{5}{6}
\end{align*}
$$

Substitute $a=2 \frac{5}{6}$ into (3):

$$
\begin{aligned}
b= & 7-4\left(2 \frac{5}{6}\right) \\
= & -4 \frac{1}{3} \\
\mathrm{~h}(3) & =\left(2 \frac{5}{6}\right)(3)^{2}+\left(-4 \frac{1}{3}\right)(3)+5 \\
& =17 \frac{1}{2} \\
\mathrm{~h}(-3) & =\left(2 \frac{5}{6}\right)(-3)^{2}+\left(-4 \frac{1}{3}\right)(-3)+5 \\
& =43 \frac{1}{2}
\end{aligned}
$$

9. $\mathrm{f}(x)=a x^{2}+b x$
$\mathrm{f}(-3)=a(-3)^{2}+b(-3)$

$$
=9 a-3 b
$$

$9 a-3 b=18$

$$
\begin{equation*}
3 a-b=6 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\mathrm{f}(6) & =a(6)^{2}+b(6) \\
& =36 a+6 b \\
36 a & +6 b=24 \\
6 a & +b=4 \tag{2}
\end{align*}
$$

(1) $+(2)$:
$9 a=10$

$$
a=1 \frac{1}{9}
$$

Substitute $a=1 \frac{1}{9}$ into (1):

$$
\begin{aligned}
3\left(1 \frac{1}{9}\right)-b & =6 \\
b & =-2 \frac{2}{3}
\end{aligned}
$$

10. $\mathrm{f}(x)=\frac{2}{x}+8$

$$
\begin{aligned}
& \text { Let } y=\frac{2}{x}+8 . \\
& x y \\
& x y-8 x=2+8 x \\
& x(y-8)=2 \\
& x
\end{aligned}=\frac{2}{y-8}, \begin{aligned}
& \mathrm{f}^{-1}(-1)=\frac{2}{-1-8} \\
& \begin{aligned}
\mathrm{f}^{-1}(x) & =\frac{2}{x-8} \\
& =-\frac{2}{9}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{f}^{-1}(3)=\frac{2}{3-8}
$$

$$
=-\frac{2}{5}
$$

11. $\mathrm{f}(x)=\frac{5 x-2}{x-6}$

Let $y=\frac{5 x-2}{x-6}$.
$y(x-6)=5 x-2$
$y x-6 y=5 x-2$
$5 x-y x=2-6 y$
$x(5-y)=2-6 y$

$$
x=\frac{2-6 y}{5-y}
$$

$\mathrm{f}^{-1}(x)=\frac{2-6 x}{5-x}$
$\mathrm{f}^{-1}(2)=\frac{2-6(2)}{5-2}$

$$
=-3 \frac{1}{3}
$$

$$
f^{-1}(8)=\frac{2-6(8)}{5-8}
$$

$$
=15 \frac{1}{3}
$$

12. $\mathrm{f}(x)=a x+b$
$\mathrm{f}(3)=3 a+b=7$
Let $y=a x+b$.
$a x=y-b$
$x=\frac{y-b}{a}$
$\mathrm{f}^{-1}(x)=\frac{x-b}{a}$
$\mathrm{f}^{-1}(2)=\frac{2-b}{a}=4$
$4 a+b=2$
(2) $-(1)$:
$a=-5$
Substitute $a=-5$ into (1):
$3(-5)+b=7$

$$
b=22
$$

$\therefore a=-5, b=22$
$\mathrm{f}^{-1}(x)=-\frac{x-22}{5}$
$\mathrm{f}^{-1}(9)=-\frac{9-22}{5}$

$$
\begin{aligned}
&=2 \frac{3}{5} \\
& \mathrm{f}^{-1}\left(-8 \frac{1}{4}\right)=-\frac{-8 \frac{1}{4}-22}{5} \\
&=6 \frac{1}{20}
\end{aligned}
$$

13. $\mathrm{f}(x)=p x+q$
$\mathrm{f}(3)=3 p+q=-8 \quad-(1)$
$\mathrm{f}(-1)=-p+q=-11 \quad-(2)$
(1) - (2):
$4 p=3$
$p=\frac{3}{4}$
Substitute $p=\frac{3}{4}$ into (1):

$$
3\left(\frac{3}{4}\right)+q=-8
$$

$$
\frac{9}{4}+q=-8
$$

$$
q=-10 \frac{1}{4}
$$

$\therefore \mathrm{f}(x)=\frac{3}{4} p-10 \frac{1}{4}$
Let $y=\frac{3}{4} x-10 \frac{1}{4}$.
$\frac{3}{4} x=y+10 \frac{1}{4}$
$3 x=4 y+41$
$x=\frac{1}{3}(4 y+41)$
$\therefore \mathrm{f}^{-1}(x)=\frac{1}{3}(4 x+41)$

Chapter 3 Linear Inequalities

Basic

1. (a) $15<30$
(b) $-2>-5$
(c) $(-3)^{2}>-9$
(d) $-2^{4}=-16$
(e) $\left(-\frac{1}{3}\right)^{11}<\left(-\frac{1}{3}\right)^{4}$
(f) $\sqrt{16}>\sqrt{10}$
(g) $h-3>h-4$
(h) $k+10>k+7$
(i) $12-p<14-p$
(j) $16-4 q<2(8-q)$
2. (a) $a<b$
(b) $d>-3$
(c) $-\frac{h}{2}<-\frac{k}{2}$
(d) $3 m \geqslant 3 n$
(e) $-6 p \geqslant-6 q$
3. (a) $-5 x>75$

$$
x<-15
$$

(b) $-7 x \geqslant 24$

$$
x \leqslant-3 \frac{3}{7}
$$

(c) $a+1 \geqslant 3$

(d) $b-2 \leqslant 5$

(e) $-c+1>2$

$$
c<-1
$$

(f) $-6 d-3 \geqslant 0$

$$
\begin{aligned}
-6 d & \geqslant 3 \\
d & \leqslant-\frac{1}{2}
\end{aligned}
$$

(g) $12-e<-2$

$$
-e<-14
$$

$$
e>14
$$

(h) $20+4 f \leqslant f-1$

(i) $3-2 g \leqslant-4-g$

$$
\begin{gathered}
-g \leqslant-7 \\
g \geqslant 7
\end{gathered}
$$

(j) $2(1-5 h) \geqslant 4(3-h)$
$2-10 h \geqslant 12-4 h$

$$
-6 h \geqslant 10
$$

$$
h \leqslant-1 \frac{2}{3}
$$

(k) $2(i+3)>4(1-i)$

$$
\begin{aligned}
2 i+6 & >4-4 i \\
6 i & >-2 \\
i & >-\frac{1}{3}
\end{aligned}
$$

(l) $8 j-1>4(-3 j)$

$$
\begin{aligned}
8 j-1 & >-12 j \\
20 j & >1 \\
j & >\frac{1}{20}
\end{aligned}
$$

(m) $9(1-2 k) \leqslant 2(3-k)$

$$
\begin{aligned}
9-18 k & \leqslant 6-2 k \\
-16 k & \leqslant-3 \\
k & \geqslant \frac{3}{16}
\end{aligned}
$$

(n) $2(5-4 l) \geqslant 5 l+1$

$$
\begin{aligned}
10-8 l & \geqslant 5 l+1 \\
-13 l & \geqslant-9 \\
l & \leqslant \frac{9}{13}
\end{aligned}
$$

(o) $4(2 m+3) \geqslant 2(m+7)-3(2 m-1)$

$$
\begin{aligned}
8 m+12 & \geqslant 2 m+14-6 m+3 \\
8 m+12 & \geqslant 17-4 m \\
12 m & \geqslant 5 \\
m & \geqslant \frac{5}{12}
\end{aligned}
$$

4. (a) $-2 x<13$

$$
x>-6 \frac{1}{2}
$$

\therefore Smallest integer value of x is -6 .
(b) $2 x+1>16$

$$
\begin{aligned}
2 x & >15 \\
x & >7 \frac{1}{2}
\end{aligned}
$$

\therefore Smallest integer value of x is 8 .
(c) $9 x+12>30$

$$
\begin{aligned}
9 x & >18 \\
x & >2
\end{aligned}
$$

\therefore Smallest integer value of x is 3 .
(d) $10 x+2 \geqslant 20$

$$
\begin{aligned}
10 x & \geqslant 18 \\
x & \geqslant 1.8
\end{aligned}
$$

\therefore Smallest integer value of x is 2 .
5. (a) $-4 y \geqslant 27$

$$
y \leqslant-6 \frac{3}{4}
$$

\therefore Largest integer value of y is -7 .
(b) $3 y-2<13$
$3 y<15$
$y<5$
\therefore Largest integer value of y is 4 .
(c) $16 y+1 \leqslant 31$

$$
\begin{aligned}
16 y & \leqslant 30 \\
y & \leqslant 1 \frac{7}{8}
\end{aligned}
$$

\therefore Largest integer value of y is 1 .
(d) $4(2 y+3)<24$

$$
\begin{aligned}
2 y+3 & <6 \\
2 y & <3 \\
y & <1 \frac{1}{2}
\end{aligned}
$$

\therefore Largest integer value of y is 1 .
6. $\frac{1}{2} h+\frac{1}{3}(h-6) \geqslant 13$

$$
\begin{aligned}
\frac{1}{2} h+\frac{1}{3} h-2 & \geqslant 13 \\
\frac{5}{6} h & \geqslant 15 \\
h & \geqslant 18
\end{aligned}
$$

(a) Least integer value of h is 18 .
(b) Least prime number h is 19 .
7. $3(x+2) \geqslant 5(x-1)$

$$
3 x+6 \geqslant 5 x-5
$$

$$
-2 x \geqslant-11
$$

$$
x \leqslant 5 \frac{1}{2}
$$

(a) $5 \frac{1}{2}$
(b) 5
(c) 5
8. $6+x \leqslant 30$

$$
x \leqslant 24
$$

(a) $2,3,5,7,11,13,17,19,23$
(b) 16
9. Let x be the number of $\$ 2$ notes.
$2 x+10(21-x)<110$
$2 x+210-10 x<110$

$$
\begin{aligned}
-8 x & <-100 \\
x & >12.5
\end{aligned}
$$

\therefore Minimum number of $\$ 2$ notes is 13 .
10. Let x be the mark Shirley scores for her third History test.

$$
\begin{aligned}
\frac{72+58+x}{3} & \geqslant 70 \\
130+x & \geqslant 210 \\
x & \geqslant 80
\end{aligned}
$$

\therefore Minimum mark is 80 .
11. Let $\$ x$ be the amount that Nathan pays.
$x+50+x \leqslant 220$
$2 x+50 \leqslant 220$
$2 x \leqslant 170$

$$
x \leqslant 85
$$

\therefore Greatest amount that Vishal pays is $\$ 135$.
12. Let x be the number of kiwi fruits he sells.
$0.55 x-66.50 \geqslant 20$

$$
\begin{aligned}
0.55 x & \geqslant 86.5 \\
x & \geqslant 157 \frac{3}{11}
\end{aligned}
$$

\therefore Least number of kiwi fruits is 158 .
13. (i) Maximum amount $=\$ 1.50 \times 12$

$$
\begin{aligned}
& =\$ 18 \\
\text { Minimum amount } & =\$ 1.20 \times 12 \\
& =\$ 14.40
\end{aligned}
$$

(ii) Let x be the number of cups of ice-cream.

$$
\begin{aligned}
(1.50) x+(1.20)(2)+(1.20)(10-x) & \leqslant 16 \\
1.5 x+2.4+12-1.2 x & \leqslant 16 \\
0.3 x & \leqslant 1.6 \\
x & \leqslant 5 \frac{1}{3}
\end{aligned}
$$

\therefore Maximum number of cups of ice-cream is 5 .
14. Let the length of the square be $x \mathrm{~cm}$.
$4 x \leqslant 50$
$x \leqslant 12.5$
Largest possible area $=12.5^{2}$

$$
=156.3 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) }
$$

15. (a) $x+1 \leqslant 5 \quad$ and $\quad 2 x>-8$

$$
x \leqslant 4 \quad x>-4
$$

$\therefore-4<x \leqslant 4$
(b) $4 x+2<10$ and $3 x-1 \geqslant 11$

$$
\begin{array}{rrr}
4 x & <8 & 3 x
\end{array} \geqslant 12
$$

\therefore No solution
(c) $x+1<14$ and

$$
2 x+3>12
$$

$$
\begin{gathered}
x<13 \\
\therefore 4 \frac{1}{2}<x<13
\end{gathered}
$$

$$
2 x>9
$$

$$
x>4 \frac{1}{2}
$$

(d) $6+2 x>0$ and
$2 x>-6$
$x>-3$
$20-4 x>1-2 x$
$-2 x>-19$
$x<9 \frac{1}{2}$
$\therefore-3<x<9 \frac{1}{2}$
(e) $x+3<22$ and $x<19$
$\therefore 3 \frac{1}{5} \leqslant x<19$
(f) $x-1<10$ and $4 x+1>7$
$x<11$
$4 x>6$

$$
x>1 \frac{1}{2}
$$

$\therefore 1 \frac{1}{2}<x<11$
(g) $2 x-3 \leq 5$
$2 x \leqslant 8$
$x \leqslant 4$
$\therefore 1 \frac{2}{3} \leqslant x \leqslant 4$
(h) $10 x-7<11$

$$
\begin{aligned}
10 x & <18 \\
x & <1 \frac{4}{5}
\end{aligned}
$$

and

$$
\begin{aligned}
7-6 x & \leqslant-3 \\
-6 x & \leqslant-10 \\
x & \geqslant 1 \frac{2}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
5 x-2 & >-4 \\
5 x & >-2 \\
x & >-\frac{2}{5}
\end{aligned}
$$

$$
\therefore-\frac{2}{5}<x<1 \frac{4}{5}
$$

(i)

$$
\therefore 6 \frac{1}{3}<x<11 \frac{1}{2}
$$

(j) $14-x>3$
and
$1-2 x<10$ $-2 x<9$
$x>-4 \frac{1}{2}$

$$
\begin{aligned}
& 2 x-9<14 \\
& \text { and } \\
& 3 x-8>11 \\
& 2 x<23 \\
& x<11 \frac{1}{2} \\
& 3 x>19 \\
& x>6 \frac{1}{3}
\end{aligned}
$$

$$
\therefore-4 \frac{1}{2}<x<11
$$

16. Maximum length $=6 \mathrm{~cm}+\frac{1 \mathrm{~cm}}{2}$

$$
=6.5 \mathrm{~cm}
$$

Minimum length $=6 \mathrm{~cm}-\frac{1 \mathrm{~cm}}{2}$

$$
=5.5 \mathrm{~cm}
$$

17. Upper bound of length $=18.5 \mathrm{~m}$

Upper bound of breadth $=7.5 \mathrm{~m}$
Upper bound of area $=18.5 \times 7.5$

$$
=138.75 \mathrm{~m}^{2}
$$

Lower bound of length $=17.5 \mathrm{~m}$
Lower bound of breadth $=6.5 \mathrm{~m}$
Lower bound of area $=17.5 \mathrm{~m} \times 6.5 \mathrm{~m}$

$$
=113.75 \mathrm{~m}^{2}
$$

18. $1 \mathrm{~mm}=0.1 \mathrm{~cm}$

Maximum length $=9.0 \mathrm{~cm}+\frac{0.1 \mathrm{~cm}}{2}$

$$
=9.05 \mathrm{~cm}
$$

Maximum breadth $=7.5 \mathrm{~cm}+\frac{0.1 \mathrm{~cm}}{2}$

$$
=7.55 \mathrm{~cm}
$$

Maximum area $=9.05 \times 7.55$

$$
=68.3275 \mathrm{~cm}^{2}
$$

Minimum length $=9.0 \mathrm{~cm}-\frac{0.1 \mathrm{~cm}}{2}$

$$
=8.95 \mathrm{~cm}
$$

Minimum breadth $=7.5 \mathrm{~cm}-\frac{0.1 \mathrm{~cm}}{2}$

$$
=7.45 \mathrm{~cm}
$$

Minimum area $=8.95 \times 7.45$

$$
=66.6775 \mathrm{~cm}^{2}
$$

$$
\frac{6 x-3-8 x+28}{12}<\frac{5}{7}
$$

19. Least possible total height
$=154.5+156.5+159.5+159.5+164.5$

$$
\frac{25-2 x}{12}<\frac{5}{7}
$$

$=794.5 \mathrm{~cm}$

$$
\frac{3(2 x-1)-4(2 x-7)}{12}<\frac{5}{7}
$$

$$
175-14 x<60
$$

20. Largest possible volume $=7.5 \times 7.5 \times 7.5$
(e) $\frac{2 x+1}{3}<\frac{3 x-4}{5}+\frac{2}{3}$

$$
-14 x<-115
$$

$$
=421.875 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
\frac{2 x+1}{3} & <\frac{3(3 x-4)+2(5)}{15} \\
\frac{2 x+1}{3} & <\frac{9 x-12+10}{15} \\
\frac{2 x+1}{3} & <\frac{9 x-2}{15} \\
30 x+15 & <27 x-6 \\
3 x & <-21 \\
x & <-7
\end{aligned}
$$

(f) $\quad \frac{2 x-1}{4}-\frac{2 x-7}{3}<\frac{5}{7}$

$$
x>8 \frac{3}{14}
$$

(g) $\frac{5 x}{6}-\frac{7}{9} \leqslant 2 x-4 \frac{1}{2}$

$$
\begin{aligned}
\frac{15 x-14}{18} & \leqslant \frac{4 x-9}{2} \\
30 x-28 & \leqslant 72 x-162 \\
-42 x & \leqslant-134 \\
x & \geqslant 3 \frac{4}{21}
\end{aligned}
$$

(h) $\frac{2-4 x}{5} \geqslant 2 \frac{1}{2}-6 x$

$$
\begin{aligned}
\frac{2-4 x}{5} & \geqslant \frac{5-12 x}{2} \\
4-8 x & \geqslant 25-60 x \\
52 x & \geqslant 21 \\
x & \geqslant \frac{21}{52}
\end{aligned}
$$

(i) $\frac{2 x-7}{8}+\frac{x-3}{4} \leqslant \frac{2 x+3}{6}+1$

$$
\begin{aligned}
\frac{2 x-7+2(x-3)}{8} & \leqslant \frac{2 x+3+6}{6} \\
\frac{2 x-7+2 x-6}{8} & \leqslant \frac{2 x+9}{6} \\
\frac{4 x-13}{8} & \leqslant \frac{2 x+9}{6} \\
24 x-78 & \leqslant 16 x+72 \\
8 x & \leqslant 150 \\
x & \leqslant 18 \frac{3}{4}
\end{aligned}
$$

(j) $\frac{x}{5}-4<3-\frac{5}{4} x$

$$
\frac{x}{5}+\frac{5}{4} x<7
$$

$$
\frac{4 x+25 x}{20}<7
$$

$$
\frac{29 x}{20}<7
$$

$$
x<4 \frac{24}{29}
$$

(k) $\frac{1}{3}(4 x-3)>\frac{1}{2}(x+5)$

$$
\begin{aligned}
8 x-6 & >3 x+15 \\
5 x & >21 \\
x & >4 \frac{1}{5}
\end{aligned}
$$

22. (a) $2-x<2 x+3 \leqslant x+6$

$$
\begin{aligned}
2-x & <2 x+3 & \text { and } & 2 x+3 \\
-3 x & <1 & & x \leqslant 3 \\
x & >-\frac{1}{3} & & \\
\therefore-\frac{1}{3} & <x \leqslant 3 & &
\end{aligned}
$$

(b) $x+2<14<3 x+1$
$x+2<14 \quad$ and $x>12$
$14<3 x+1$
$-3 x<-13$

$$
x>4 \frac{1}{3}
$$

$\therefore 4 \frac{1}{3}<x<12$
(c) $8 x+1 \leqslant 2 x+1 \leqslant 3 x+2$
$8 x+1 \leqslant 2 x+2$ and

$$
6 x \leqslant 0
$$

$$
-x \leqslant 1
$$

$$
x \leqslant 0
$$

$$
x \geqslant-1
$$

$\therefore-1 \leqslant x \leqslant 0$
(d) $3 x-3 \leqslant 5 x+9 \leqslant x+35$
$3 x-3 \leqslant 5 x+9$
and

$$
5 x+9 \leqslant x+35
$$

$$
\begin{aligned}
-2 x & \leqslant 12 \\
x & \geqslant-6
\end{aligned}
$$

$$
4 x \leqslant 26
$$

$$
x \leqslant 6 \frac{1}{2}
$$

$\therefore-6 \leqslant x \leqslant 6 \frac{1}{2}$
(e) $6 x+4<4 x-2 \leqslant 2 x+1$
$6 x+4<4 x-2 \quad$ and

$$
2 x<-6
$$

$x<-3$

$$
\begin{aligned}
4 x-2 & \leqslant 2 x+1 \\
2 x & \leqslant 3 \\
x & \leqslant 1 \frac{1}{2}
\end{aligned}
$$

(f) $x+2 \geqslant 1-3 x>x-11$

$$
\therefore-\frac{1}{4} \leqslant x<3
$$

(g) $3 x-5<26 \leqslant 4 x-6$
23. (a) $x-\frac{3}{2}<\frac{5-6 x}{4}<x+\frac{1}{2}$
(b) $2+\frac{3 x}{2} \leqslant \frac{5 x+1}{3} \leqslant \frac{3 x+11}{2}$
$2+\frac{3 x}{2} \leqslant \frac{5 x+1}{3} \quad$ and $\quad \frac{5 x+1}{3} \leqslant \frac{3 x+11}{2}$
$\frac{4+3 x}{2} \leqslant \frac{5 x+1}{3} \quad 10 x+2 \leqslant 9 x+33$
$12+9 x \leqslant 10 x+2 \quad x \leqslant 31$

$$
-x \leqslant-10
$$

$$
x \geqslant 10
$$

$\therefore 10 \leqslant x \leqslant 31$
(c) $2 x+3>\frac{7 x+6}{4} \geqslant 3 x+2$
$2 x+3>\frac{7 x+6}{4} \quad$ and $\quad \frac{7 x+6}{4} \geqslant 3 x+2$
$8 x+12>7 x+6$ $7 x+6 \geqslant 12 x+8$

$$
x>-6
$$

$$
-5 x \geqslant 2
$$

$$
x \leqslant-\frac{2}{5}
$$

$\therefore-6<x \leqslant-\frac{2}{5}$

$$
\begin{aligned}
& x-\frac{3}{2}<\frac{5-6 x}{4} \quad \text { and } \quad \frac{5-6 x}{4}<x+\frac{1}{2} \\
& \frac{2 x-3}{2}<\frac{5-6 x}{4} \quad \frac{5-6 x}{4}<\frac{2 x+1}{2} \\
& 8 x-12<10-12 x \quad 10-12 x<8 x+4 \\
& 20 x<22 \\
& -20 x<-6 \\
& x<1 \frac{1}{10} \\
& x>\frac{3}{10} \\
& \therefore \frac{3}{10}<x<1 \frac{1}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
3 x-5 & <26 & \text { and } & 26
\end{aligned} \\
& x<10 \frac{1}{3} \\
& x \geqslant 8 \\
& \therefore 8 \leqslant x<10 \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& x+2 \geqslant 1-3 x \quad \text { and } \\
& 1-3 x>x-11 \\
& -4 x>-12 \\
& x \geqslant-\frac{1}{4} \\
& x<3
\end{aligned}
$$

(d) $2 x-15 \frac{1}{2}>x+\frac{1}{2} \geqslant 2 x-25 \frac{1}{2}$

$$
\begin{array}{rlrl}
2 x-15 \frac{1}{2}>x+\frac{1}{2} & \text { and } & x+\frac{1}{2} & \geqslant 2 x-25 \frac{1}{2} \\
x & >16 & -x & \geqslant-26 \\
x & \leqslant 26
\end{array}
$$

$$
\therefore 16<x \leqslant 26
$$

(e) $\frac{x}{2}+\frac{1}{5} \geqslant \frac{2 x}{5}>x-5$

$$
\begin{array}{rlrl}
\frac{x}{2}+\frac{1}{5} & \geqslant \frac{2 x}{5} & \text { and } & \\
\frac{5 x+2}{10} & \geqslant \frac{2 x}{5} & >x-5 \\
25 x+10 & \geqslant 20 x & & 2 x>5 x-25 \\
5 x & \geqslant-10 & & -3 x>-25 \\
x & \geqslant-2 & & \\
\therefore-2 \leqslant x & <8 \frac{1}{3} \\
\text { (f) } \frac{1}{2} x+6 & <\frac{1}{4} x+10<x+5 & &
\end{array}
$$

(g) $-2 x+4 \leqslant \frac{3 x-5}{3} \leqslant 5 x-6$
(h) $\frac{2}{5} x<2 x-1 \leqslant \frac{10+2 x}{15}$

$$
\begin{aligned}
& \frac{2}{5} x<2 x-1 \quad \text { and } \quad 2 x-1 \leqslant \frac{10+2 x}{15} \\
& 2 x<10 x-5 \\
& -8 x<-5 \\
& x>\frac{5}{8} \\
& 30 x-15 \leqslant 10+2 x \\
& 28 x \leqslant 25 \\
& x \leqslant \frac{25}{28} \\
& \therefore \frac{5}{8}<x \leqslant \frac{25}{28}
\end{aligned}
$$

$$
\begin{aligned}
& -2 x+4 \leqslant \frac{3 x-5}{3} \quad \text { and } \quad \frac{3 x-5}{3} \leqslant 5 x-6 \\
& -6 x+12 \leqslant 3 x-5 \quad 3 x-5 \leqslant 15 x-18 \\
& -9 x \leqslant-17 \\
& x \geqslant 1 \frac{8}{9} \\
& -12 x \leqslant-13 \\
& \therefore x \geqslant 1 \frac{8}{9}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} x+6<\frac{1}{4} x+10 \quad \text { and } \quad \frac{1}{4} x+10<x+5 \\
& \frac{1}{4} x<4 \quad-\frac{3}{4} x<-5 \\
& x<16 \\
& \therefore 6 \frac{2}{3}<x<16
\end{aligned}
$$

24. $\frac{1}{2}(y-4)>\frac{2 y}{3}$

$$
\begin{aligned}
3 y-12 & >4 y \\
-y & >12 \\
y & <-12
\end{aligned}
$$

\therefore Largest integer value of y is -13 .
25. $3-3 x \leqslant 2+2 x<5 x+1$
$\therefore x>\frac{1}{3}$
(a) 1
(b) 2
26. $3 x+5<4 x-2 \leqslant 3 x+7$

$$
\begin{aligned}
3 x+5 & \left.<4 x-2 \quad \text { and } \quad \begin{array}{rl}
4 x-2 & \leqslant 3 x+7 \\
-x & <-7 \\
x & \leqslant 7 \\
\therefore 7 & <x
\end{array}\right)<9
\end{aligned}
$$

Integer values of x are 8 and 9 .
27. $\frac{q+8}{3} \leqslant \frac{4 q}{3}-4$

$$
\begin{aligned}
\frac{q+8}{3} & \leqslant \frac{4 q-12}{3} \\
q+8 & \leqslant 4 q-12 \\
-3 q & \leqslant-20 \\
q & \geqslant 6 \frac{2}{3}
\end{aligned}
$$

(a) 7
(b) 7
28. $\frac{1}{4} x-\frac{3}{5}\left(x+\frac{1}{3}\right) \leqslant \frac{1}{2}(x-9)$

$$
\frac{1}{4} x-\frac{3}{5} x-\frac{1}{5} \leqslant \frac{1}{2} x-\frac{9}{2}
$$

$$
-\frac{7}{20} x-\frac{1}{5} \leqslant \frac{1}{2} x-\frac{9}{2}
$$

$$
-\frac{17}{20} x \leqslant-\frac{43}{10}
$$

$$
x \geqslant 5 \frac{1}{17}
$$

(a) $5 \frac{1}{17}$
(b) 6

$$
\begin{aligned}
& 3-3 x \leqslant 2+2 x \quad \text { and } \\
& -5 x \leqslant-1 \\
& x \geqslant \frac{1}{5} \\
& 2+2 x<5 x+1 \\
& -3 x<-1 \\
& x>\frac{1}{3}
\end{aligned}
$$

29. $\frac{y+8}{3} \leqslant \frac{4 y}{5}-1$

$$
\begin{aligned}
\frac{y+8}{3} & \leqslant \frac{4 y-5}{5} \\
5 y+40 & \leqslant 12 y-15 \\
-7 y & \leqslant-55 \\
y & \geqslant 7 \frac{6}{7}
\end{aligned}
$$

(a) 8
(b) 11
30. $40<60-50 t<50$

$$
\begin{aligned}
40 & <60-50 t & \text { and } & 60-50 t \\
50 t & <20 & -50 t & <-10 \\
t & <\frac{2}{5} & t & >\frac{1}{5} \\
\therefore \frac{1}{5} & <t<\frac{2}{5} & &
\end{aligned}
$$

31. $5<x-1<9$ and $6<x<10$

$$
8<2 x<16 \frac{1}{2}
$$

$$
4<x<8 \frac{1}{4}
$$

$\therefore 6<x<8 \frac{1}{4}$
Integers are 7 and 8 .
32. $x<3+8$
$\therefore x<11$
33. Let the integers be $x, x+1$ and $x+2$.

$$
\begin{aligned}
x+x+1+x+2 & \leqslant 370 \\
3 x+3 & \leqslant 370 \\
3 x & \leqslant 367 \\
x & \leqslant 122 \frac{1}{3}
\end{aligned}
$$

(a) 123
(b) $\sqrt{124}=11.1$ (to 3 s.f.)
34. Let $x \mathrm{~m}$ be the breadth of the plot.
$2(4 x+x) \leqslant 220$

$$
\begin{aligned}
10 x & \leqslant 220 \\
x & \leqslant 22
\end{aligned}
$$

Largest possible area $=(88)(22)$

$$
=1936 \mathrm{~m}^{2}
$$

35. Let Farhan's age be x years.

$$
\begin{aligned}
x+2 x & \geqslant 53 \\
3 x & \geqslant 53 \\
x & \geqslant 17 \frac{2}{3}
\end{aligned}
$$

\therefore Minimum age of Farhan is 18 years.
36. Let the number of questions he answered correctly be x.

$$
\begin{aligned}
2 x-(18-x) & >30 \\
2 x-18+x & >30 \\
3 x & >48 \\
x & >16
\end{aligned}
$$

\therefore Minimum number of questions he answered correctly is 17 .
37. Let x be the number of strawberries.
$x+\frac{2}{3} x \leqslant 65$

$$
\begin{aligned}
\frac{5}{3} x & \leqslant 65 \\
x & \leqslant 39
\end{aligned}
$$

\therefore Maximum number of strawberries is 39 .
38. Let the number of 50 -cent coins be x.

$$
\begin{aligned}
3(50)+20(2)+x(0.5) & \leqslant 200 \\
150+40+0.5 x & \leqslant 200 \\
0.5 x & \leqslant 10 \\
x & \leqslant 20
\end{aligned}
$$

\therefore Maximum number of 50 -cent coins is 20 .
39. (a) Greatest possible value of $a+b=3+(-2)$

$$
=1
$$

(b) Least possible value of $a-b=-5-(-2)$

$$
=-3
$$

(c) Largest possible value of $a b=(-5)(-8)$

$$
=40
$$

(d) Smallest possible value of $\frac{a}{b}=\frac{3}{-2}$

$$
=-1 \frac{1}{2}
$$

(e) Greatest possible value of $a^{2}=(-5)^{2}$

$$
=25
$$

Least possible value of $a^{2}=0^{2}$

$$
=0
$$

40. Upper bound of total mass $=60.5 \mathrm{~kg}$

Lower bound of total number of potatoes $=45$
Upper bound of average mass of one potato $=\frac{60.5}{45}$

$$
\begin{equation*}
=1.34 \mathrm{~kg} \tag{to3s.f.}
\end{equation*}
$$

Lower bound of total mass $=59.5 \mathrm{~kg}$
Upper bound of total number of potatoes $=55$
Lower bound of average mass of one potato $=\frac{59.5}{55.5}$

$$
=1.08 \mathrm{~kg}
$$

(to 3 s.f.)
41. Maximum distance travelled $=900.5 \mathrm{~m}$

Minimum time taken $=4.5 \mathrm{~s}$
Maximum speed $=\frac{900.5}{4.5}$

$$
=200 \mathrm{~m} / \mathrm{s} \text { (to } 3 \text { s.f. })
$$

Minimum distance travelled $=899.5 \mathrm{~m}$
Maximum time $=5.5 \mathrm{~s}$
Minimum speed $=\frac{899.5}{5.5}$

$$
=164 \mathrm{~m} / \mathrm{s} \text { (to } 3 \mathrm{s.f.} \text {) }
$$

42. (a) Greatest possible value of perimeter $=2(22.5+57.5)$

$$
=160 \mathrm{~m}
$$

Least possible value of perimeter $=2(21.5+56.5)$

$$
=156 \mathrm{~m}
$$

(b) Greatest possible value of area $=22.5 \times 57.5$

$$
=1293.75 \mathrm{~m}^{2}
$$

Least possible value of area $=21.5 \times 56.5$

$$
=1214.75 \mathrm{~m}^{2}
$$

Advanced

43. (a) Greatest possible value of $(x-y)^{2}=[8-(-5)]^{2}$

$$
=169
$$

(b) Least possible value of $(x+y)^{2}=[5+(-5)]^{2}$

$$
=0
$$

(c) Largest possible value of $\frac{2 y}{x}=\frac{2(2)}{2}$

$$
=2
$$

(d) Largest possible value of $\frac{y^{2}}{x}=\frac{(-5)^{2}}{2}$

$$
=12 \frac{1}{2}
$$

(e) Greatest possible value of $x^{3}-y^{3}=8^{3}-(-5)^{3}$

$$
=637
$$

Least possible value of $x^{3}-y^{3}=2^{3}-2^{3}$

$$
=0
$$

44. (a) Least possible value of $p^{2}-q^{2}=\left(-\frac{1}{2}\right)^{2}-6^{2}$

$$
=-35 \frac{3}{4}
$$

(b) Least possible value of $p^{2}+q^{2}=\left(-\frac{1}{2}\right)^{2}+0^{2}$

$$
=\frac{1}{4}
$$

(c) Largest possible value of $p q=(-2)(-1)$

$$
=2
$$

(d) Smallest possible value of $\frac{q}{p}=\frac{6}{-\frac{1}{2}}$

$$
=-12
$$

(e) Greatest possible value of $p^{3}+q^{3}=\left(-\frac{1}{2}\right)^{2}+6^{3}$

$$
=215 \frac{7}{8}
$$

Least possible value of $p^{3}+q^{3}=(-2)^{3}+(-1)^{3}$

$$
=-9
$$

New Trend

45. (i) $-10<7-2 x \leqslant-1$

$$
\begin{aligned}
& -10<7-2 x \quad \text { and } \quad 7-2 x \leqslant-1 \\
& 2 x<17 \\
& -2 x \leqslant-8 \\
& x<8 \frac{1}{2} \\
& x \geqslant 4 \\
& \therefore 4 \leqslant x<8 \frac{1}{2}
\end{aligned}
$$

(ii) Integers are 4, 5, 6, 7 and 8 .
46. $2(x+1)>\frac{3}{5}(x-4)$
$10(x+1)>3(x-4)$
$10 x+10>3 x-12$

$$
\begin{aligned}
7 x & >-22 \\
x & >-3 \frac{1}{7}
\end{aligned}
$$

47. (a) $-5<x \leqslant 3$

$$
\text { Integers are }-4,-3,-2,-1,0,1,2 \text { and } 3
$$

(b) $x-3<2 x-1<5+x$

$$
\begin{array}{rlrl}
x-3 & <2 x-1 & \text { and } & 2 x-1 \\
-x & <2 & & x+x \\
x & & & <-2 \\
\therefore-2 & <x & <6 & \\
& &
\end{array}
$$

48. (a)

(b) $4 x+5 \leqslant 5 x-2 \leqslant 4 x+7$
$4 x+5 \leqslant 5 x-2$ and $5 x-2 \leqslant 4 x+7$
$-x \leqslant-7 \quad x \leqslant 9$

$$
x \geqslant 7
$$

$\therefore 7 \leqslant x \leqslant 9$

Chapter 4 Indices and Standard Form

Basic

1. (a) $a^{4} \div a^{-2} \times a^{7}$
$=a^{4-(-2)+7}$
$=a^{13}$
(b) $2 b^{7} \times 4 b^{-3}$
$=8 b^{7+(-3)}$
$=8 b^{4}$
(c) $c^{-2} \times\left(c^{\frac{1}{2}}\right)^{6} \times c^{-1}$
$=c^{-2} \times c^{3} \times c^{-1}$
$=c^{-2+3+(-1)}$
$=c^{0}$
$=1$
(d) $\sqrt[3]{d^{2}} \times \sqrt{d^{3}} \div d^{2}$

$$
=d^{\frac{2}{3}} \times d^{\frac{3}{2}} \div d^{2}
$$

$=d^{\frac{2}{3}+\frac{3}{2}-2}$
$=d^{\frac{1}{6}}$
$\frac{e^{-5} \times e^{9}}{e}$
$=e^{-5+9-1}$
$=e^{3}$
(e) $\frac{\frac{e^{-5} \times e^{9}}{e}}{=e^{-5+9-1}}$

$$
=e^{3}
$$

(f) $\frac{f^{-\frac{1}{2}} \times f^{4}}{f^{0} \times \sqrt{f} \div f^{-2}}$
$=\frac{f^{-\frac{1}{2}+4}}{f^{\frac{1}{2}-(-2)}}$
$=\frac{f^{3 \frac{1}{2}}}{f^{2 \frac{1}{2}}}$
$=f$
2. (a) $\left(\frac{3 w}{5}\right)^{-2}$

$$
=\left(\frac{5}{3 w}\right)^{2}
$$

$$
=\frac{25}{9 w^{2}}
$$

(b) $\left(\frac{3}{7 x}\right)^{-2}$

$$
=\left(\frac{7 x}{3}\right)^{2}
$$

$$
=\frac{49 x^{2}}{9}
$$

(c) $3 \div 9 y^{-2}$

$$
=3 \div \frac{9}{y^{2}}
$$

$$
=3 \times \frac{y^{2}}{9}
$$

$$
=\frac{y^{2}}{3}
$$

(d) $(5 z)^{0} \div 8 z^{-4}$

$$
\begin{aligned}
& =1 \div \frac{8}{z^{4}} \\
& =1 \times \frac{z^{4}}{8} \\
& =\frac{z^{4}}{8}
\end{aligned}
$$

3. (a) $(-27)^{\frac{2}{3}}$

$$
\begin{aligned}
& =(\sqrt[3]{-27})^{2} \\
& =(-3)^{2} \\
& =9
\end{aligned}
$$

(b) 8

$$
=\frac{1}{8^{\frac{2}{3}}}
$$

$$
=\frac{1}{(\sqrt[3]{8})^{2}}
$$

$$
=\frac{1}{2^{2}}
$$

$$
=\frac{1}{4}
$$

(c) $\sqrt[3]{0.027}$

$$
\begin{aligned}
& =\sqrt[3]{\frac{27}{1000}} \\
& =\sqrt[3]{\left(\frac{3}{10}\right)^{3}} \\
& =\frac{3}{10}
\end{aligned}
$$

(d) $3^{4}-3^{3}$

$$
\begin{aligned}
& =81-27 \\
& =54
\end{aligned}
$$

4. (a) $2^{2 a-1}=128$

$$
=2^{7}
$$

$$
\begin{aligned}
2 a-1 & =7 \\
2 a & =8 \\
a & =4
\end{aligned}
$$

(b) $6^{3 b}=216$

$$
\begin{aligned}
& =6^{3} \\
3 b & =3 \\
b & =1
\end{aligned}
$$

(c) $3^{c+1}=27^{-1}$

$$
\begin{aligned}
& =\left(3^{3}\right)^{-1} \\
& =3^{-3} \\
c+1 & =-3 \\
c & =-4
\end{aligned}
$$

(d) $8^{3 d-1}=1$

$$
3 d-1=0
$$

$$
3 d=1
$$

$$
d=\frac{1}{3}
$$

5. (a) $0.0231=2.31 \times 10^{-2}$
(b) $62500=6.25 \times 10^{4}$
(c) $5390000=5.39 \times 10^{6}$
(d) $0.000005345=5.345 \times 10^{-6}$
6. (a) $9.43 \times 10^{-4}=0.000943$
(b) $6.1 \times 10^{4}=61000$
(c) $2.795 \times 10^{6}=2795000$
(d) $7 \times 10^{-7}=0.0000007$
7. (a) $\left(8.59 \times 10^{-7}\right) \times\left(0.392 \times 10^{5}\right)$

$$
=3.37 \times 10^{-2}(\text { to } 3 \text { s.f. })
$$

(b) $\left(8.05 \times 10^{6}\right) \div\left(7 \times 10^{-2}\right)$

$$
=1.15 \times 10^{8}
$$

(c) $3.2 \times 10^{6}+1.8 \times 10^{4}$

$$
=3.22 \times 10^{6} \text { (to } 3 \text { s.f.) }
$$

(d) $1.97 \times 10^{7}-2.02 \times 10^{5}$

$$
=1.95 \times 10^{7} \text { (to } 3 \text { s.f.) }
$$

8. 750 gigabytes $=750 \times 10^{9}$ bytes

$$
=7.5 \times 10^{11} \text { bytes }
$$

9. $0.5 \mathrm{MHz}=0.5 \times 10^{6}$ hertz

$$
=5 \times 10^{5} \text { hertz }
$$

10. $76 \mu \mathrm{~g}=76 \times 10^{-6} \mathrm{~g}$

$$
=7.6 \times 10^{-5} \mathrm{~g}
$$

11. (i) 273 picograms $=273 \times 10^{-12} \mathrm{~g}$

$$
=2.73 \times 10^{-10} \mathrm{~g}
$$

(ii) Total mass $=\left(0.3 \times 10^{9}\right) \times\left(2.73 \times 10^{-10}\right)$

$$
=8.19 \times 10^{-2}
$$

12. (a) $q: p=1.2 \times 10^{6}: 9.6 \times 10^{5}$

$$
\begin{array}{lclc}
= & 12 & : & 9.6 \\
= & 5 & : & 4
\end{array}
$$

(b) Distance between Beijing and Tokyo

$$
=9.6 \times 10^{5}+1.2 \times 10^{6}
$$

$$
=2.16 \times 10^{6} \mathrm{~m}
$$

13. (a) Difference in mass $=2.66 \times 10^{-23}-1.99 \times 10^{-23}$

$$
\begin{aligned}
& =0.67 \times 10^{-23} \\
& =6.7 \times 10^{-24} \mathrm{~g}
\end{aligned}
$$

(b) Mass of one molecule $=1.99 \times 10^{-23}+2\left(2.66 \times 10^{-23}\right)$

$$
\begin{aligned}
& =1.99 \times 10^{-23}+5.32 \times 10^{-23} \\
& =7.31 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

Intermediate

14. (a) $\left(5 a^{2} b^{3}\right)^{3}$

$$
\begin{aligned}
& =125 a^{2 \times 3} b^{3 \times 3} \\
& =125 a^{6} b^{9}
\end{aligned}
$$

(b) $5 a^{4} b^{8} \times 9 a^{2} b^{3}$ $=45 a^{4+2} b^{8+3}$ $=45 a^{6} b^{11}$
(c) $\frac{a^{4} \times\left(a b^{2}\right)^{2}}{\left(a^{8} b\right)^{2}}$

$$
=\frac{a^{4} \times a^{1 \times 2} b^{2 \times 2}}{a^{8 \times 2} b^{1 \times 2}}
$$

$=\frac{a^{4+2} b^{4}}{a^{16} b^{2}}$
$=\frac{a^{6} b^{4}}{a^{16} b^{2}}$
$=\frac{b^{4-2}}{a^{16-6}}$

$$
=\frac{b^{2}}{a^{10}}
$$

(d) $-\left(4 a^{3} b\right)^{2} \times \frac{3 a^{5}}{8 b^{4}}$

$$
\begin{aligned}
& =-16 a^{3 \times 2} b^{1 \times 2} \times \frac{3 a^{5}}{8 b^{4}} \\
& =-16 a^{6} b^{2} \times \frac{3 a^{5}}{8 b^{4}} \\
& =-\frac{6 a^{6+5}}{b^{4-2}} \\
& =-\frac{6 a^{11}}{b^{2}}
\end{aligned}
$$

15. (a) $3^{0}+\left(\frac{1}{3}\right)^{-4}$

$$
\begin{aligned}
& =1+3^{4} \\
& =1+81 \\
& =82
\end{aligned}
$$

(b) $8^{-2}+8^{0}-8^{1}$
$=\frac{1}{8^{2}}+1-8$
$=\frac{1}{64}-7$
$=-6 \frac{63}{64}$
(c) $9^{-1}+9^{0}+9^{\frac{1}{2}}$
$=\frac{1}{9}+1+3$
$=4 \frac{1}{9}$
(d) $16^{-\frac{3}{4}} \times 8^{2} \div 2^{-1}$
$=\left(2^{4}\right)^{-\frac{3}{4}} \times\left(2^{3}\right)^{2} \div 2^{-1}$
$=2^{-3} \times 2^{6} \div 2^{-1}$
$=2^{-3+6-(-1)}$
$=2^{4}$
$=16$
(e) $\left(\frac{3}{4}\right)^{-2}+3^{-1}-3$
$=\left(\frac{4}{3}\right)^{2}+\frac{1}{3}-3$
$=\frac{16}{9}-2 \frac{2}{3}$
$=-\frac{8}{9}$
(f) $\left(81^{\frac{1}{2}}-4^{0}\right) \times 3^{-2}$
$=(9-1) \times \frac{1}{3^{2}}$
$=8 \times \frac{1}{9}$
$=\frac{8}{9}$
(g) $\left(\frac{1}{27}\right)^{0} \times\left(\frac{27}{8}\right)^{-\frac{2}{3}} \div \frac{1}{3^{2}}$

$$
=1 \times\left(\frac{27}{8}\right)^{-\frac{2}{3}} \times 3^{2}
$$

$$
=\left[\left(\frac{2}{3}\right)^{3}\right]^{\frac{2}{3}} \times 9
$$

$$
=\left(\frac{2}{3}\right)^{2} \times 9
$$

$$
=\frac{4}{9} \times 9
$$

$$
=4
$$

(h) $\left(\frac{2}{5}\right)^{-2} \div 125^{\frac{1}{3}}$

$$
=\left(\frac{2}{5}\right)^{-2} \div\left(5^{3}\right)^{\frac{1}{3}}
$$

$$
=\frac{25}{4} \div 5
$$

$$
=\frac{25}{4} \times \frac{1}{5}
$$

$$
=\frac{5}{4}
$$

$$
=1 \frac{1}{4}
$$

16. (a) $\frac{\left(-2 x^{2} y\right)^{3}}{4 x^{-1}\left(y^{2}\right)^{3}}$

$$
\begin{aligned}
& =\frac{-8 x^{2 \times 3} y^{1 \times 3}}{4 x^{-1} y^{2 \times 3}} \\
& =-\frac{2 x^{6} y^{3}}{x^{-1} y^{6}} \\
& =-\frac{2 x^{6-(-1)}}{y^{6-3}} \\
& =-\frac{2 x^{7}}{y^{3}}
\end{aligned}
$$

(b) $\frac{\left(2 x^{2} y\right)^{3} \times \sqrt{x^{8}}}{x^{-2} y^{5}}$
$=\frac{8 x^{2 \times 3} y^{1 \times 3} \times x^{4}}{x^{-2} y^{5}}$

$$
=\frac{8 x^{6+4} y^{3}}{x^{-2} y^{5}}
$$

$$
=\frac{8 x^{10-(-2)}}{y^{5-3}}
$$

$$
=\frac{8 x^{12}}{y^{2}}
$$

(c) $\frac{(2 x y)^{2}}{35 x y^{7}} \div\left(\frac{x^{-1} y^{-2}}{4}\right)^{-2}$

$$
\begin{aligned}
& =\frac{4 x^{1 \times 2} y^{1 \times 2}}{35 x y^{7}} \div\left(\frac{4}{x^{-1} y^{-2}}\right)^{2} \\
& =\frac{4 x^{2} y^{2}}{35 x y^{7}} \div\left(4 x y^{2}\right)^{2} \\
& =\frac{4 x^{2-1}}{35 y^{7-2}} \div 16 x^{1 \times 2} y^{2 \times 2} \\
& =\frac{4 x}{35 y^{5}} \times \frac{1}{16 x^{2} y^{4}} \\
& =\frac{1}{140 x y^{9}}
\end{aligned}
$$

(d) $\left(\frac{2 x}{y^{-1}}\right)^{2} \div\left(\frac{2}{x^{-2} y}\right)^{-2}$
$=\frac{4 x^{1 \times 2}}{y^{-1 \times 2}} \div\left(\frac{x^{-2} y}{2}\right)^{2}$
$=\frac{4 x^{2}}{y^{-2}} \div\left(\frac{y}{2 x^{2}}\right)^{2}$
$=4 x^{2} y^{2} \div \frac{y^{1 \times 2}}{4 x^{2 \times 2}}$
$=4 x^{2} y^{2} \div \frac{y^{2}}{4 x^{4}}$
$=4 x^{2} y^{2} \times \frac{4 x^{4}}{y^{2}}$
$=16 x^{6}$
17. $\frac{5^{p}}{\sqrt{5}}=5^{-p}$

$$
\frac{5^{p}}{5^{\frac{1}{2}}}=5^{-p}
$$

$$
5^{p-\frac{1}{2}}=5^{-p}
$$

$$
p-\frac{1}{2}=-p
$$

$$
2 p=\frac{1}{2}
$$

$$
p=\frac{1}{4}
$$

18. $\frac{a^{3} \times \sqrt[3]{a}}{\sqrt{a^{5}}}=a^{w}$
$\frac{a^{3} \times a^{\frac{1}{3}}}{a^{\frac{5}{2}}}=a^{w}$
$a^{3+\frac{1}{3}-\frac{5}{2}}=a^{w}$
$w=\frac{5}{6}$
19. $10^{3 p+2 q-r}$
$=\frac{\left(10^{3 p}\right)\left(10^{2 q}\right)}{10^{r}}$
$=\frac{\left(10^{p}\right)^{3}\left(10^{q}\right)^{2}}{10^{r}}$
$=\frac{(2)^{3}(3)^{2}}{1250}$
$=5.76 \times 10^{-2}$
20. (a) $10^{-4}-3.12 \times 10^{-5}$

$$
=6.88 \times 10^{-5}
$$

(b) $\frac{0.26 \times 10^{-4}}{2.31 \times 23 \times 10^{-2}}$

$$
=4.89 \times 10^{-5}(\text { to } 3 \text { s.f. })
$$

(c) $1.2 \times 10^{8}+2\left(3.5 \times 10^{7}\right)$

$$
=1.9 \times 10^{8}
$$

(d) $\sqrt[4]{1600 \times 10^{-4}}$

$$
=6.32 \times 10^{-1} \text { (to } 3 \text { s.f.) }
$$

(e) $\frac{7.5 \times 10^{6}}{1.5 \times 10^{3}}+4.1 \times 10^{4}$

$$
=4.6 \times 10^{4}
$$

(f) $\frac{\left(4 \times 10^{2}\right)^{5}-\left(5 \times 10^{6}\right)}{\sqrt{16 \times 10^{-4}}}$

$$
=2.56 \times 10^{14} \text { (to } 3 \text { s.f.) }
$$

21. (a) $\frac{2 b}{a}=\frac{2\left(2 \times 10^{2}\right)}{5 \times 10^{-3}}$

$$
=8 \times 10^{4}
$$

(b) $\frac{3}{a}-b=\frac{3}{5 \times 10^{-3}}-2 \times 10^{2}$

$$
=4 \times 10^{2}
$$

22. (a) $p \times 2 q=4 \times 10^{9} \times 2 \times 3 \times 10^{5}$

$$
=2.4 \times 10^{15}
$$

(b) $\frac{q^{2}}{p}=\frac{\left(3 \times 10^{3}\right)^{2}}{4 \times 10^{9}}$

$$
=2.25 \times 10^{1}
$$

23. 3.3 nanoseconds $=3.3 \times 10^{-9}$ seconds
4.2 billion $\mathrm{km}=4.2 \times 10^{9} \mathrm{~km}$

$$
=4.2 \times 10^{12} \mathrm{~m}
$$

Time taken $=\frac{4.2 \times 10^{12}}{1 \div\left(3.3 \times 10^{-9}\right)}$

$$
=1.386 \times 10^{4} \text { seconds }
$$

24. (a) Difference in population $=50 \times 10^{6}-5.18 \times 10^{6}$

$$
=4.482 \times 10^{7}
$$

(b) $5.18 \times 10^{6}: 6.97 \times 10^{9}$

$$
1: 1350 \text { (to } 3 \text { s.f.) }
$$

25. (i) $0.000001654 \mathrm{~cm}=1.654 \times 10^{-6} \mathrm{~cm}$
(ii) Volume $=\frac{4}{3} \pi\left(\frac{1.654 \times 10^{-6}}{2}\right)^{3} \times 10^{6}$

$$
=2.37 \times 10^{-12} \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

26. $x=1, y=-2$

Advanced

27. (i) Number of daughter cells at the end of 1 hour $=2^{3}$
(ii) Number of daughter cells at the end of 1 day $=2^{72}$
(iii) Number of daughter cells at the end of 1 week $=2^{504}$
28. $\frac{8\left(9^{3 x}\right)-27^{2 x}}{3^{2 x+1} \times 81^{x-1}}=\frac{8\left(3^{2}\right)^{3 x}-\left(3^{3}\right)^{2 x}}{3\left(3^{2 x}\right) \times\left(3^{4}\right)^{x-1}}$

$$
\begin{aligned}
& =\frac{8\left(3^{6 x}\right)-3^{6 x}}{3\left(3^{2 x}\right) \times 3^{4 x} \times 3^{-4}} \\
& =\frac{7\left(3^{6 x}\right)}{3^{-3}\left(3^{6 x}\right)} \\
& =189
\end{aligned}
$$

29. (a) $\frac{2^{15}}{8^{5}}=\frac{\left(2^{3}\right)^{5}}{8^{5}}$

$$
\begin{aligned}
& =\frac{8^{5}}{8^{5}} \\
& =1
\end{aligned}
$$

(b) $2^{8} \times 5^{4}=\left(2^{2}\right)^{4} \times 5^{4}$

$$
\begin{aligned}
& =4^{4} \times 5^{4} \\
& =20^{4} \\
& =160000
\end{aligned}
$$

30. $9^{n}+9^{n}+9^{n}=243$

$$
\begin{aligned}
3\left(9^{n}\right) & =243 \\
9^{n} & =81 \\
& =9^{2} \\
n & =2
\end{aligned}
$$

New Trend

31. $16 \times 64^{n}=1$

$$
\begin{aligned}
4^{2} \times\left(4^{3}\right)^{n} & =4^{0} \\
4^{2+3 n} & =4^{0} \\
2+3 n & =0 \\
n & =-\frac{2}{3}
\end{aligned}
$$

32. (a) $2^{n} \times 2^{-2}=\frac{1}{32}$

$$
\begin{aligned}
2^{n-2} & =\frac{1}{2^{5}} \\
& =2^{-5} \\
n-2 & =-5 \\
n & =-3
\end{aligned}
$$

(b) $\frac{1}{36}=6^{k}$

$$
\frac{1}{6^{2}}=6^{k}
$$

$$
6^{k}=6^{-2}
$$

$$
k=-2
$$

33. $\left(\frac{2 x}{y^{-1}}\right)^{2} \div \frac{1}{3 x^{-3} y^{-3}}$
$=\frac{4 x^{2}}{y^{-1 \times 2}} \div \frac{x^{3} y^{3}}{3}$
$=\frac{4 x^{2}}{y^{-2}} \times \frac{3}{x^{3} y^{3}}$
$=\frac{12}{x y}$
34. (a) $\left(x^{9} y^{-3}\right)^{\frac{1}{3}} \times\left(x^{8} y^{-2}\right)^{\frac{3}{2}}$
$=x^{9 \times \frac{1}{3}} y^{-3 \times \frac{1}{3}} \times x^{8 \times \frac{3}{2}} y^{-2 \times \frac{3}{2}}$
$=x^{3} y^{-1} \times x^{12} y^{-3}$
$=x^{3+12} y^{-1+(-3)}$
$=x^{15} y^{-4}$
$=\frac{x^{15}}{y^{4}}$
(b) $\left(\frac{125}{x^{27}}\right)^{-\frac{1}{3}}=\left(\frac{x^{27}}{125}\right)^{\frac{1}{3}}$

$$
=\frac{x^{9}}{5}
$$

35. (a) (i) $11^{20} \div 11^{5}=11^{20-5}$

$$
=11^{15}
$$

(ii) $\frac{1}{121}=\frac{1}{11^{2}}$

$$
=11^{-2}
$$

(iii) $\sqrt[6]{11}=11^{\frac{1}{6}}$
(b) $5^{-3} \times 5^{k}=1$

$$
\begin{aligned}
5^{-3+k} & =5^{0} \\
-3+k & =0 \\
k & =3
\end{aligned}
$$

36. (i) $46 \mu \mathrm{~m}=46 \times 10^{-6} \mathrm{~m}$
$=4.6 \times 10^{-5} \mathrm{~m}$
(ii) $\mathrm{Area}=\pi\left(4.6 \times 10^{-5}\right)^{2}$

$$
=6.65 \times 10^{-9} \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
$$

37. (a) $12000=1.2 \times 10^{4}$
(b) Percentage increase in speed

$$
\begin{aligned}
& =\frac{1.14 \times 10^{7}-9.7 \times 10^{6}}{9.7 \times 10^{6}} \times 100 \% \\
& =\frac{10^{6}(1.14 \times 10-9.7)}{9.7 \times 10^{6}} \times 100 \% \\
& =\frac{1.7}{9.7} \times 100 \% \\
& =17.5 \% \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(c) $29 \mathrm{~m} / \mathrm{s}=\frac{29 \mathrm{~m}}{1 \mathrm{~s}}$

$$
\begin{aligned}
& =\frac{(29 \div 1000) \mathrm{km}}{(1 \div 3600) \mathrm{h}} \\
& =104.4 \mathrm{~km} / \mathrm{h} \\
& =1.044 \times 10^{2} \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

38. (a) Difference in population $=6.64 \times 10^{7}-5.077 \times 10^{6}$

$$
\begin{aligned}
& =6.64 \times 10^{7}-0.5077 \times 10^{7} \\
& =6.1323 \times 10^{7}
\end{aligned}
$$

(b) 100% represent the population of Thailand in 1950 . 338% represent the population of Thailand in 2010 $=6.64 \times 10^{7}$
Population of Thailand in $\begin{aligned} 1950 & =\frac{6.64 \times 10^{7}}{338} \times 100 \\ & \left.=1.96 \times 10^{7}(t) 3 s f\right)\end{aligned}$

$$
=1.96 \times 10^{7} \text { (to } 3 \text { s.f.) }
$$

39. (a) $50197.4 \times 10^{9} \mathrm{~Wh}=50197.4 \times 10^{6} \mathrm{kWh}$

$$
=5.01974 \times 10^{10} \mathrm{kWh}
$$

(b) Mean domestic electricity consumed per person
$=\frac{4716.1 \times 10^{9}}{3.111 \times 10^{6}}$
$=1516 \mathrm{kWh}$ (to the nearest kWh)
(c) 100% represent electricity consumption in 2000.

Electricity consumption in 2015 is represented
by $100-41.6=58.4 \%$
Electricity consumption in 2000
$=\frac{5471.2}{58.4} \times 100$
$=9368 \mathrm{GWh}$ (to the nearest GWh)
40. (i) When $t=0$,
$V=20000 \times 1.1^{0}$

$$
=20000
$$

\therefore The value of the flat when it was first built was $\$ 20000$.
(ii) When $t=2$,

$$
\begin{aligned}
\$ V & =20000 \times 1.1^{2} \\
& =24200
\end{aligned}
$$

$\begin{aligned} \text { Percentage increase } & =\frac{24200-20000}{20000} \times 100 \% \\ & =21 \%\end{aligned}$
\therefore The value of the flat increased by 21% after two years.
41. (a) $P=35480 \times 1.0125^{5}$

$$
=\$ 37753.63 \text { (to the nearest cent) }
$$

(b) Percentage increase in the balance

$$
\begin{aligned}
& =\frac{37753.63-35480}{35480} \times 100 \% \\
& =6.41 \% \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

42. $200 \mathrm{ha}=200000 \mathrm{~m}^{2}$

Number of trees on $200000 \mathrm{~m}^{2}=\frac{200000}{10} \times 4$

$$
=80000
$$

Total number of fruits on trees $=60 \times 80000$

$$
\begin{aligned}
& =4800000 \\
& =4.8 \times 10^{6}
\end{aligned}
$$

Average number of seeds produced
by these fruits $=\frac{1.44 \times 10^{7}}{4.8 \times 10^{6}}$

$$
=3
$$

43. (a) 8.48 light years $=8.48 \times 9.46 \times 10^{15} \mathrm{~m}$

$$
\begin{aligned}
& =80.2208 \times 10^{15} \mathrm{~m} \\
& =8.02208 \times 10^{13} \mathrm{~km}
\end{aligned}
$$

(b) 4.35 light years $=4.35 \times 9.46 \times 10^{15} \mathrm{~m}$

$$
\begin{aligned}
& =41.151 \times 10^{15} \mathrm{~m} \\
& =4.1151 \times 10^{16} \mathrm{~m} \\
& =4.1151 \times 10^{13} \mathrm{~km}
\end{aligned}
$$

Time taken $=\frac{4.1151 \times 10^{13}}{50000}$

$$
\begin{aligned}
& =0.82302 \times 10^{9} \mathrm{~h} \\
& =\frac{0.82302 \times 10^{9} \mathrm{~h}}{(365 \times 24) \mathrm{h}} \\
& =0.00009395205 \times 10^{9} \text { years } \\
& =94000 \text { years (to } 2 \text { s.f.) }
\end{aligned}
$$

Revision Test A1

1. (a) $(x+2)(3 x-7)=0$
(b) $(x+2)(3 x-7)=4$

$$
\begin{aligned}
& 3 x^{2}-x-14-4=0 \\
& 3 x^{2}-x-18=0 \\
& x= \frac{-(-1) \pm \sqrt{(-1)^{2}-4(3)(-18)}}{2(3)} \\
&= \frac{1 \pm \sqrt{217}}{6} \\
&=-2.62 \text { (to } 2 \text { d.p.) or }-2.29 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

2. $\mathrm{g}(x)=2 x+1$

Let $y=2 x+1$
$x=\frac{y-1}{2}$
$\therefore \mathrm{g}^{-1}(x)=\frac{x-1}{2}$
(i) $\mathrm{g}^{-1}(5)=\frac{5-1}{2}$

$$
=2
$$

(ii) $\mathrm{g}^{-1}\left(-\frac{1}{3}\right)=\frac{-\frac{1}{3}-1}{2}$

$$
=-\frac{2}{3}
$$

3. $\mathrm{f}(x)=a x+b$
$\mathrm{f}(3)=3 a+b=12$
$\mathrm{f}(-4)=-4 a+b=6-(2)$
(1) $-(2): 7 a=6$

$$
a=\frac{6}{7}
$$

Substitute $a=\frac{6}{7}$ into (1):

$$
3\left(\frac{6}{7}\right)+b=12
$$

$$
b=9 \frac{3}{7}
$$

$\therefore \mathrm{f}(x)=\frac{6}{7} x+9 \frac{3}{7}$
$f(8)=\frac{6}{7}(8)+\frac{66}{7}=16 \frac{2}{7}$
$f(-2)=\frac{6}{7}(-2)+\frac{66}{7}=7 \frac{5}{7}$

$$
\begin{aligned}
& x+2=0 \quad \text { or } \quad 3 x-7=0 \\
& x=-2 \quad \text { or } \quad 3 x=7 \\
& x=\frac{7}{3} \\
& =2 \frac{1}{3}
\end{aligned}
$$

4. $7.8 \times 10^{-6}: 2.5 \times 10^{-3}$

$$
1: 321 \text { (to } 3 \text { s.f.) }
$$

5. $\quad 2^{3 x} \times 8^{2 x-1} \times 16^{x}=1$
$2^{3 x} \times\left(2^{3}\right)^{2 x-1} \times\left(2^{4}\right)^{x}=2^{0}$

$$
2^{3 x+6 x-3+4 x}=2^{0}
$$

$\therefore 3 x+6 x-3+4 x=0$

$$
\begin{aligned}
13 x-3 & =0 \\
x & =\frac{3}{13}
\end{aligned}
$$

6. (a) $(0.064)^{-\frac{1}{3}}=\frac{1}{\sqrt[3]{0.064}}$

$$
=\frac{1}{0.4}
$$

$$
=2.5
$$

(b) $\left(\frac{1}{8}\right)^{-\frac{1}{3}}-\left(\frac{1}{8}\right)^{-\frac{1}{4}} \times \sqrt[4]{2}$

$$
=\left(2^{-3}\right)^{-\frac{1}{3}}-\left(2^{-3}\right)^{-\frac{1}{4}} \times 2^{\frac{1}{4}}
$$

$$
=2^{1}-2^{\frac{3}{4}+\frac{1}{4}}
$$

$$
=2^{1}-2^{1}
$$

$$
=0
$$

7. Number of nuclei needed $=\frac{0.5\left(9.5 \times 10^{-9}\right)}{88 \times 10^{-12}}$

$$
=5.4 \times 10
$$

8. (a) $5^{-2}+5^{-1}+5^{0}+5^{1}$
$=\frac{1}{5^{2}}+\frac{1}{5^{1}}+1+5$
$=6 \frac{6}{25}$
(b) $2 \sqrt{2} \times 3 \sqrt{6} \times 4 \sqrt{12}$
$=2 \sqrt{2} \times 3 \sqrt{6} \times 4 \sqrt{2} \sqrt{6}$
$=2 \times 3 \times 4 \times(\sqrt{2})^{2} \times(\sqrt{6})^{2}$
$=288$
9. (a) $\left(a+a^{\frac{1}{2}}\right) \div\left(a^{\frac{1}{3}}+a^{0}\right)$
$=\frac{64+\sqrt{64}}{\sqrt[3]{64}+64^{0}}$
$=\frac{64+8}{4+1}$
$=14.4$
(b) $4 x+1<28<9 x-10$
$4 x+1<28 \quad$ and $\quad 28<9 x-10$

$$
4 x<27
$$

$$
x<\frac{27}{4}
$$

$$
x>\frac{38}{9}
$$

$$
x<6 \frac{3}{4}
$$

$$
x>4 \frac{2}{9}
$$

$\therefore 4 \frac{2}{9}<x<6 \frac{3}{4}$
\therefore Possible integer values of x are 5 and 6 .
10. (a) $2<5 x-7 \leqslant 34$
$2<5 x-7 \quad$ and
$-5 x<-9$
$5 x-7 \leqslant 34$
$5 x \leqslant 41$
$x>\frac{9}{5}$
$x>1 \frac{4}{5}$
$\therefore 1 \frac{4}{5}<x \leqslant 8 \frac{1}{5}$

(b) (i) $8 \frac{1}{5}$
(ii) 2
11. (i)

$x \mathrm{~cm}$

$(32-x) \mathrm{cm}$

Perimeter of the larger square $=128-4 x$
\therefore Length of larger square $=\frac{128-4 x}{4}$

$$
=32-x
$$

Since area of larger square is six times the area of smaller square,

$$
\begin{aligned}
&(32-x)^{2}=6\left(x^{2}\right) \\
& 1024-64 x+x^{2}=6 x^{2} \\
& \therefore 5 x^{2}+64 x-1024=0(\text { shown })
\end{aligned}
$$

(ii) $5 x^{2}+64 x-1024=0$
$a=5, b=64, c=-1024$
$x=\frac{-64 \pm \sqrt{64^{2}-4(5)(-1024)}}{2(5)}$
$=\frac{-64 \pm \sqrt{24576}}{10}$
$=-22.076 \quad$ or $x=9.276$
$=-22.08$ (to 2 d.p.) or $x=9.28$ (to $2 \mathrm{~d} . \mathrm{p}$.)
(iii) As the length cannot be a negative value, $x=-22.08$ is rejected.
(iv) $32-9.276=22.724 \mathrm{~cm}$

Difference in the lengths of diagonals
$=\sqrt{2(22.724)^{2}}-\sqrt{2(9.276)^{2}}$
$=19.0 \mathrm{~cm}$ (to 3 s.f.)

Revision Test A2

1. (a) Diameter of a microorganism $=2 \times\left(32.6 \times 10^{-6}\right) \mathrm{m}$.
\therefore Number of microorganisms needed

$$
\begin{aligned}
& =\frac{0.75}{65.2 \times 10^{-6}} \\
& =11500 \\
& =1.15 \times 10^{4}
\end{aligned}
$$

(b) $(3 x-5)^{2}-57=0$

$$
\begin{array}{rl}
& (3 x-5)^{2}=57 \\
3 x-5= \pm \sqrt{57} \\
x= & \frac{5 \pm \sqrt{57}}{3} \\
x= & \frac{5-\sqrt{57}}{3} \\
x=-0.85 \text { (to } 2 \text { d.p.) } & \text { or } \quad \frac{5+\sqrt{57}}{3} \\
x & 4.18 \text { (to } 2 \text { d.p.) }
\end{array}
$$

2. Number of times $=\frac{148 \times 10^{9}}{380 \times 10^{6}}=389$ (to 3 s.f.)
3. $\left[3^{-1}-(-1)^{0}\right] \times\left(\frac{8}{27}\right)^{-\frac{1}{3}} \div \sqrt{\left(\frac{4}{9}\right)^{-1}}$
$=\left(\frac{1}{3}-1\right) \times \sqrt[3]{\frac{27}{8}} \div \sqrt{\frac{9}{4}}$
$=-\frac{2}{3} \times \frac{3}{2} \div \frac{3}{2}$
$=-\frac{2}{3}$
4. $\frac{2}{5} x+1 \leqslant \frac{1}{6} x+5 \frac{1}{2}$
$\frac{2}{5} x-\frac{1}{6} x \leqslant-1+5 \frac{1}{2}$

$$
\begin{aligned}
\frac{7}{30} x & \leqslant 4 \frac{1}{2} \\
x & \leqslant 19 \frac{2}{7}
\end{aligned}
$$

(i) $x=19$
(ii) $x=19$
(iii) $x=19 \frac{2}{7}$
5. (a) $\sqrt[4]{\left(\frac{y^{3} x^{-6}}{x^{2} y^{5}}\right)^{-2}}=\sqrt[4]{\left(x^{-8} y^{-2}\right)^{-2}}$

$$
\begin{aligned}
& =\left(x^{16} y^{4}\right)^{\frac{1}{4}} \\
& =x^{4} y
\end{aligned}
$$

(b) $\frac{3}{\sqrt[3]{3}}=3^{x}$

$$
\begin{aligned}
& \frac{3^{1}}{3^{\frac{1}{3}}}=3^{x} \\
& 3^{1-\frac{1}{3}}=3^{x} \\
& \therefore 1-\frac{1}{3}=x \\
& x=\frac{2}{3}
\end{aligned}
$$

6. (a) $\frac{3 x-2}{5} \geqslant \frac{4 x+1}{7}$

$$
7(3 x-2) \geqslant 5(4 x+1)
$$

$$
21 x-14 \geqslant 20 x+5
$$

$$
x \geqslant 19
$$

(b) $\frac{1}{2}(x+3)-\frac{1}{4}<\frac{1}{5}(2 x-5)$

$$
\begin{aligned}
& \frac{1}{2} x+\frac{3}{2}-\frac{1}{4}<\frac{2}{5} x-1 \\
& \frac{1}{2} x-\frac{2}{5} x<-1+\frac{1}{4}-\frac{3}{2} \\
& \frac{1}{10} x<-2 \frac{1}{4} \\
& \therefore x<-22 \frac{1}{2} \\
& \qquad-22 \frac{1}{2}
\end{aligned}
$$

7. $\mathrm{f}(x)=\frac{3-x}{x}$

Let $y=\frac{3-x}{x}$

$$
\begin{aligned}
x y & =3-x \\
x y+x & =3 \\
x(y+1) & =3 \\
x & =\frac{3}{y+1} \\
\therefore \mathrm{f}^{-1}(x) & =\frac{3}{x+1}, x \neq-1 . \\
\mathrm{f}^{-1}(2) & =\frac{3}{2+1} \\
& =1 \\
\mathrm{f}^{-1}(-7) & =\frac{3}{-7+1} \\
& =-\frac{1}{2}
\end{aligned}
$$

9. Let $x \mathrm{~h}$ be the time taken for the larger pipe to fill the pool on its own.
\therefore The smaller pipe will take $(x+5)$ h to fill the pool on its own.
In 1 h , the larger pipe can fill $\frac{1}{x}$ of the pool.
In 1 h , the smaller pipe can fill $\frac{1}{x+5}$ of the pool.
In 1 h , both pipes can fill $\frac{1}{6}$ of the pool.

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x+5}=\frac{1}{6} \\
& \frac{(x+5)+x}{x(x+5)}=\frac{1}{6} \\
& 6(2 x+5)=x(x+5) \\
& 12 x+30=x^{2}+5 x \\
& x^{2}-7 x-30=0 \\
& (x-10)(x+3)=0 \\
& x-10=0 \quad \text { or } \quad x+3=0 \\
& x=10 \quad x=-3 \text { (rejected) }
\end{aligned}
$$

\therefore The larger pipe will take 10 h to fill the pool on its own and the smaller pipe will take 15 h to fill the pool on its own.
10. (i) $\xrightarrow[\longleftrightarrow \text { Speed }=(x+4) \mathrm{km} / \mathrm{h}]{\longrightarrow}$ Sped $(x-4) \mathrm{km} / \mathrm{h}$ downstream

Time taken to go downstream $=\frac{18}{x+4} \mathrm{~h}$
Time taken to go upstream $=\frac{18}{x-4} \mathrm{~h}$

$$
\begin{aligned}
\frac{18}{x+4}-\frac{18}{x-4} & =2 \frac{1}{6} \\
\frac{18(x-4)+18(x+4)}{(x-4)(x+4)} & =\frac{13}{6} \\
6(18 x-72+18 x+72) & =13\left(x^{2}-16\right) \\
216 x & =13 x^{2}-208 \\
13 x^{2}-216 x-208 & =0(\text { shown })
\end{aligned}
$$

(ii) $13 x^{2}-216 x-208=0$

$$
\begin{aligned}
a & =13, b=-216, c=-208 \\
x & =\frac{-(-216) \pm \sqrt{(-216)^{2}-4(13)(-208)}}{2(13)} \\
& =\frac{216 \pm \sqrt{57472}}{26} \\
x & =\frac{216-\sqrt{57472}}{26} \quad \text { or } \quad \frac{216+\sqrt{57472}}{26} \\
& =-0.91 \text { (to } 2 \text { d.p.) } \quad \text { or } \quad 17.53 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

Chapter 5 Application of Mathematics in Practical Situations

Basic

1. (i) $\frac{\text { Profit }}{\text { Original price }} \times 100 \%=15 \%$
$\frac{150}{\text { Original price }} \times 100 \%=15 \%$
Original price $=\frac{150 \times 100}{15}=\$ 1000$
(ii) Profit $=$ selling price - cost price

$$
150=\text { selling price }-1000
$$

Selling price of watch $=150+1000=\$ 1150$
2. (i) $\frac{\text { Discount }}{\text { Marked price }} \times 100 \%=8 \%$

$$
\frac{112}{\text { Marked price }} \times 100 \%=8 \%
$$

Marked price $=\frac{112 \times 100}{8}=\$ 1400$
(ii) Discount $=$ marked price - sale price

$$
\$ 112=\$ 1400-\text { sale price }
$$

Sale price $=\$ 1400-\$ 112=\$ 1288$
3. Selling price of the iPads $=900 \times 15$

$$
=\$ 13500
$$

Increase $=\$ 13500-\$ 10000$

$$
=\$ 3500
$$

(i) Percentage increase $=\frac{\text { Increase }}{\text { Cost price }} \times 100 \%$

$$
\begin{aligned}
& =\frac{3500}{10000} \times 100 \% \\
& =35 \%
\end{aligned}
$$

(ii) Percentage increase $=\frac{\text { Increase }}{\text { Selling price }} \times 100 \%$

$$
\begin{aligned}
& =\frac{3500}{13500} \times 100 \% \\
& =25.9 \% \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

4. 107% of the marked price $=\$ 27.20$

$$
\begin{aligned}
\frac{107}{100} \times \text { marked price } & =27.20 \\
\text { Marked price } & =27.20 \div \frac{107}{100} \\
& =27.20 \times \frac{100}{107} \\
& =\$ 25.42
\end{aligned}
$$

5. (a) Amount of commission he receives
$=15 \%$ of $\$ 50000$
$=\frac{15}{100} \times 50000$
$=\$ 7500$
(b) Let $\$ x$ be the signing bonus.
15% of $\$ x=\$ 4800$

$$
\begin{aligned}
\frac{15}{100} \times x & =4800 \\
x & =4800 \div \frac{15}{100} \\
& =4800 \times \frac{100}{15} \\
& =32000
\end{aligned}
$$

The amount of signing bonus is $\$ 32000$.
6. (a) (i) Simple interest $=6 \%$ of $\$ 700$

$$
\begin{aligned}
& =\frac{6}{100} \times 700 \\
& =\$ 42
\end{aligned}
$$

Simple interest for 5 years $=5 \times \$ 42=\$ 210$
(ii) Total amount of money loaned after 5 years

$$
=\$ 700+\$ 210
$$

$$
=\$ 910
$$

(b) (i) Simple interest $=8 \%$ of $\$ 360$

$$
\begin{aligned}
& =\frac{8}{100} \times 360 \\
& =\$ 28.80
\end{aligned}
$$

Simple interest for 3.5 years $=3.5 \times \$ 28.80$

$$
=\$ 100.80
$$

(ii) Total amount of money loaned after 3.5 years $=\$ 360+\$ 100.80$
$=\$ 460.80$
(c) (i) Simple interest $=4 \frac{1}{4} \%$ of $\$ 480$

$$
\begin{aligned}
& =\frac{4 \frac{1}{4}}{100} \times 480 \\
& =\$ 20.40
\end{aligned}
$$

Convert 4 years and 8 months to years.
4 years and 8 months $=4+\frac{8}{12}$

$$
=4 \frac{2}{3} \text { years }
$$

Simple interest for $4 \frac{2}{3}$ years
$=4 \frac{2}{3} \times \$ 20.40$
$=\$ 95.20$
(ii) Total amount of money loaned after

4 years 8 months
$=\$ 480+\$ 95.20$
$=\$ 575.20$
(d) (i) Simple interest $=9 \frac{3}{8} \%$ of $\$ 1600$

$$
\begin{aligned}
& =\frac{9 \frac{3}{8}}{100} \times 1600 \\
& =\$ 150
\end{aligned}
$$

Convert 18 months to years.
18 months $=\frac{18}{12}$

$$
=1 \frac{1}{2} \text { years }
$$

Simple interest for $1 \frac{1}{2}$ years

$$
\begin{aligned}
& =1 \frac{1}{2} \times \$ 150 \\
& =\$ 225
\end{aligned}
$$

(ii) Total amount of money loaned after 18 months

$$
=\$ 1600+\$ 225
$$

= \$1825
7. Amount of interest given to Ethan
$=\$ 5355-\$ 4500$
$=\$ 855$
Let T years denote the time taken for the investment to grow to $\$ 5355$.

$$
\begin{aligned}
855 & =\frac{4500 \times 4 \frac{3}{4} \times T}{100} \\
855 & =213.75 \times T \\
T & =4
\end{aligned}
$$

The time taken for Ethan's investment to grow to \$5355 is 4 years.
8. (a) $A=2500\left(1+\frac{3}{100}\right)^{2}$

$$
\begin{aligned}
& =\$ 2652.25 \\
I & =\$ 2652.25-\$ 2500 \\
& =\$ 152.25
\end{aligned}
$$

(b) $A=2500\left(1+\frac{\frac{3}{12}}{100}\right)^{24}$

$$
\begin{aligned}
& =\$ 2654.39 \text { (to } 2 \text { d.p. }) \\
I & =\$ 2654.39-\$ 2500 \\
& =\$ 154.39 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

9. $€ 1=£ 0.62$
$£ 1=\frac{1}{0.62}=€ 1.61$ (to the nearest cent)
$£ 126=€ 1.61 \times 126=€ 203.23$ (to the nearest cent)

Intermediate

10. (i) Percentage point is the difference between two percentages.
Percentage point of candidate C and $A=42-7$

$$
=35 \%
$$

Percentage point of candidate B and $A=39-7$

$$
=32 \%
$$

(ii) To find the total number of voters,

Method 1

Number of people who did not vote
$=20 \%$ of 15000
$=\frac{20}{100} \times 15000$
$=3000$
Number of people who voted
$=15000-3000$
= 12000

Method 2

Percentage of people who voted
$=100 \%-20 \%=80 \%$
Number of people who voted
$=80 \%$ of 15000
$=\frac{80}{100} \times 15000$
$=12000$
To find the number of votes for each candidate
Number of people who voted for candidate A
$=7 \%$ of 12000
$=\frac{7}{100} \times 12000$
$=840$
Number of people who voted for candidate B
$=39 \%$ of 12000
$=\frac{39}{100} \times 12000$
$=4680$
Number of people who voted for candidate C
$=42 \%$ of 12000
$=\frac{42}{100} \times 12000$
$=5040$
11. Subscription + service charge
$=110 \%$ of $\$ 59.90$
$=\frac{110}{100} \times 59.90$
$=\$ 65.89$
Amount payable before GST
$=113 \%$ of $\$ 65.89$
$=\$ 74.4557$
Total cost of the bill
$=107 \%$ of $\$ 74.4557$
$=\frac{107}{100} \times \$ 74.4557$
$=\$ 79.67$ (to the nearest cent)
12. Original price of the coffee $=3 \times 9+1 \times 13$

$$
=\$ 40
$$

Selling price of the mixture of coffee $=\frac{1.25}{0.1} \times 4$

$$
=\$ 50
$$

Profit $=50-40=\$ 10$
Percentage profit $=\frac{10}{50} \times 100 \%$

$$
=20 \%
$$

13. Original cost of tea $=30 \times 32+20 \times 35$

$$
=\$ 1660
$$

Selling price of tea $=40 \times(30+20)$
= \$2000

Profit $=2000-1660=\$ 340$
Percentage profit $=\frac{340}{1660} \times 100 \%$

$$
=20.5 \% \text { (to } 3 \text { s.f.) }
$$

14. Price of an item after 8% discount
$=92 \%$ of $\$ 45$
$=\frac{92}{100} \times 45$
= \$41.40
Price of an item after a further discount of 9%
$=91 \%$ of $\$ 41.40$
$=\frac{91}{100} \times 41.40$
= \$37.67
She paid $\$ 37.67$ for the item.
15. 90% of the price which Teck Meng paid for the camera $=\$ 414$
Price Teck Meng paid for the camera $=414 \div \frac{90}{100}$

$$
\begin{aligned}
& =414 \times \frac{100}{90} \\
& =\$ 460
\end{aligned}
$$

115% of the original price of the camera $=\$ 460$
Original price of the camera $=460 \div \frac{115}{100}$

$$
\begin{aligned}
& =460 \times \frac{100}{115} \\
& =\$ 400
\end{aligned}
$$

The original price of the camera is $\$ 400$.
16. Let the number of peaches be x.

Cost price of 1 peach $=\$ \frac{294}{x}$
Selling price of 1 peach
$=140 \%$ of $\$ \frac{294}{x}$
$=\frac{140}{100} \times \frac{294}{x}$
$=\$ \frac{411.6}{x}$
Amount collected from selling all the good peaches
$=294+84=\$ 378$
$(x-16) \times \frac{411.6}{x}=378$
$411.6(x-16)=378 x$
$411.6 x-378 x=6585.6$

$$
\begin{aligned}
33.6 x & =6585.6 \\
x & =196
\end{aligned}
$$

\therefore Mr Ong bought 196 peaches.
17. (a) $116 \frac{2}{3} \%$ of the marked price $=\$ 420$

$$
1 \% \text { of the marked price }=\frac{420}{116 \frac{2}{3}}
$$

$$
100 \% \text { of the marked price }=\frac{420}{116 \frac{2}{3}} \times 100
$$

$$
=\$ 360
$$

The price paid by Mr Tan is $\$ 360$.
(b) (i) Selling price of the display set

$$
\begin{aligned}
& =\left(100-10 \frac{1}{2}\right) \% \text { of } \$ 420 \\
& =89 \frac{1}{2} \% \text { of } \$ 420 \\
& =\frac{179}{2} \% \text { of } \$ 420 \\
& =\left(\frac{179}{2} \div 100\right) \times 420 \\
& =\frac{179}{2} \times \frac{1}{100} \times 420 \\
& =\$ 375.90
\end{aligned}
$$

The selling price of the display set is $\$ 375.90$.
(ii) Percentage profit $=\frac{375.90-360}{360} \times 100 \%$

$$
=4.42 \% \text { (to } 3 \text { s.f.) }
$$

18. Amount of commission the salesman got
$=25 \%$ of $\$ 5264$
$=\frac{25}{100} \times 5264$
$=\$ 1316$
Total income
= basic salary + commission
$=520+1316$
= \$1836
19. Total cost of the materials for building the fence without discount and goods tax
$=5 \times 25+6 \times 12+1 \times 10+12 \times \frac{15}{6}+300 \times \frac{10}{1000}$
$=125+72+10+30+3$
= \$240
Cost of the materials after discount $=90 \%$ of 240

$$
\begin{aligned}
& =\frac{90}{100} \times 240 \\
& =\$ 216
\end{aligned}
$$

Cost of the materials with goods tax
$=115 \%$ of $\$ 216$
$=\frac{115}{100} \times 216$
$=\$ 248.40$
The total amount that he has to pay, after discount and goods tax, is $\$ 248.40$.
20. (i) Total reliefs

$$
\begin{aligned}
& =\$ 1000+\$ 2000+\$ 5000+\$ 4500+\$ 6000 \\
& =\$ 18500
\end{aligned}
$$

Taxable income $=\$ 56000-\$ 18500$

$$
=\$ 37500
$$

(ii)

Tax

\therefore Income tax payable $=\$ 200+\$ 262.50$

$$
=\$ 462.50
$$

(iii) Percentage of $\operatorname{tax}=\frac{\$ 462.50}{\$ 37500} \times 100 \%$

$$
=1.23 \% \text { (to } 3 \text { s.f.) }
$$

21. (i) Commission earned for selling the HDB four-room flat

$$
\begin{aligned}
= & \left(\$ 15000 \times \frac{5}{100}\right)+\left(\$ 45000 \times \frac{3}{100}\right) \\
& +\left(\$ 40000 \times \frac{2.5}{100}\right)+(\$ 58500-\$ 15000 \\
& -\$ 45000-\$ 40000) \times \frac{2}{100} \\
= & \$ 12800
\end{aligned}
$$

Commission earned for selling a private house

$$
\begin{aligned}
= & \left(\$ 15000 \times \frac{5}{100}\right)+\left(\$ 45000 \times \frac{3}{100}\right) \\
& +\left(\$ 40000 \times \frac{2.5}{100}\right)+(\$ 1085000- \\
& \$ 15000-\$ 45000-\$ 40000) \times \frac{2}{100} \\
= & \$ 22800
\end{aligned}
$$

(ii) Total commission received

$$
\begin{aligned}
& =\$ 22800+\$ 12800 \\
& =\$ 35600
\end{aligned}
$$

22. Let the initial invested amount be $\$ P$.

$$
\begin{aligned}
I & =\frac{P R T}{100} \\
25.20 & =\frac{P \times 4 \times \frac{9}{12}}{100} \\
25.20 & =0.03 P \\
P & =25.2 \div 0.03 \\
& =840
\end{aligned}
$$

For the new interest rate,
$44.80+25.20=\frac{840 \times x \times \frac{20}{12}}{100}$

$$
70=14 x
$$

$$
x=5
$$

23. $A=20000\left(1+\frac{\frac{3.2}{12}}{100}\right)^{48}$
$=\$ 22727.19$ (to 2 d.p.)
24. $A=6050\left(1+\frac{\frac{4}{4}}{100}\right)^{8}$
$=\$ 6551$ (to the nearest dollar)
25. $28121.60=25000\left(1+\frac{r}{100}\right)^{3}$
$\left(1+\frac{r}{100}\right)^{3}=1.124864$
$1+\frac{r}{100}=\sqrt[3]{1.124864}$

$$
\begin{aligned}
\frac{r}{100} & =\sqrt[3]{1.124864}-1 \\
r & =4
\end{aligned}
$$

26. $P+11798.38=P\left(1+\frac{\frac{6}{2}}{100}\right)^{6}$
$11798.38=P(1.03)^{6}-P$

$$
=P\left(1.03^{6}-1\right)
$$

$$
P=\frac{11798.38}{1.03^{6}-1}
$$

$$
=\$ 60800 \text { (to the nearest dollar) }
$$

27. (i) Deposit $=25 \%$ of $\$ 1300$

$$
\begin{aligned}
& =\frac{25}{100} \times \$ 1300 \\
& =\$ 325
\end{aligned}
$$

Remaining amount $=\$ 1300-\$ 325$

$$
=\$ 975
$$

Amount of interest the man owes at the end of 1 year
$=\$ 975 \times \frac{18}{100}$
$=\$ 175.50$
Amount of interest the man has to pay at the end of 2 years
$=\$ 175.50 \times 2$
$=\$ 351$
Total amount to be paid in monthly instalments
$=\$ 975+\$ 351$
= \$1326
Monthly instalment
$=\frac{\$ 1326}{24}$
$=\$ 55.25$
(ii) Total amount the man has to pay for the TV set
$=\$ 325+\$ 1326$
= \$1651
(iii) Difference in the amount paid with hire purchase
$=\$ 1651-\$ 1300$
$=\$ 351$
28. (i) $\mathrm{US} \$ 1.59=\mathrm{S} \$ 2.02$

$$
\begin{aligned}
\mathrm{US} \$ 5400 & =\frac{\mathrm{S} \$ 2.02}{\mathrm{US} \$ 1.59} \times \mathrm{US} \$ 5400 \\
& =\mathrm{S} \$ 6860.377 \\
& =\mathrm{S} \$ 6860.38 \text { (to the nearest cent) }
\end{aligned}
$$

(ii) Amount, in Singapore dollars, left after his stay
$=\mathrm{S} \$ 6860.377-\mathrm{S} \$ 4500$
$=\mathrm{S} \$ 2360.377$
$=\mathrm{S} \$ 2360.38$ (to the nearest cent)
(iii) Amount of pounds he received from the money changer at the end of his stay
$=\frac{£ 1}{\mathrm{~S} \$ 1.94} \times \mathrm{S} \$ 2360.377$
$=£ 1216.6892$
$=£ 1216.69$ (to the nearest cent)
If he exchanged the remaining amount of Singapore dollars using the rate $£ 1$ to $\mathrm{S} \$ 2.02$, then he had

$$
\frac{£ 1}{\mathrm{~S} \$ 2.02} \times \mathrm{S} \$ 2360.377=£ 1168.503
$$

Difference in the amount exchanged
$=£ 1216.6892-£ 1168.503$
$=£ 48.1862$
$=£ 48.19$ (to the nearest cent)
\therefore He had $£ 48.19$ more based on the new rate.

Advanced

29. (a) Number of packets $=\frac{24000}{4}$

$$
=6000
$$

$$
\begin{aligned}
\text { Total selling price } & =6000 \times \$ 1.20 \\
& =\$ 7200
\end{aligned}
$$

(b) Costs of labour and materials $=\$ 0.17 \times 24000$

$$
=\$ 4080
$$

Total cost of production
= cost of administration

+ cost of labour and materials

$$
=1545+4080
$$

$$
=\$ 5625
$$

$$
\text { Profit }=7200-5625
$$

$$
=\$ 1575
$$

$$
\begin{aligned}
\text { Percentage profit made } & =\frac{1575}{5625} \times 100 \% \\
& =28 \%
\end{aligned}
$$

(c) Number of packets $=\frac{212000}{4}$

$$
=53000
$$

Total selling price $=53000 \times \$ 1.20$

$$
=\$ 63600
$$

$123 \frac{1}{2} \%$ of the cost of production $=\$ 63600$
Cost of production $=63600 \div 123 \frac{1}{2} \%$

$$
\begin{aligned}
& =63600 \div \frac{247}{2} \% \\
& =63600 \times \frac{247}{2} \times 100 \\
& =\$ 51500 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

The cost of producing 212000 rubber pieces is $\$ 51000$.
30. (i) Selling price of the condominium
$=90 \%$ of $\$ 950000$
$=\frac{90}{100} \times 950000$
$=\$ 855000$
(ii) Amount Mei Shan received after paying the agent
$=98 \%$ of $\$ 855000$
$=\frac{98}{100} \times 855000$
$=\$ 837900$
(iii) Amount agent received from seller
$=\$ 855000-\$ 837900$
= \$17 100
Amount agent received from buyer
$=5 \%$ of $\$ 855000$
$=\frac{5}{100} \times 855000$
= \$42 750
Total amount received by the agent
$=42750+17100$
= \$59 850
31. (i) Number of litres used $=\frac{\$ 3600}{\$ 2.00}=1800$ litres
(ii) Total distance travelled $=1800 \times 16$

$$
=28800 \mathrm{~km}
$$

(iii) Total cost in 2011

$$
\begin{aligned}
& =\$ 3600+\$ 2000+\$ 850+\$ 880 \\
& =\$ 7330
\end{aligned}
$$

(iv) Total cost in 2012
$=\$ 880+\left(\$ 3600 \times \frac{100+5}{100}\right)$
$+\left(\$ 850 \times \frac{100+15}{100}\right)+\left(\$ 2000 \times \frac{100-10}{100}\right)$
$=\$ 880+\$ 3780+\$ 977.50+\$ 1800$
$=\$ 7437.50$
Increase $=\$ 7437.50-\$ 7330=\$ 107.50$
Percentage increase $=\frac{\$ 107.50}{\$ 7330} \times 100 \%$

$$
=1.5 \% \text { (to } 2 \text { s.f.) }
$$

32. (i) Total cash price

$$
\begin{aligned}
& =\$ 580+\$ 380+\$ 140+\$ 480+\$ 240 \\
& =\$ 1820
\end{aligned}
$$

(ii) (a) Deposit $=20 \%$ of $\$ 1820$

$$
\begin{aligned}
& =\frac{12}{100} \times \$ 1820 \\
& =\$ 364
\end{aligned}
$$

Remaining amount $=\$ 1820-\$ 364$

$$
=\$ 1456
$$

Credit charge $=12 \%$ of $\$ 1456$

$$
\begin{aligned}
& =\frac{12}{100} \times \$ 1456 \\
& =\$ 174.72
\end{aligned}
$$

Total amount to be paid in instalments

$$
=\$ 1456+\$ 174.72
$$

$$
=\$ 1630.72
$$

Monthly instalment
$=\frac{\$ 1630.72}{12}$
= \$135.893
$=\$ 135.89$ (to the nearest cent)
(b) Total hire purchase $=\$ 364+\$ 1630.72$

$$
=\$ 1994.72
$$

(iii) Total cash price after reduction

$$
\begin{aligned}
= & \left(\$ 580 \times \frac{100-10}{100}\right)+\left(\$ 380 \times \frac{100-5}{100}\right) \\
& +\left(\$ 480 \times \frac{100-3}{100}\right)+\$ 140+\$ 240 \\
= & \$ 522+\$ 361+\$ 465.60+\$ 140+\$ 240 \\
= & \$ 1728.60
\end{aligned}
$$

33. (i) Number of litres of petrol required to drive around France
$=\frac{1920}{12}$
$=160$ litres
(ii) Total cost of the petrol used in Euros
$=€ 1.47 \times 160$
$=€ 235.20$
(iii) Total cost of the petrol in Singapore dollars
$=€ 235.20 \times \mathrm{S} \$ 1.5599$
$=\mathrm{S} \$ 366.888$
$=\mathrm{S} \$ 367$ (to the nearest dollar)
(iv) Cost of each adult ferry ticket in Singapore dollars

$$
=£ 100 \times \mathrm{S} \$ 1.9399
$$

$$
=\mathrm{S} \$ 193.99
$$

New Trend

34. Let the original price of the toy be $\$ x$.

$$
\begin{aligned}
180 \% \text { of } x & =900 \\
\frac{180}{100} \times x & =900 \\
x & =900 \div \frac{180}{100} \\
& =900 \times \frac{100}{180} \\
& =500
\end{aligned}
$$

The original price of the toy is $\$ 500$.
35. $9004.07=P\left(1+\frac{3}{100}\right)^{4}$

$$
\begin{aligned}
P & =\frac{9004.07}{(1.03)^{4}} \\
& =\$ 8000 \text { (to the nearest dollar) }
\end{aligned}
$$

36. (a) Amount he is paid for working 45 hours
$=45 \times \$ 11.80$
$=\$ 531$
Bonus $=4 \%$ of $\$ 12680$

$$
\begin{aligned}
& =\frac{4}{100} \times 12680 \\
& =\$ 514.40
\end{aligned}
$$

Total earnings for the week $=\$ 531+\$ 514.40$
= \$1045.40
(b) (i) Downpayment $=\frac{2}{5} \times \$ 4999$

$$
=\$ 1999.60
$$

Total amount paid in monthly instalments
$=24 \times \$ 125.75$
$=\$ 3018.00$
Total amount Lisa pays for the laptop
$=\$ 1999.60+\$ 3018.00$
$=\$ 5017.60$
(ii) Original price $=\frac{119}{85} \times 100$

$$
=\$ 140
$$

37. Deposit $=20 \%$ of $\$ 1299$

$$
\begin{aligned}
& =\frac{20}{100} \times \$ 1299 \\
& =\$ 259.80
\end{aligned}
$$

Let $\$ x$ be one monthly payment.

$$
\begin{aligned}
1348.80 & =259.80+18 x \\
18 x & =1089 \\
x & =60.5
\end{aligned}
$$

One monthly payment is $\$ 60.50$.
38. Extra charge for making monthly payments
$=8 \%$ of $\$ 1280$
$=\$ 102.40$
Monthly payment
$=\frac{\$(1280+102.40)}{12}$
$=\$ 115.20$
39. If he changes in Singapore,

$$
\begin{aligned}
\mathrm{S} \$ 1 & =£ 0.51 \\
\mathrm{~S} \$ 2400 & =2400 \times 0.51 \\
& =£ 1224
\end{aligned}
$$

If he changes in London,

$$
\begin{aligned}
\mathrm{S} \$ 2.02 & =£ 1 \\
\mathrm{~S} \$ 2400 & =\frac{2400}{2.02} \\
& =£ 1188.1188 \text { (to } 4 \text { d.p. })
\end{aligned}
$$

Difference in the amount exchanged
$=1224-1188.1188$
$=£ 35.88$ (to the nearest cent)
40. (a) US $\$ 1=\mathrm{S} \$ 1.38$

$$
\begin{aligned}
\mathrm{US} \$ 500 & =\mathrm{S} \$(500 \times 1.38) \\
& =\mathrm{S} \$ 690
\end{aligned}
$$

(b) $\quad \mathrm{S} \$ 1.38=\mathrm{US} \$ 1$

$$
\begin{aligned}
\mathrm{S} \$ 800 & =\frac{\mathrm{S} \$ 800}{\mathrm{~S} \$ 1.38} \times \mathrm{US} \$ 1 \\
& =\mathrm{US} \$ 579 \frac{49}{69} \\
\mathrm{US} \$ 1.12= & € 1
\end{aligned}
$$

$$
\operatorname{US} \$ 579 \frac{49}{69}=\frac{\operatorname{US} \$ 579 \frac{49}{69}}{\operatorname{US} \$ 1.12} \times € 1
$$

$$
=€ 518 \text { (to the nearest euro) }
$$

41. (a) $A=1668\left(1+\frac{2.6}{100}\right)^{3}$

$$
=\$ 1801.52 \text { (to } 2 \text { d.p.) }
$$

$$
I=1801.52-1668
$$

$$
=\$ 133.52
$$

$\begin{aligned} &=\$ 133.52 \\ & \text { (b) Amount to be paid in euros }=799+\left(\frac{0.8}{100} \times 799\right)\end{aligned}$

$$
=€ 805.392
$$

$€ 0.65=S \$ 1$
$€ 805.632=\mathrm{S} \$ \frac{805.632}{0.65}$

$$
=\mathrm{S} \$ 1239.43 \text { (to the nearest cent) }
$$

Chapter 6 Coordinate Geometry

Basic

1. (a) Gradient $=\frac{9-3}{7-5}$

$$
=3
$$

(b) Gradient $=0$
(c) Gradient $=\frac{-1-5}{1-(-2)}$

$$
=-2
$$

(d) Gradient $=\frac{-13-(-4)}{-1-15}$

$$
=\frac{9}{16}
$$

(e) Gradient $=\frac{-14-6}{-5-3}$

$$
=\frac{5}{2}
$$

(f) \quad Gradient $=\frac{-10-(-3)}{-4-8}$

$$
=\frac{7}{12}
$$

2. Gradient of $A B=\frac{4-0}{0-2}$

$$
=-2
$$

Gradient of $A C=$ undefined
Gradient of $A D=\frac{3-0}{7-2}$

$$
=\frac{3}{5}
$$

Gradient of $B E=\frac{1-4}{6-0}$

$$
=-\frac{1}{2}
$$

Gradient of $C D=\frac{3-5}{7-2}$

$$
=-\frac{2}{5}
$$

3. $\frac{5-a}{7-4}=2$

$$
\begin{aligned}
\frac{5-a}{3} & =2 \\
5-a & =6 \\
a & =-1
\end{aligned}
$$

4. $\frac{5-(-2)}{b-6}=14$
$\frac{7}{b-6}=14$
$b-6=\frac{1}{2}$

$$
b=6 \frac{1}{2}
$$

5. $\frac{4-7}{-k-2 k}=-2$

$$
\begin{aligned}
\frac{-3}{-3 k} & =-2 \\
\frac{1}{k} & =-2
\end{aligned}
$$

$$
k=-\frac{1}{2}
$$

6. (a) Length $=\sqrt{(7-2)^{2}+(2-4)^{2}}$

$$
\begin{aligned}
& =\sqrt{29} \\
& =5.39 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) Length $=\sqrt{(3-1)^{2}+[5-(-2)]^{2}}$

$$
\begin{aligned}
& =\sqrt{53} \\
& =7.28 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

(c) Length $=\sqrt{[6-(-2)]^{2}+(-1-1)^{2}}$

$$
\begin{aligned}
& =\sqrt{68} \\
& =8.25 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

(d) Length $=\sqrt{[1-(-2)]^{2}+[4-(-3)]^{2}}$

$$
\begin{aligned}
& =\sqrt{58} \\
& =7.62 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

(e) Length $=4-(-7)$

$$
=11 \text { units }
$$

(f) Length $=\sqrt{[7-(-2)]^{2}+(-1-3)^{2}}$

$$
=\sqrt{97}
$$

$$
=9.85 \text { units (to } 3 \text { s.f.) }
$$

7. $\sqrt{(0-3)^{2}+(k-5)^{2}}=5$

$$
9+(k-5)^{2}=25
$$

$$
(k-5)^{2}=16
$$

$$
k-5=4 \quad \text { or } \quad k-5=-4
$$

$$
k=9 \quad k=1
$$

8. $y=-2 x+c$

When $x=2, y=0$,

$$
\begin{aligned}
0 & =-2(2)+c \\
& =-4+c \\
c & =4
\end{aligned}
$$

9. $y=3 x+k$

When $x=2, y=-5$,
$-5=3(2)+k$

$$
=6+k
$$

$$
k=-11
$$

10. (a) Gradient $=\frac{5-3}{1-0}$

$$
=2
$$

Equation of line: $y=2 x+3$
(b) Gradient $=\frac{3-(-3)}{5-0}$

$$
=\frac{6}{5}
$$

Equation of line: $y=\frac{6}{5} x-3$
(c) Equation of line: $y=1$
(d) Equation of line: $x=5$
(e) Gradient $=\frac{3-(-2)}{-5-(-3)}$

$$
=-\frac{5}{2}
$$

Substitute $x=-5, y=3$ and $m=-\frac{5}{2}$ into $y=m x+c$:
$3=-\frac{5}{2}(-5)+c$

$$
=\frac{25}{2}+c
$$

$c=-\frac{19}{2}$
Equation of line: $y=-\frac{5}{2} x-\frac{19}{2}$
(f) Gradient $=\frac{7-0}{0-6}$

$$
=-\frac{7}{6}
$$

Equation of line: $y=-\frac{7}{6} x+7$
11. (a) Substitute $x=5, y=4$ and $m=2$ into $y=m x+c$:

$$
\begin{aligned}
4 & =2(5)+c \\
& =10+c \\
c & =-6
\end{aligned}
$$

Equation of line: $y=2 x-6$
(b) Substitute $x=-1, y=3$ and $m=\frac{1}{2}$ into $y=m x+c$:

$$
\begin{aligned}
3 & =\frac{1}{2}(-1)+c \\
& =-\frac{1}{2}+c \\
c & =\frac{7}{2}
\end{aligned}
$$

Equation of line: $y=\frac{1}{2} x+\frac{7}{2}$
(c) Equation of line: $y=-5 x$
(d) Substitute $x=7, y=6$ and $m=-\frac{1}{3}$ into $y=m x+c$:
$6=-\frac{1}{3}(7)+c$
$=-\frac{7}{3}+c$
$c=\frac{25}{3}$
Equation of line: $y=-\frac{1}{3} x+\frac{25}{3}$
(e) Equation of line: $y=9$
(f) Equation of line: $y=4 x+3$
12. (a) Gradient $=\frac{1-0}{0-(-1)}$

$$
=1
$$

Equation of line: $y=x+1$
(b) Gradient $=\frac{0-2}{2-0}$

$$
=-1
$$

Equation of line: $y=-x+2$
(c) Equation of line: $y=2$
(d) Equation of line: $x=1$
(e) Gradient $=\frac{0-(-1)}{2-0}$

$$
=\frac{1}{2}
$$

Equation of line: $y=\frac{1}{2} x-1$
(f) Gradient $=\frac{0-1 \frac{1}{2}}{2-0}$

$$
=-\frac{3}{4}
$$

Equation of line: $y=-\frac{3}{4} x+\frac{3}{2}$
13. (a) Gradient of line $=9$
(b) Gradient of line $=-\frac{4}{5}$
14. (a) Gradient of line $=-1 \div 3$

$$
=-\frac{1}{3}
$$

(b) Gradient of line $=-1 \div-\frac{2}{9}$

$$
=4 \frac{1}{2}
$$

Intermediate

(d) $\frac{3 x}{5}+\frac{y}{2}=1$
15. Gradient of $A B=$ Gradient of $A C$

$$
\begin{aligned}
\frac{4-1}{5-2} & =\frac{h-1}{7-2} \\
1 & =\frac{h-1}{5} \\
h-1 & =5 \\
h & =6
\end{aligned}
$$

16. $\frac{3-(-5)}{0-2}=\frac{k-3}{-3-0}$

$$
\begin{aligned}
-4 & =\frac{k-3}{-3} \\
k-3 & =12 \\
k & =15
\end{aligned}
$$

17. Consider $m x=5 y+4$.

$$
\begin{aligned}
5 y & =m x-4 \\
y & =\frac{m}{5} x-\frac{4}{5}
\end{aligned}
$$

Consider $7 x+6 y+5=0$.
$6 y=-7 x-5$
$y=-\frac{7}{6} x-\frac{5}{6}$
Since the gradients are the same,

$$
\begin{aligned}
\frac{m}{5} & =-\frac{7}{6} \\
m & =-\frac{35}{6} \\
& =-5 \frac{5}{6}
\end{aligned}
$$

18. (a) $\frac{x}{3}+\frac{y}{5}=1$

$$
\begin{aligned}
\frac{y}{5} & =-\frac{x}{3}+1 \\
y & =-\frac{5}{3} x+5
\end{aligned}
$$

\therefore Gradient $=-\frac{5}{3}$
(b) $\frac{x}{4}-\frac{y}{3}=1$

$$
\begin{array}{r}
\frac{y}{3}=\frac{x}{4}-1 \\
y=\frac{3}{4} x-3 \\
\therefore \text { Gradient }=\frac{3}{4}
\end{array}
$$

(c) $\frac{2 x}{3}-\frac{4 y}{5}=1$

$$
\begin{aligned}
\frac{4 y}{5} & =\frac{2 x}{3}-1 \\
y & =\frac{5}{6} x-\frac{5}{4}
\end{aligned}
$$

\therefore Gradient $=\frac{5}{6}$
21. $\frac{x}{a}+\frac{y}{b}=1$

When $x=0, y=3$,
$\frac{3}{b}=1$
$b=3$
When $x=5, y=1$,

$$
\begin{aligned}
& \frac{5}{a}+\frac{1}{3}=1 \\
& \frac{5}{a}=\frac{2}{3} \\
& a=7 \frac{1}{2} \\
& \therefore a=7 \frac{1}{2}, b=3 \\
& \frac{x}{a}+\frac{y}{b}=1 \\
& \frac{y}{b}=-\frac{x}{a}+1 \\
& y=-\frac{b}{a} x+b
\end{aligned}
$$

Gradient $=-\frac{b}{a}$

$$
=-\frac{3}{7 \frac{1}{2}}
$$

$$
=-\frac{2}{5}
$$

22. Consider $2 y=k x+6 c$.
$y=\frac{k}{2} x+3 c$
Consider $5 x+4 y=7$.
$4 y=-5 x+7$

$$
y=-\frac{5}{4} x+\frac{7}{4}
$$

Since the gradients are the same,

$$
\begin{aligned}
\frac{k}{2} & =-\frac{5}{4} \\
k & =-\frac{5}{2} \\
& =-2 \frac{1}{2}
\end{aligned}
$$

When $x=1, y=8$,

$$
\begin{aligned}
2(8) & =-2 \frac{1}{2}(1)+6 c \\
16 & =-2 \frac{1}{2}+6 c \\
6 c & =18 \frac{1}{2} \\
c & =3 \frac{1}{12} \\
\therefore k & =-2 \frac{1}{2}, c=3 \frac{1}{12}
\end{aligned}
$$

23. (i) Area of $\triangle A B C=\frac{1}{2}(7)(7)$

$$
=24.5 \text { units }^{2}
$$

(ii) $B C=\sqrt{(7-9)^{2}+(11-4)^{2}}$

$$
\begin{aligned}
& =\sqrt{53} \\
& =7.28 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) Let the length of the perpendicular from A to $B C$ be h.
Area of $\triangle A B C=\frac{1}{2} \times B C \times h$

$$
\begin{aligned}
24.5 & =\frac{1}{2} \times \sqrt{53} \times h \\
h & =\frac{2 \times 24.5}{\sqrt{53}} \\
& =6.73 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

24. (i) $A B=\sqrt{[3-(-2)]^{2}+(1-6)^{2}}$

$$
\begin{aligned}
& =\sqrt{50} \\
& =7.071 \text { units (to } 4 \text { s.f.) }
\end{aligned}
$$

$$
\begin{aligned}
B C & =\sqrt{(8-3)^{2}+(6-1)^{2}} \\
& =\sqrt{50} \\
& =7.071 \text { units (to } 4 \text { s.f.) } \\
A C & =10 \text { units }
\end{aligned}
$$

Perimeter of $\triangle A B C=A B+B C+A C$

$$
\begin{aligned}
& =\sqrt{50}+\sqrt{50}+10 \\
& =24.1 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

Area of $\triangle A B C=\frac{1}{2}(10)(5)$

$$
=25 \text { units }^{2}
$$

(ii) Since $A B=B C, \triangle A B C$ is an isosceles triangle.
(iii) By symmetry, $D(3,11)$.
25. (i) $A B=\sqrt{(4-2)^{2}+(2-6)^{2}}$

$$
=\sqrt{20}
$$

$$
=4.47 \text { units (to } 3 \text { s.f.) }
$$

$B C=\sqrt{(12-4)^{2}+(6-2)^{2}}$

$$
=\sqrt{80}
$$

$$
=8.94 \text { units (to } 3 \text { s.f.) }
$$

$A C=10$ units
(ii) $A C^{2}=10^{2}$

$$
\begin{aligned}
&=100 \\
& A B^{2}+B C^{2}=(\sqrt{20})^{2}+(\sqrt{80})^{2} \\
&=100 \\
& \text { Since } A C^{2}=A B^{2}+B C^{2}, \triangle A B C \text { is a }
\end{aligned}
$$

[^0]26. Gradient of $A B=$ Gradient of $A C$
\[

$$
\begin{aligned}
\frac{-2-8}{-5-(-3)} & =\frac{13-8}{k-(-3)} \\
5 & =\frac{5}{k+3} \\
k+3 & =1 \\
k & =-2
\end{aligned}
$$
\]

Substitute $x=-2, y=13$ and $m=5$ into $y=m x+c$:

$$
\begin{aligned}
13 & =5(-2)+c \\
& =-10+c \\
c & =23
\end{aligned}
$$

Equation of line: $y=5 x+23$
27. Gradient $=\frac{-6-3}{4-(-4)}$

$$
=-\frac{9}{8}
$$

Substitute $x=-4, y=3$ and $m=-\frac{9}{8}$ into $y=m x+c$:

$$
\begin{aligned}
3 & =-\frac{9}{8}(-4)+c \\
& =\frac{9}{2}+c \\
c & =-\frac{3}{2}
\end{aligned}
$$

Equation of line: $y=-\frac{9}{8} x-\frac{3}{2}$
28. (i) Gradient of $A B=\frac{8-0}{7-5}$

$$
=4
$$

(ii) Substitute $x=5, y=0$ and $m=4$ into $y=m x+c$:

$$
\begin{aligned}
0 & =4(5)+c \\
& =20+c \\
c & =-20
\end{aligned}
$$

Equation of $A B: y=4 x-20$
(iii) Area of $\triangle A B C=\frac{1}{2}(5)(8)$

$$
=20 \text { units }^{2}
$$

29. Consider $(k+2) x+5=3 y$.
$y=\frac{k+2}{3} x+\frac{5}{3}$
Consider $(k+3) y=2 x-6$.
$y=\frac{2}{k+3} x-\frac{6}{k+3}$
Since the gradients are the same,

$$
\begin{aligned}
\frac{k+2}{3} & =\frac{2}{k+3} \\
(k+2)(k+3) & =6 \\
k^{2}+5 k+6 & =6 \\
k^{2}+5 k & =0 \\
k(k+5) & =0 \\
k=0 \text { or } k= & -5
\end{aligned}
$$

30. $\sqrt{[2-(2-k)]^{2}+(k-1)^{2}}=\sqrt{5-4 k}$

$$
k^{2}+(k-1)^{2}=5-4 k
$$

$$
k^{2}+k^{2}-2 k+1=5-4 k
$$

$$
2 k^{2}+2 k-4=0
$$

$$
k^{2}+k-2=0
$$

$$
(k+2)(k-1)=0
$$

$k=-2$ or $k=1$
31. (i) Gradient of $A B=\frac{3-1}{4-(-1)}$

$$
=\frac{2}{5}
$$

Substitute $x=4, y=3$ and $m=\frac{2}{5}$ into $y=m x+c$:

$$
\begin{aligned}
3 & =\frac{2}{5}(4)+c \\
& =\frac{8}{5}+c \\
c & =\frac{7}{5}
\end{aligned}
$$

Equation of $A B: y=\frac{2}{5} x+\frac{7}{5}$
Equation of $B C$: $x=4$
Gradient of $A C=\frac{-2-1}{4-(-1)}$

$$
=-\frac{3}{5}
$$

Substitute $x=-1, y=1$ and $m=-\frac{3}{5}$ into $y=m x+c$:

$$
\begin{aligned}
1 & =-\frac{3}{5}(-1)+c \\
& =\frac{3}{5}+c \\
c & =\frac{2}{5}
\end{aligned}
$$

$$
\text { Equation of } A C: y=-\frac{3}{5} x+\frac{2}{5}
$$

(ii) Area of $\triangle A B C=\frac{1}{2}(5)(5)$

$$
=12 \frac{1}{2} \text { units }^{2}
$$

(iii) $\frac{1}{2} \times A E \times 5=10$

$$
A E=4
$$

$\therefore k=5$ or $k=-3$
32. (i) Gradient $=\frac{9-0}{0-7}$

$$
=-\frac{9}{7}
$$

Equation of $A B: y=-\frac{9}{7} x+9$
(ii) Gradient $=\frac{4 \frac{1}{2}-0}{3 \frac{1}{2}-0}$

$$
=\frac{9}{7}
$$

Equation of $O C: y=\frac{9}{7} x$
(iii) Equation of line: $y=4 \frac{1}{2}$
(iv) Equation of line: $x=3 \frac{1}{2}$
33. (a) Equation of required line: $y=7 x+c$

Since the line passes through $(1,9)$,
$9=7(1)+c$
$c=2$
\therefore Equation of line is $y=7 x+2$
(b) Gradient of required line $=-1 \div 6$

$$
=-\frac{1}{6}
$$

Equation of required line: $y=-\frac{1}{6} x+c$
Since the line passes through $(2,6)$,
$6=-\frac{1}{6}(2)+c$
$c=\frac{19}{3}$
\therefore Equation of line is $y=-\frac{1}{6} x+\frac{19}{3}$
(c) Equation of required line: $y=-4 x+c$

Since the line passes through $(3,1)$,
$1=-4(3)+c$
$c=13$
\therefore Equation of line is $y=-4 x+13$
(d) Gradient of required line $=-1 \div-5$

$$
=\frac{1}{5}
$$

Equation of required line: $y=\frac{1}{5} x+c$
Since the line passes through $(-2,-4)$,
$-4=\frac{1}{5}(-2)+c$
$c=-\frac{18}{5}$
\therefore Equation of line is $y=\frac{1}{5} x-\frac{18}{5}$
34. $3 y-x=19$

$$
y=\frac{1}{3} x+\frac{19}{3}
$$

Gradient of $P Q=(-1) \div\left(\frac{1}{3}\right)$

$$
=-3
$$

Equation of $P Q: y=-3 x+c$
Since $(2,-3)$ lies on $P Q$,
$-3=-3(2)+c$

$$
c=3
$$

\therefore Equation of $P Q: y=-3 x+3$
35. (i) Gradient of $A B=\frac{5-(-3)}{2-1}$

$$
=8
$$

(ii) Equation of line: $y=8 x+c$

Since $C(9,9)$ lies on the line,
$9=8(9)+c$
$c=-63$
\therefore Equation: $y=8 x-63$
36. (i) Gradient of $B C=\frac{8-(-4)}{3-(-3)}$

$$
=2
$$

Equation of $B C: y=2 x+c$
Since $B(-3,-4)$ lies on $B C$,

$$
-4=2(-3)+c
$$

$$
c=2
$$

\therefore Equation of $B C: y=2 x+2$
(ii) Gradient of $A D=(-1) \div 2$

$$
=-\frac{1}{2}
$$

Equation of $A D: y=-\frac{1}{2} x+c$
Since $A(7,-2)$ lies on $A D$,

$$
\begin{aligned}
-2 & =-\frac{1}{2}(7)+c \\
c & =\frac{3}{2}
\end{aligned}
$$

\therefore Equation of $A D: \quad y=-\frac{1}{2} x+\frac{3}{2}$
(iii) Length of $A B=\sqrt{(-3-7)^{2}+[-4-(-2)]^{2}}$

$$
=\sqrt{104}
$$

$$
=2 \sqrt{26} \text { units }
$$

$$
\begin{aligned}
\text { Length of } B C & =\sqrt{[3-(-3)]^{2}+[8-(-4)]^{2}} \\
& =\sqrt{180} \\
& =6 \sqrt{5} \text { units }
\end{aligned}
$$

37. (a) $3 y+x=25$

$$
y=-\frac{1}{3} x+\frac{25}{3}
$$

Gradient of $A D=$ Gradient of $B C$

$$
=-\frac{1}{3}
$$

Equation of $A D: y=-\frac{1}{3} x+c$
Since $A(-1,2)$ lies on $A D$,
$2=-\frac{1}{3}(-1)+c$
$c=\frac{5}{3}$
\therefore Equation of $A D: y=-\frac{1}{3} x+\frac{5}{3}$

$$
3 y=5-x
$$

(b) Gradient of $A B=(-1) \div\left(-\frac{1}{3}\right)$

$$
=3
$$

Equation of $A B: y=3 x+c$
Since $A(-1,2)$ lies on $A B$
$2=3(-1)+c$
$c=5$
\therefore Equation of $A B: y=3 x+5$

Advanced

38. (i) Gradient of $A B=\frac{12-3}{7-(-2)}$

$$
=1
$$

Gradient of $B C=\frac{-5-12}{11-7}$

$$
=-\frac{17}{4}
$$

Gradient of $C D=\frac{-14-(-5)}{2-11}$

$$
=1
$$

Gradient of $D A=\frac{3-(-14)}{-2-2}$

$$
=-\frac{17}{4}
$$

They are equal.
(ii) Substitute $x=-2, y=3$ and $m=-\frac{17}{4}$ into $y=m x+c$:

$$
\begin{aligned}
3 & =-\frac{17}{4}(-2)+c \\
& =\frac{17}{2}+c \\
c & =-\frac{11}{2}
\end{aligned}
$$

Equation of $A D: y=-\frac{17}{4} x-\frac{11}{2}$

Substitute $x=11, y=-5$ and $m=1$ into $y=m x+c$:

$$
\begin{aligned}
-5 & =1(11)+c \\
& =11+c \\
c & =-16
\end{aligned}
$$

Equation of $C D: y=x-16$
(iii) $B D=\sqrt{(2-7)^{2}+(-14-12)^{2}}$

$$
=\sqrt{701}
$$

$$
=26.5 \text { units (to } 3 \text { s.f.) }
$$

39. $x+y=0 \quad$ (1)
$x=0 \quad-(2)$
$y=x-1 \quad-(3)$
Substitute (2) into (1):
$y=0$
\therefore Coordinates of A are $(0,0)$.
Substitute (2) into (3):
$y=-1$
\therefore Coordinates of B are $(0,-1)$.
Substitute (3) into (1):

$$
\begin{aligned}
x+x-1 & =0 \\
2 x & =1 \\
x & =\frac{1}{2} \\
y & =-\frac{1}{2}
\end{aligned}
$$

\therefore Coordinates of C are $\left(\frac{1}{2},-\frac{1}{2}\right)$.
Area of $\triangle A B C=\frac{1}{2}(1)\left(\frac{1}{2}\right)$

$$
=\frac{1}{4} \text { units }^{2}
$$

40. (i) Gradient $=\frac{3-0}{0-(-1)}$

$$
=3
$$

Equation of $A B: y=3 x+3$
(ii) $\sqrt{[0-(-1)]^{2}+(3-0)^{2}}=\sqrt{h}$

$$
\begin{aligned}
1^{2}+3^{2} & =h \\
h & =10
\end{aligned}
$$

(iii) By symmetry, $C(2,1)$.
(iv) Let X be the point where $B C$ intersects $y=x+1$,
i.e. $X(1,2)$

$$
\begin{aligned}
A X & =\sqrt{[1-(-1)]^{2}+(2-0)^{2}} \\
& =\sqrt{8} \text { units } \\
B C & =\sqrt{(2-0)^{2}+(1-3)^{2}} \\
& =\sqrt{8} \text { units }
\end{aligned}
$$

Area of $\triangle A B C=\frac{1}{2} \times \sqrt{8} \times \sqrt{8}$

$$
=4 \text { units }^{2}
$$

41. (i) Equation of $Q R$: $y=3 x+c$

Since $R(4,6)$ lies on $Q R$,
$6=3(4)+c$
$c=-6$
\therefore Equation of $Q R$: $y=3 x-6$
(ii) $y=3 x-6$

At x-axis, $y=0$,
$3 x-6=0$

$$
x=2
$$

$\therefore q=2$
(iii) Gradient of $P Q \times$ Gradient of $P R=-1$

$$
\begin{aligned}
\frac{0-p}{2-0} \times \frac{6-p}{4-0} & =-1 \\
-\frac{p}{2} \times \frac{6-p}{4} & =-1 \\
p(6-p) & =8 \\
p^{2}-6 p+8 & =0 \\
(p-2)(p-4) & =0
\end{aligned}
$$

$\therefore p=2$ or $p=4$
42. (i) If $\triangle A B C$ has a right angle at B,

Gradient of $A B \times$ Gradient of $B C=-1$

$$
\begin{aligned}
\frac{7-(-2)}{2-(-4)} \times \frac{k-7}{20-2} & =-1 \\
\frac{3}{2}\left(\frac{k-7}{18}\right) & =-1 \\
k-7 & =-12
\end{aligned}
$$

$$
\therefore k=-5
$$

(ii) Length of $B C=\sqrt{(20-2)^{2}+(-5-7)^{2}}$

$$
=\sqrt{468}
$$

Length of $A B=\sqrt{[2-(-4)]^{2}+[7-(-2)]^{2}}$

$$
=\sqrt{117}
$$

$\frac{B C}{A B}=\frac{\sqrt{468}}{\sqrt{117}}$
$=\sqrt{\frac{468}{117}}$
$=\sqrt{4}$
$=2$
$\therefore B C=2 A B$ (shown)
(iii) Gradient of $A B=\frac{3}{2}$

Equation of $A B: y=\frac{3}{2} x+c$
Since $A(-4,-2)$ lies on $A B$,
$-2=\frac{3}{2}(-4)+c$
$c=4$
\therefore Equation of $A B: \quad y=\frac{3}{2} x+4$

$$
2 y=3 x+8
$$

Gradient of $B C=-\frac{2}{3}$
Equation of $B C: y=-\frac{2}{3} x+c$
Since $B(2,7)$ lies on $B C$,
$7=-\frac{2}{3}(2)+c$
$c=\frac{25}{3}$
\therefore Equation of $B C: y=-\frac{2}{3} x+\frac{25}{3}$

$$
3 y=25-2 x
$$

(iv) Line $A B: 2 y=3 x+8$

$$
\begin{aligned}
& \text { At } y \text {-axis, } x=0, \\
& 2 y=3(0)+8 \\
& y=4
\end{aligned}
$$

Line $B C: 3 y=25-2 x$
At x-axis, $y=0$,
$3(0)=25-2 x$

$$
x=12.5
$$

$\therefore P(0,4), Q(12.5,0)$
(v) Gradient of $A P=\frac{4-(-2)}{0-(-4)}$

$$
=\frac{3}{2}
$$

Gradient of $P Q=\frac{0-4}{12.5-0}$

$$
=-\frac{8}{25}
$$

Gradient of $A P \times$ Gradient of $P Q$
$=\frac{3}{2} \times\left(-\frac{8}{25}\right)$
$=-\frac{12}{25} \neq-1$
$\therefore \angle A P Q$ is not a right angle.

Chapter 7 Graphs of Functions and

 Graphical Solution
Basic

1. (a)

x	-3	-2	-1	0	1	2	3
y	-25	-6	1	2	3	10	29

(b)

(c) (i) When $x=1.5, y=5.5$.
(ii) When $y=16, x=2.4$.
2. (a) When $x=-3, y=-2.7$.
$\therefore a=-2.7$
When $x=2, y=4$
$\therefore b=4$
When $x=4, y=2$.
$\therefore c=2$
(b)

(c) (i) When $x=1.4, y=5.7$.
(ii) When $y=-5.7, x=-1.4$.
3. (a)

x	-3	-2	-1	0	1	2	3
y	27	8	1	0	-1	-8	-27

(b)

(c) (i) When $x=-1.7, y=5$.
(ii) When $y=-12, x=2.3$.
4. (a) When $x=-2$,

$$
\begin{aligned}
y & =-\frac{5}{(-2)} \\
& =2.5
\end{aligned}
$$

$\therefore a=2.5$
When $x=3$,

$$
\begin{aligned}
y & =-\frac{5}{3} \\
& =-1.67 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$$
\therefore b=-1.67
$$

(b)

(c) (i) When $x=-2.2, y=2.3$.
(ii) When $y=-3.5, x=1.4$.
5. (a) When $x=-3$,

$$
\begin{aligned}
y & =\frac{4}{(-3)^{2}} \\
& =0.44 \text { (to } 2 \text { d.p.) } \\
\therefore a= & 0.44
\end{aligned}
$$

$$
\text { When } x=3 \text {, }
$$

$$
y=\frac{4}{3^{2}}
$$

$$
=0.44 \text { (to } 2 \text { d.p.) }
$$

$$
\therefore b=0.44
$$

(b)

(c) (i) When $x=-1.3, y=2.4$.
(ii) When $y=14, x=0.5$ or $x=-0.5$.
6. (a)

x	-1	-0.5	0	0.5	1	1.5	2	2.5
y	0.2	0.45	1	2.24	5	11.18	25	55.90

(b)

(c) (i) When $x=0.8, y=3.5$.
(ii) When $y=18, x=1.8$.
7. (a)

x	0	1	2	3	4	5	6	7	8
y	1.00	1.20	1.44	1.73	2.07	2.49	2.99	3.58	4.30

(b)

(c) (i) When $x=1.2, y=1.25$.
(ii) When $y=3.3, x=6.55$
8. (a)

x	0	1	2	3	4	5	6	7
y	1.00	1.50	2.25	3.37	5.06	7.59	11.39	17.09

(b)

(c) (i) When $x=6.4, y=13.4$.
(ii) When $y=3, x=2.7$.
9. (i) Distance (km)

(ii) 1010
10. (i) Duration $=5-3.4$

$$
=1.6 \mathrm{~h}
$$

(ii) Average speed in the first 2 hours $=\frac{10}{2}$

$$
=5 \mathrm{~km} / \mathrm{h}
$$

(iii) Average speed for the whole journey $=\frac{60}{6}$

$$
=10 \mathrm{~km} / \mathrm{h}
$$

11. (i) Acceleration in the last 2 seconds $=\frac{0-12}{2-0}$

$$
=-6 \mathrm{~m} / \mathrm{s}^{2}
$$

(ii) Average speed for the whole journey $=\frac{54}{6}$

$$
=9 \mathrm{~m} / \mathrm{s}
$$

12. (i) It represents the acceleration of the car.
(ii) When $t=10$,

$$
\begin{aligned}
\text { Speed } & =\frac{30-12}{20-0} \\
& =0.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(iii) Average speed for the whole journey $=\frac{680}{50}$

$$
=13.6 \mathrm{~m} / \mathrm{s}
$$

Intermediate

13. (a)

x	-3	-2	-1	0	1	2	3
y	14	1	0	5	10	9	-4

(b)

(c) (i) When $x=-1.4, y=-0.7$.
(ii) When $y=10, x=-2.8$ or $x=1$ or $x=1.8$.
14.

x	0	1	2	3	4	5
y	-3	5	7	9	17	37

(i) When $x=2.3, y=7.25$.
(ii) When $y=15, x=3.8$.
15.

x	-4	-3	-2	-1	$-\frac{1}{2}$	$\frac{1}{2}$	1	2	3	4
y	1.75	1.67	1.5	1	0	4	3	2.5	2.33	2.25

(a)

(b) (i) When $x=-2.5, y=1.6$.
(ii) When $y=3.2, x=0.85$.
unversty hes
16.

x	1	1.5	2	2.5	3	3.5	4	4.5	5
y	5	3.89	3.5	3.32	3.22	3.16	3.13	3.10	3.08

(i) When $x=1.6, y=3.775$.
(ii) When $y=4.5, x=1.15$.
17.

x	1	1.5	2	2.5	3	3.5	4	4.5	5
y	-3	-0.28	1	1.86	2.56	3.17	3.75	4.30	4.84

(i) When $x=2.6, y=2$.
(ii) When $y=-2.2, x=1.1$.
18.

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
y	-0.89	-0.81	-0.67	-0.42	0	0.73	2	4.20	8

(i) When $x=0.8, y=1.4$.
(ii) When $y=6, x=1.8$.
19.

x	1	1.5	2	2.5	3	3.5	4	4.5	5
y	-2	1.78	3.75	5.2	6.44	7.59	8.69	9.75	10.8

(i) When $x=3.5, y=7.6$.
(ii) When $y=-1, x=1.1$.
20.

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
y	-3.75	-1.33	0	0.64	1	1.48	2.5	4.52	8

(i) When $x=0.8, y=2$.
(ii) When $y=-2, x=-1.65$.
21. (i) $k=4$
(ii)

22.

x	-2	-1.5	-1	-0.5	0.5	1	1.5	2	2.5
y	0.61	0.86	1.33	2.58	-0.27	2	4.53	8.5	15.19

(i) When $x=-1.6, y=0.8$.
(ii) When $y=2, x=-0.65$ and $x=1$.
23.

x	0	1	2	3	3.5	4	5	6	7
y	0	3	5	6	6.125	6	5	3	0

(a)

(b) Using points $(0,3.15)$ and $(3,6.15)$,
gradient of tangent $=\frac{6.15-3.15}{3-0}$

$$
=1
$$

24. (a) When $x=-1, y=20$.
$\therefore p=20$
When $x=3, y=-20$.

$$
\therefore q=-20
$$

(b)

(c) Using points $(-4,6)$ and $(-1,21)$,

$$
\begin{aligned}
\text { gradient of tangent } & =\frac{21-6}{-1-(-4)} \\
& =5
\end{aligned}
$$

(d) (ii) From the graph, $h=-0.65$ and $k=20.5$.
25. (a) When $x=-2, y=3.5$.
$\therefore p=3.5$
When $x=-1.5, y=6.2$.
$\therefore q=6.2$
When $x=1.5, y=6.2$.
$\therefore r=6.2$
When $x=2, y=3.5$.
$\therefore s=3.5$
(b)

(c) $x=0$
(d) Using points $(0,10.5)$ and $(2,3.5)$,

$$
\begin{aligned}
\text { gradient of tangent } & =\frac{3.5-10.5}{2-0} \\
& =-3.5
\end{aligned}
$$

26. (a) When $t=2.5, v=2$
$\therefore a=2$
When $t=5, v=7$.

$$
\therefore b=7
$$

(b)

(c) (i) When $v=15, t=0.6$.
(ii) When the acceleration is zero, the time is 3.25 s .
(iii) Using points $(3.7,0)$ and $(4.5,4)$,

$$
\begin{aligned}
\text { Gradient of tangent } & =\frac{4-0}{4.5-3.7} \\
& =5
\end{aligned}
$$

When $t=4.5$, the acceleration of the particle is $5 \mathrm{~m} / \mathrm{s}^{2}$.
(iv) When $v<5$, the time interval is $1.8<t<4.7$.
27. (a) When $x=4, y=56$.
$\therefore p=56$
When $x=8, y=64$.
$\therefore q=64$
When $x=10, y=50$.
$\therefore r=50$
(b)

(c) (i) Largest possible area is $67 \mathrm{~cm}^{2}$ when $x=6.7$.
(ii) When $y>50$, the range of values of x is $3.3<x<10$.
28. (a) When $x=1.5, y=2.5$.
$\therefore p=2.25$
When $x=2.5, y=3.25$.
$\therefore q=3.25$
When $x=4, y=1$.
$\therefore r=1$
(b)

(c) (i) Number of mugs $=2500$
(ii) Number of mugs $=700$
(iii) When $y \geqslant 2.5$, the range of values of x is $1.625 \leqslant x \leqslant 3.375$.
29. (a)

(b) (i) Approximate time taken is 2.2 minutes.
(ii) Range of heart rate in the last 1.5 minutes is $127 \leqslant t \leqslant 140$.
30. (a) Distance (km)

(b) (i) Time taken for them to pass each other is 1.55 h .
(ii) They will be 12 km apart at 1.1 h and 2 h .
31. (a)

(b) Time taken to travel the first 3.5 km of the journey is 3.8 min .
(c) Using points $(1,0.8)$ and $(6.8,7.4)$,

$$
\begin{aligned}
\text { Gradient of tangent } & =\frac{7.4-0.8}{6.8-1} \\
& =1.137 \mathrm{~km} / \mathrm{min} \\
& =68.3 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

32. (a) Distance (km)

(b) (i) Amirah and Huixian met at 0936 .
(ii) They were 13 km away from Huixian's home.
33. (i) Acceleration $=\frac{30-0}{t-0}$

$$
\begin{aligned}
1.5 & =\frac{30}{t} \\
t & =20
\end{aligned}
$$

(ii) Total distance travelled $=\frac{1}{2} \times(20+80) \times 30$

$$
=1500 \mathrm{~m}
$$

$$
\begin{aligned}
\text { Average speed } & =\frac{1500}{80} \\
& =18.75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

34. (i) Acceleration during the first 21 seconds $=\frac{21-70}{21-0}$

$$
=-2 \frac{1}{3} \mathrm{~m} / \mathrm{s}^{2}
$$

\therefore Deceleration $=2 \frac{1}{3} \mathrm{~m} / \mathrm{s}^{2}$
(ii) Acceleration during the second part of the journey

$$
\begin{aligned}
& =-0.5 \mathrm{~m} / \mathrm{s}^{2} \\
& \begin{aligned}
\frac{0-21}{t-21} & =-0.5 \\
42 & =t-21 \\
t & =63
\end{aligned}
\end{aligned}
$$

35. (i) When $t=0, v=5$.
\therefore Initial speed is $5 \mathrm{~m} / \mathrm{s}$.
(ii) When $t=8, v=21$.
\therefore Speed is $21 \mathrm{~m} / \mathrm{s}$.
(iii) Acceleration of the particle $=2 \mathrm{~m} / \mathrm{s}^{2}$
(iv) Average speed $=\frac{104}{8}$

$$
=13 \mathrm{~m} / \mathrm{s}
$$

36. (i) Acceleration of police car $=\frac{40-0}{15-0}$

$$
=2 \frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}
$$

(ii) Time taken $=\frac{30}{\frac{8}{3}}$

$$
=11 \frac{1}{4} \mathrm{~s}
$$

(iii) Distance travelled $=30 \times 30$

$$
=900 \mathrm{~m}
$$

37. (i) Average speed $=\frac{350}{14}$

$$
=25 \mathrm{~m} / \mathrm{s}
$$

(ii) Acceleration of the particle $=\frac{40-22}{10-2}$

$$
=2.25 \mathrm{~m} / \mathrm{s}^{2}
$$

(iii) Using similar triangles,

$$
\frac{v}{40}=\frac{3}{4}
$$

$$
v=30
$$

\therefore Speed of the particle is $30 \mathrm{~m} / \mathrm{s}$.
(iv) Acceleration of the particle in the last 4 seconds
$=\frac{0-40}{14-10}$
$=-10 \mathrm{~m} / \mathrm{s}^{2}$
\therefore Deceleration of the particle in the last 4 seconds
$=10 \mathrm{~m} / \mathrm{s}^{2}$
38. (a)

Mass (kg)	1	2.8	4	5.5
Price (\$)	28	54	62	76

(b)

(c) Tea Break Café offers a lower price. The price difference is $\$ 20$.
39. (a) and (c)

(b) Price of a pizza of diameter $25 \mathrm{~cm}=\$ 18$
(d) Pizza Place offers a lower price for a pizza of diameter 32 cm . The difference in the prices is $\$ 7$.

Advanced

40.

x	-2	-1.5	-1	-0.5	0.5	1	1.5	2	2.5
y	3.11	4.19	6.33	12.6	-10.3	-3	1.20	6	13.2

(a) (i) When $x=1.8, y=4$.
(ii) When $y=6, x=-1.05$ or $x=2$.
(b) (i) From the graph, the points of intersection are $(-1.25,5)$ and $(0.95,-3.8)$.
(ii) $x=-1.25$ and $x=0.95$
41. (a) and (b)

(c) (i) 6.7 s
(ii) Distance moved by car B in the first 2 seconds
$=28 \times 2$
$=56 \mathrm{~m}$
(iii) Using the points $(3,10.8)$ and $(10.6,17.6)$,
gradient $=\frac{17.6-10.8}{10.6-3}$

$$
\left.=0.895 \mathrm{~m} / \mathrm{s}^{2} \text { (to } 3 \mathrm{~s} . \mathrm{f} .\right)
$$

\therefore Acceleration of car A is $0.895 \mathrm{~m} / \mathrm{s}^{2}$.
42. (i) Acceleration of the train $=\frac{0-20}{90-0}$

$$
=-\frac{2}{9} \mathrm{~m} / \mathrm{s}^{2}
$$

\therefore Deceleration of train $=\frac{2}{9} \mathrm{~m} / \mathrm{s}^{2}$.
(ii) Distance travelled by train from P and $Q=\frac{1}{2}(t-180+t-150)$ (40)

$$
\begin{aligned}
760 & =\frac{1}{2}(2 t-330)(40) \\
38 & =2 t-330 \\
2 t & =368 \\
t & =184
\end{aligned}
$$

43. (i) Substitute $v=18$ into $v=\frac{18 t}{35}$:
$18=\frac{18 t}{35}$
$t=35$
\therefore Coordinates of A are $(35,18)$.
Substitute $v=18$ into $\frac{t}{240}+\frac{v}{54}=1$:

$$
\begin{aligned}
\frac{t}{240}+\frac{18}{54} & =1 \\
\frac{t}{240} & =\frac{2}{3} \\
t & =160
\end{aligned}
$$

\therefore Coordinates of B are $(160,18)$.
Substitute $v=0$ into $\frac{t}{240}+\frac{v}{54}=1$:

$$
\begin{aligned}
\frac{t}{240} & =1 \\
t & =240
\end{aligned}
$$

\therefore Coordinates of C are $(240,0)$.
(ii) Length of time $=160-35$

$$
=125 \mathrm{~s}
$$

(iii) Distance travelled $=18 \times 125$

$$
=2250 \mathrm{~m}
$$

(iv) Gradient of $B C=\frac{0-18}{240-160}$

$$
=-0.225
$$

\therefore Deceleration of bus is $0.225 \mathrm{~m} / \mathrm{s}^{2}$.

A

C

B

D

E

F

New Trend

46.

x	0.1	0.2	0.4	0.5	1	1.2	1.5	2
y	12.3	7.6	5.7	5.5	6	6.4	7.2	8.5

(a)

(b) $3 x+\frac{1}{x}=5$
$3 x+\frac{1}{x}+2=7$
When $y=7$,
$x=0.23$ or $x=1.45$
(c) Using points $(0,7)$ and $(0.8,4.4)$

Gradient of tangent $=\frac{7-4.4}{0-0.8}$

$$
=-3.25
$$

(d) (ii) Since gradient $=-1$,

$$
y=-x+c
$$

When $x=2, y=5$

$$
5=-2+c
$$

$$
c=7
$$

\therefore The equation of the line is $y=-x+7$.
(iii) From the graph, the points of intersection are $(0.25,6.75)$ and $(1,6)$.
47. (a) $S(\mathrm{~km})$

(b) $\quad S=k t^{3}$

When $t=4, S=128$

$$
\begin{aligned}
128 & =k(4)^{3} \\
64 k & =128 \\
k & =2 \\
\therefore S & =2 t^{3}
\end{aligned}
$$

(c) When $S=182 \frac{1}{4}$,

$$
\begin{aligned}
182 \frac{1}{4} & =2 t^{3} \\
t^{3} & =91 \frac{1}{8} \\
t & =4.5
\end{aligned}
$$

\therefore The time taken to travel $182 \frac{1}{4} \mathrm{~km}$ is 4.5 hours.
48. (a) When $x=2$,

$$
\begin{aligned}
y & =6(2)^{2}-2^{3} \\
& =16 \\
\therefore & p=16
\end{aligned}
$$

When $x=4$,
$y=6(4)^{2}-4^{3}$
$=32$
$\therefore q=32$
When $x=5$,
$y=6(5)^{2}-5^{3}$
$=25$
$\therefore r=25$
(b)

(c) Using the points $(3.5,33.5)$ and $(5,29.5)$,

$$
\begin{aligned}
\text { gradient } & =\frac{29.5-33.5}{5-3.5} \\
& =-2.67 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(d) (i) From the graph, the point of intersection is $(5.8,5.75)$
(ii) 5.8
49. (a) $y=x^{2}-5 x-6$
(b) $y=10^{x}$
(c) $y=3-x^{3}$
51. (a)

x	0	0.5	1	1.5	2	2.5	3	3.5	4
y	0	7.75	13	15.75	16	13.75	9	1.75	-8

(b)

(c) (i) Maximum height $=16.2 \mathrm{~m}$
(ii) Time taken $=1.8 \mathrm{~s}$
(iii) Vertical height of the ball at $1.2 \mathrm{~s}=14.4 \mathrm{~m}$
(iv) Time taken to hit the ground $=3.6 \mathrm{~s}$
(d) Using points $(1.7,18)$ and $(4.5,4)$,

$$
\begin{aligned}
\text { gradient } & =\frac{18-4}{1.7-4.5} \\
& =-5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

52. $y=k a^{x}$

When $x=0, y=\frac{1}{2}$.
$\frac{1}{2}=k a^{0}$
$k=\frac{1}{2}$
When $x=4, y=648$.
$648=\frac{1}{2} a^{4}$
$a^{4}=1296$
$a= \pm \sqrt[4]{1296}$
$a=6$ or $-6($ rejected since $a>0)$
$\therefore a=6, k=\frac{1}{2}$
53. (i) It represents the acceleration of the motorcylist.
(ii) Duration $=2 \mathrm{~h}$
(iii) Acceleration in the first hour $=\frac{100-40}{1}$

$$
=60 \mathrm{~km} / \mathrm{h}^{2}
$$

(iv) Acceleration in the last hour $=\frac{0-100}{1}$

$$
=-100 \mathrm{~km} / \mathrm{h}^{2}
$$

\therefore Deceleration in the last hour is $100 \mathrm{~km} / \mathrm{h}^{2}$.
(v) Total distance travelled

$$
\begin{aligned}
& =\left[\frac{1}{2} \times(40+100) \times 1\right]+(100 \times 2)+\left(\frac{1}{2} \times 100 \times 1\right) \\
& =320 \mathrm{~km}
\end{aligned}
$$

(vi) $100 \mathrm{~km} / \mathrm{h}=\frac{100 \mathrm{~km}}{1 \mathrm{~h}}$

$$
=\frac{100000 \mathrm{~m}}{3600 \mathrm{~s}}
$$

$$
=27 \frac{7}{9} \mathrm{~m} / \mathrm{s}
$$

54. (a) When $x=1.5$,

$$
\begin{aligned}
y & =1.5+\frac{12}{1.5}-5 \\
& =4.5 \\
\therefore & =4.5
\end{aligned}
$$

When $x=5$,

$$
\begin{aligned}
y & =5+\frac{12}{5}-5 \\
& =2.4
\end{aligned}
$$

$$
\therefore q=2.4
$$

(b)

(c) Using the points $(6,3)$ and $(1.5,0)$,
gradient $=\frac{0-3}{1.5-6}$
$=\frac{2}{3}$
(d) (i) From the graph, the points of intersection are (1.5, 4.5) and (4, 2).
(ii) $2 x+\frac{12}{x}-11=0$

$$
x+\frac{12}{x}-5=6-x
$$

Draw $y=6-x$.
$x=1.5$ or $x=4$
(e) Coordinates of minimum point are $(3.5,1.9)$.
55. (i)

(ii) 1050
(iii) 9 km
(iv) Speed (km/h)

56. (a) When $x=-2, y=2$.
$\therefore p=2$
When $x=2, y=-2$.

$$
\therefore q=-2
$$

(b)

(c) (i) From the graph,
when $x=-1.8, y=4.5$.
(ii) From the graph,
when $y=-19, x=2.8$.
(d) $2 x^{3}-9 x=5$

Draw $y=5$.
$x=-1.75$ or $x=-0.6$ or $x=2.35$
(e) Draw tangent at $(-1.4,7.112)$ on graph.

Using points $(-2.9,3)$ and $(1.1,14)$,
gradient $=\frac{3-14}{-2.9-1.1}$

$$
=2.75
$$

(f) (ii) $x=1.6$
(iii) $2 x^{3}-9 x=-10 x+10$
$2 x^{3}+x-10=0$
$x^{3}+\frac{1}{2} x-5=0$
Comparing $x^{3}+\frac{1}{2} x-5=0$
with $x^{3}+A x^{2}+\frac{1}{2} x+B=0$,
$A=0, B=-5$

Revision Test B1

1. Cost price of durians
$=480 \times \$ 2.50$
$=\$ 1200$
Amount received from selling the durians
$=\left(\frac{20}{100} \times 480\right) \times \$ 6+\left(\frac{75}{100} \times 384\right) \times \$ 4$
$=576+1152$
$=\$ 1728$
Gain $=$ selling price - cost price

$$
\begin{aligned}
& =1728-1200 \\
& =\$ 528
\end{aligned}
$$

Percentage gain
$=\frac{528}{1200} \times 100 \%$
$=44 \%$
2. $P=\$ 8800, r=2.75$

Amount at the end of 3 years $=8800\left(1+\frac{\frac{2.75}{4}}{100}\right)^{12}$

$$
=\$ 9554.09
$$

\therefore Interest earned $=9554.09-8800$

$$
=\$ 754 \text { (to } 3 \text { s.f.) }
$$

3. Let the total distance of the journey be $x \mathrm{~km}$.

Time taken for 30% of journey $=\frac{3 x}{10} \div 80 \mathrm{~h}=\frac{3 x}{800} \mathrm{~h}$
Time taken for 20% of journey $=\frac{2 x}{10} \div 40 \mathrm{~h}=\frac{x}{200} \mathrm{~h}$
Time taken for remaining 50% of journey $=\frac{x}{2} \div 60 \mathrm{~h}$

$$
=\frac{x}{120} \mathrm{~h}
$$

\therefore Total time taken $=\frac{3 x}{800} \mathrm{~h}+\frac{x}{200} \mathrm{~h}+\frac{x}{120} \mathrm{~h}$

$$
\begin{aligned}
& =\frac{9 x+12 x+20}{2400} \mathrm{~h} \\
& =\frac{41 x}{2400} \mathrm{~h}
\end{aligned}
$$

\therefore Average speed $=x \div \frac{41 x}{2400}$

$$
=58.54 \mathrm{~km} / \mathrm{h} \text { (to } 2 \mathrm{~d} . \mathrm{p} .)
$$

4. (a) Gradient $=\frac{3}{4}=\frac{7-a}{2 a-8}$

$$
\begin{aligned}
3(2 a-8)= & 4(7-a) \\
6 a-24 & =28-4 a \\
10 a & =52 \\
a & =5.2
\end{aligned}
$$

(b) $5 x+7 y=13$

$$
\begin{aligned}
7 y & =-5 x+13 \\
y & =-\frac{5}{7} x+\frac{13}{7}
\end{aligned}
$$

Gradient of $5 x+7 y=13$ is $-\frac{5}{7}$.
$\therefore m=-\frac{5}{7}$
$(7,4)$ lies on $y=-\frac{5}{7} x+c$
When $x=7$ and $y=4$, $4=-\frac{5}{7}(7)+c$
$\therefore c=9$
5. (a) Since gradient $=-\frac{4}{3}$, the equation is $y=-\frac{4}{3} x+c$.
$y=-\frac{4}{3} x+c$ passes through $(3,-2)$.
When $x=3, y=-2$
$-2=-\frac{4}{3}(3)+c$
$-2=-4+c$
$c=2$
\therefore Equation of straight line is $y=-\frac{4}{3} x+2$.
$y=-\frac{4}{3} x+2$ passes through $\left(-\frac{3}{2}, a\right)$.
When $x=-\frac{3}{2}, y=a$
$a=-\frac{4}{3}\left(-\frac{3}{2}\right)+2$
$a=2+2$
$\therefore a=4$
(b) (i) Length of $P Q=\sqrt{(0-5)^{2}+(12-0)^{2}}$

$$
=13 \text { units }
$$

(ii) Gradient of $P Q=\frac{12-0}{0-5}=-\frac{12}{5}$

Equation of line is $y=-\frac{12}{5} x+c$
$y=-\frac{12}{5} x+c$ passes through $R(2,1)$.
When $x=2, y=1$

$$
\begin{aligned}
1 & =-\frac{12}{5}(2)+c \\
& =-\frac{24}{5}+c \\
c & =\frac{29}{5}
\end{aligned}
$$

\therefore Equation of the line is $y=-\frac{12}{5} x+\frac{29}{5}$.
6. (i) From the graph, the rate of decrease in battery level
$=\frac{84-60}{12-0}$
$=2 \% /$ min (to 3 s.f.)
(ii) From the graph, the rate of increase in battery level
$=\frac{100-48}{100-60}$
$=1.3 \% / \mathrm{min}$
7. (a) (i) Acceleration at $t=2$ is $\frac{20}{5}=4 \mathrm{~m} / \mathrm{s}^{2}$
(ii) Acceleration at $t=23$ is $-\frac{40}{10}=-4 \mathrm{~m} / \mathrm{s}^{2}$
(b) Distance travelled from $t=0$ to $t=5$
$=\frac{1}{2}(5)(2)$
$=50 \mathrm{~m}$
Distance travelled from $t=5$ to $t=20$
$=\frac{1}{2}(20+40) \times 15$
$=450 \mathrm{~m}$
Distance travelled from $t=20$ to $t=30$
$=\frac{1}{2}(10)(40)$
$=200 \mathrm{~m}$

8.

(i) From the graph, the travellers met at 1345 .
(ii) From the graph, the motorist had travelled 30 km .
(iii) The cyclist reached X at 1600 .

The motorist reached Y at 1430 .
9. (a) $y=x^{3}-4 x^{2}$

When $x=-1$,
$h=(-1)^{3}-4(-1)^{2}=-5$
$\therefore h=-5$
When $x=4$,

$$
k=(4)^{3}-4(4)^{2}=0
$$

$$
\therefore k=0
$$

(b)

(c) (i) From the graph, when $x=2.4, y=-9.5$.
(ii) From the graph, when $y=-5$,

$$
x=-1 \text { or } 1.4 \text { or } 3.6
$$

(d) From the graph, gradient $=\frac{\text { vertical change }}{\text { horizontal change }}$

$$
\begin{aligned}
& =\frac{6.5}{2} \\
& =3.25
\end{aligned}
$$

(e) $2 x^{3}-8 x^{2}+3 x=0$

$$
\begin{aligned}
2 x^{3}-8 x^{2} & =-3 x \\
x^{3}-4 x^{2} & =-1 \frac{1}{2} x
\end{aligned}
$$

\therefore Draw $y=-1 \frac{1}{2} x$ on the same diagram.
From the graph, $x=0$ or 0.4 or 3.6.

Revision Test B2

1. Marked price of couch $=\frac{255}{107} \times 100$

$$
=\$ 238.32 \text { (to nearest cent) }
$$

2. (a) Interest earned $=2200-1480$

$$
=\$ 740
$$

$740=\frac{1480 \times 15 \times t}{100}$
$\therefore t=\frac{740 \times 100}{1480 \times 15}$
$=3 \frac{1}{3}$ years
$=3$ years 4 months
(b) Amount at the end of 2 years $=8000\left(1+\frac{\frac{4.5}{100}}{100}\right)^{4}$

$$
=\$ 8740 \text { (to } 3 \text { s.f.) }
$$

3. (i) Gradient $=\frac{2-(-3)}{6-0}$

$$
=\frac{5}{6}
$$

$\therefore m=\frac{5}{6}$
y-intercept $=-3$
$\therefore c=-3$
(ii) Area of $\triangle A B C=\frac{1}{2}[5-(-3)] \times 6$

$$
=24 \text { units }^{2}
$$

(iii) $A B=\sqrt{(6-0)^{2}+(2-(-3))^{2}}$

$$
=7.81 \text { units (to } 3 \text { s.f.) }
$$

(iv) Let the perpendicular distance from C to $A B$ be x.

Area of $\triangle A B C=24$ units 2

$$
\frac{1}{2}(A B)(x)=24
$$

$$
\frac{1}{2}(7.810)(x)=24
$$

$$
\begin{aligned}
x & =\frac{24 \times 2}{7.810} \\
& =6.15 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

(v) Gradient of perpendicular from C to $A B=-1 \div \frac{5}{6}$

$$
=-\frac{6}{5}
$$

4. (i) Gradient of $A C=\frac{6-(-2)}{-6-1}=-\frac{8}{7}$

Gradient of $A B=\frac{6-(-2)}{-6-5}=-\frac{8}{13}$
(ii) $B C=\sqrt{(-6-5)^{2}+[6-(-2)]^{2}}$

$$
=13.6 \text { units (to } 3 \text { s.f.) }
$$

(iii) Area of $\triangle A B C=\frac{1}{2}(5-1) \times[6-(-2)]$

$$
=16 \text { units }^{2}
$$

(iv) $A B=C D$
$\therefore D$ has coordinates $(-10,6)$.
(v) $A B=K C$
$\therefore K$ has coordinates $(-2,6)$.
(vi) Equation of line $A C$ is $y=-\frac{8}{7} x+c$.

The point $A(1,-2)$ lies on line $A C$.
When $x=1, y=-2$

$$
\begin{aligned}
-2 & =-\frac{8}{7}(1)+c \\
c & =-\frac{6}{7}
\end{aligned}
$$

\therefore Equation of straight line is $y=-\frac{8}{7} x-\frac{6}{7}$.
5. (i)

From the graph, parking charges at Carpark $A=\$ 4.60$.
From the graph, parking charges at Carpark $B=\$ 5.40$.
\therefore Shirley should park at Carpark A, which offers lower parking charges for 2 hours.
(ii) For Carpark A,
average parking rate $=\frac{\text { parking charges }}{\text { time }}$

$$
\begin{aligned}
= & \frac{4.60}{120} \\
= & 0.0383 \\
= & 3.8 \text { cents } / \text { min } \\
& (\text { to the nearest } 0.1 \text { cent })
\end{aligned}
$$

For Carpark B,
average parking rate $=\frac{\text { parking charges }}{\text { time }}$

$$
\begin{aligned}
& =\frac{5.40}{120} \\
& =0.045 \\
& =4.5 \text { cents } / \mathrm{min}
\end{aligned}
$$

(to the nearest 0.1 cent)
6. (a) (i)

(ii) Michael's arrival time at Flora is 1130.
(b) (ii) The two men pass each other at 0940 and they are 20 km away from Flora.
7. (i) When $x=4.5$,

$$
\begin{aligned}
h & =\frac{1}{2}(4.5)^{2}+\frac{18}{4.5}-12 \\
& =2.1 \\
\therefore & h=2.1
\end{aligned}
$$

(ii)

(iii) From the graph, when $y=3.5$,

$$
x=1.2 \text { and } x=4.8
$$

(iv) Gradient at $x=3.5=\frac{\text { vertical change }}{\text { horizontal change }}$

$$
\begin{aligned}
& =\frac{3}{1.4} \\
& =2.1
\end{aligned}
$$

(v) For $1<x \leqslant 5$,
$x^{3}+2 x^{2}-32 x+36=0$
Dividing throughout by x,

$$
\begin{aligned}
x^{2}+2 x-32+\frac{36}{x} & =0 \\
\frac{1}{2} x^{2}+x-16+\frac{18}{x} & =0 \\
\frac{1}{2} x^{2}+\frac{18}{x}+x-12-4 & =0 \\
\frac{1}{2} x^{2}+\frac{18}{x}-12 & =-x+4
\end{aligned}
$$

\therefore Draw $y=-x+4$.
From the graph, the intersections are at $x=1.3$ and $x=3.9$.
\therefore For $1<x \leqslant 5$, the solutions are $x=1.3$ and $x=3.9$.

Mid-Year Examination Specimen Paper A

Part I

1. Total number of tweets

$$
\begin{aligned}
& =\frac{3 \times 365 \times \frac{24}{2} \times 3.56 \times 10^{7}}{10^{6}} \text { million } \\
& =468000 \text { million }
\end{aligned}
$$

2. (a) $27-3 x^{2}=0$

$$
\begin{aligned}
3\left(9-x^{2}\right) & =0 \\
3(3+x)(3-x) & =0 \\
\therefore x=-3 \text { or } x & =3
\end{aligned}
$$

(b) $5 x^{2}-10 x-(x-2)=0$

$$
\begin{array}{r}
5 x(x-2)-(x-2)=0 \\
(x-2)(5 x-1)=0 \\
\therefore x=2 \text { or } x=\frac{1}{5}
\end{array}
$$

(c) $\frac{1}{x}-\frac{3}{2 x+1}=2$

$$
2 x+1-3 x=2 x(x+1)
$$

$$
1-x=4 x^{2}+2 x
$$

$$
4 x^{2}+3 x-1=0
$$

$$
(4 x-1)(x+1)=0
$$

$$
\therefore x=\frac{1}{4} \text { or } x=-1
$$

3. The equation is

$$
\begin{aligned}
\left(x-\frac{4}{5}\right)\left(x-\frac{3}{4}\right) & =0 \\
(5 x-4)(4 x-3) & =0 \\
20 x^{2}-15 x-16 x+12 & =0 \\
\therefore 20 x^{2}-31 x+12 & =0
\end{aligned}
$$

4. $1 \frac{1}{2} x-\frac{2}{3}(3-2 x)<17$

$$
\begin{aligned}
1 \frac{1}{2} x-2+\frac{4}{3} x & <17 \\
2 \frac{5}{6} x & <19 \\
x & <6 \frac{12}{17}
\end{aligned}
$$

\therefore Largest prime number is 5 .
5. $2 x-8<13 \leqslant 3 x-10$

$$
\begin{aligned}
2 x-8 & <13 & & \text { and } & & 13
\end{aligned} \leqslant 3 x-10 \text { 23} \begin{array}{rlrl}
2 x & <21 & & \text { and } \\
x & <10 \frac{1}{2} & & \text { and } \\
& & 7 \frac{2}{3} & \leqslant x \\
\therefore 7 \frac{2}{3} & \leqslant x<10 \frac{1}{2} & & \\
& &
\end{array}
$$

\therefore The integer values satisfying the inequality are 8,9 and 10.
6. $y=2 x^{2}+7 x-13$

When $y=6$,
$2 x^{2}+7 x-13=6$
$2 x^{2}+7 x-19=0$
$a=2, b=7$ and $c=-19$
$x=\frac{-7 \pm \sqrt{7^{2}-4(2)(-19)}}{2(2)}$

$$
\begin{array}{rlrl}
x & =\frac{-7-\sqrt{201}}{4} \quad \text { or } \quad x & =\frac{-7+\sqrt{201}}{4} \\
& =-5.294 & & =1.794
\end{array}
$$

$\therefore x=1.79$ or -5.29 (to 2 d.p.)
7. (a) $7 x y^{2}=7\left(3.4 \times 10^{-5}\right)\left(6.35 \times 10^{-10}\right)^{2}$

$$
=9.597 \times 10^{-23}(\text { to } 4 \text { s.f. })
$$

(b) $\frac{5 x y}{3 z^{3}}=\frac{5\left(3.4 \times 10^{-5}\right)\left(6.35 \times 10^{-10}\right)}{3\left(8.46 \times 10^{6}\right)^{3}}$

$$
=5.943 \times 10^{-35}(\text { to } 4 \text { s.f. })
$$

(c) $\frac{9 \sqrt{x} z}{\sqrt[3]{y}}=\frac{9\left(3.4 \times 10^{-5}\right)^{\frac{1}{2}}\left(8.46 \times 10^{6}\right)}{\left(6.35 \times 10^{-10}\right)^{\frac{1}{3}}}$

$$
=5.165 \times 10^{8} \text { (to } 4 \text { s.f.) }
$$

8. (i) Gradient $=\frac{3-(-11)}{-5-3}$

$$
=-\frac{7}{4}
$$

(ii) Equation of line is $y=-\frac{7}{4} x+c$

$$
\begin{aligned}
-11 & =-\frac{7}{4}(3)+\mathrm{c} \\
c & =-5 \frac{3}{4}
\end{aligned}
$$

\therefore Equation is $y=-\frac{7}{4} x-5 \frac{3}{4}$.

$$
\begin{aligned}
4 y & =-7 x-23 \\
4 y+7 x & =-23
\end{aligned}
$$

9. Let the amount of savings be $\$ P$.

For Bank $A, n=8, R=1.4$.
Interest earned from Bank $A=P\left(1+\frac{R}{100}\right)^{n}-P$

$$
\begin{aligned}
& =P\left(1+\frac{1.4}{100}\right)^{8}-P \\
& =\$ 0.1176 P
\end{aligned}
$$

Interest earned from Bank $B=\frac{P \times 2.92 \times 4}{100}$

$$
=\$ 0.1168 P
$$

Hence, it is better to deposit your savings in Bank A as the interest earned is higher $(\$ 0.1176 P>\$ 0.1169 P)$.
10. $7 x^{2}-5=8 x$
$7 x^{2}-8 x-5=0$
$a=7, b=-8, c=-5$
$x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(7)(-5)}}{2(7)}$
$x=\frac{8-\sqrt{204}}{14}$ or $x=\frac{8+\sqrt{204}}{14}$
$=0.448 \quad=1.591$
$\therefore x=0.45$ or 1.59 (to 2 d.p.)
11.

Let $x \mathrm{~m}$ be the length and $y \mathrm{~m}$ be the width such that $x>y$.
Perimeter $=500$

$$
\begin{aligned}
2 x+2 y & =500 \\
y & =250-x
\end{aligned}
$$

Area $=14400 \mathrm{~m}^{2}$

$$
x y=14400
$$

$$
x(250-x)=14400
$$

$x^{2}-250 x+14400=0$
$(x-90)(x-160)=0$
$\therefore x=90$ or $x=160$
When $x=160, y=250-160=90$
\therefore Width of rectangle $=90 \mathrm{~m}$
Length of diagonal $=\sqrt{90^{2}+160^{2}}$

$$
=184 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

12. $x+7>5$ and $2 x-7<2$
$x>-2 \quad$ and $\quad 2 x<9$

$$
x<4 \frac{1}{2}
$$

$\therefore-2<x<4 \frac{1}{2}$
Integer values of x satisfying the inequalities are $-1,0,1$, 2,3 and 4 .
13. $3 y+8 x=2$
$y=-\frac{8}{3} x-\frac{2}{3}$
Gradient of required line $=-1 \div-\frac{8}{3}$

$$
=\frac{3}{8}
$$

Equation of required line: $y=\frac{3}{8} x+c$
Since the line passes through $(-2,3)$,
$3=\frac{3}{8}(-2)+c$
$c=\frac{15}{4}$
\therefore Equation of line is $y=\frac{3}{8} x+\frac{15}{4}$
14. Least possible total height $=152.5+154.5+159.5+174.5$

$$
=641 \mathrm{~cm}
$$

15. $\mathrm{f}(x)=4 x^{2}-2 x+1$
$\mathrm{f}(3 x-1)=4(3 x-1)^{2}-2(3 x-1)+1$

$$
=4\left(9 x^{2}-6 x+1\right)-6 x+2+1
$$

$$
=36 x^{2}-24 x+4-6 x+3
$$

$$
=36 x^{2}-30 x+7
$$

Part II

Section A

1. (a)

$$
\begin{array}{r}
6 x^{2}-x=2 \\
6 x^{2}-x-2=0
\end{array}
$$

$$
(3 x-2)(2 x+1)=0
$$

$$
x=\frac{2}{3} \quad \text { or } \quad x=-\frac{1}{2}
$$

(b) $\frac{x^{2}}{2 x+3}-\frac{x}{2}=1$

$$
\begin{aligned}
2 x^{2}-x(2 x+3) & =2(2 x+3) \\
2 x^{2}-2 x^{2}-3 x & =4 x+6 \\
-3 x & =4 x+6 \\
-7 x & =6 \\
x & =-\frac{6}{7}
\end{aligned}
$$

2. (a) Greatest value of $2 x-y=2(5)-6$

$$
=4
$$

(b) Least value of $y-2 x=6-2(5)$

$$
=-4
$$

(c) Least value of $x y-x=(2)(6)-5$

$$
=7
$$

(d) Greatest value of $(x+y)(x-y)=x^{2}-y^{2}$

$$
\begin{aligned}
& =5^{2}-10^{2} \\
& =25-100 \\
& =-75
\end{aligned}
$$

(e) Least value of $\frac{x}{y-x}=\frac{2}{10-2}$

$$
=\frac{1}{4}
$$

3. Temperature $\left({ }^{\circ} \mathrm{C}\right)$

From the graph,
(a) (i) $28^{\circ} \mathrm{C}$
(ii) $47^{\circ} \mathrm{C}$
(b) (i) 28 minutes
(ii) 68 minutes
(c) When t (time) $=0$, temperature $=20^{\circ} \mathrm{C}$.
4. (i) Let the speed of the cargo train be $x \mathrm{~km} / \mathrm{h}$.
\therefore The speed of the passenger train is $(x+10) \mathrm{km} / \mathrm{h}$.
Time taken by cargo train $=\frac{250}{x} \mathrm{~h}$
Time taken by passenger train $=\frac{250}{x+10} \mathrm{~h}$

$$
\begin{aligned}
\frac{250}{x}-\frac{250}{x+10} & =\frac{75}{60} \\
250(x+10)-250 x & =\frac{5}{4}(x)(x+10) \\
2500 & =\frac{5}{4}\left(x^{2}+10 x\right) \\
x^{2}+10 x-2000 & =0 \\
(x-40)(x+50) & =0 \\
x=40 \text { or } x= & -50(\text { rejected })
\end{aligned}
$$

\therefore Speed of cargo train is $40 \mathrm{~km} / \mathrm{h}$.
(ii) Time taken by passenger train $=\frac{250}{40+10}$

$$
=5 \mathrm{~h}
$$

Section B

5. Number of times $=\frac{4230 \times 10^{12}}{0.38 \times 10^{9}}$

$$
=1.113 \times 10^{7} \text { (to } 3 \text { d.p.) }
$$

6. (a) Gradient of line $A C=\frac{4-0}{0-(-2)}$

$$
=2
$$

Gradient of line $A B=\frac{4-2}{0-4}$

$$
=-\frac{1}{2}
$$

(b) (i) Equation of line $A C$ is $y=2 x+4$.
(ii) Equation of line $A B$ is $y=-\frac{1}{2} x+c$

Since $A B$ passes through the point $(4,2)$,
$2=-\frac{1}{2}(4)+c$
$2=-2+c$
$c=4$
\therefore Equation of line $A B$ is $y=-\frac{1}{2} x+4$ (or $2 y=8-x$).
(iii) Equation of line is $y=2 x+d$.

Since the line passes through the point $(4,2)$,
$2=2(4)+d$
$d=-6$
\therefore Equation of line is $y=2 x-6$.
(c) D is the point $(-6,2)$.
(d) K is the point $(6,6)$.
7.

x	-3	-2	-1	0	1	2	3	4
y	6	0	-4	-6	-6	-4	0	6

(i)

(ii) From the graph, when $y \leqslant 0,-2 \leqslant x \leqslant 3$.
(iii) Equation of the axis of symmetry is $x=\frac{1}{2}$.
(iv) $x^{2}-2 x-6=0$
$x^{2}-2 x-6+x=x$
$x^{2}-x-6=x$
\therefore Draw the line $y=x$.
From the graph, $x=-1.6$ or $x=3.6$.
(v) Gradient $($ at $x=2)=\frac{\text { Vertical change }}{\text { Horizontal change }}$

$$
\begin{aligned}
& =\frac{1.9-(-4)}{4-2} \\
& =2.95
\end{aligned}
$$

Mid-Year Examination Specimen Paper B

Part I

1. $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{8}}}{\left(8 x^{2}\right)^{\frac{2}{3}}}=x^{\frac{1}{2}+\frac{3}{8}} \div\left(8^{\frac{2}{3}} x^{\frac{4}{3}}\right)$

$$
\begin{aligned}
& =\frac{x^{\frac{1}{2}+\frac{3}{8}-\frac{4}{3}}}{(\sqrt[3]{8})^{2}} \\
& =\frac{1}{4} x^{-\frac{11}{24}} \\
& =\frac{1}{4 x^{\frac{11}{24}}}
\end{aligned}
$$

2. (i) Interest earned $=8000\left(1+\frac{\frac{3.68}{2}}{100}\right)^{10}-8000$

$$
=\$ 1600.06
$$

(ii) Interest earned $=8000\left(1+\frac{3.68}{100}\right)^{5}-8000$

$$
=\$ 1584.40
$$

3. Sale price $=\frac{75}{100} \times \$ 459$

$$
=\$ 344.25
$$

4. $\mathrm{f}(x)=\frac{6 x-4}{x-7}$

Let $y=\frac{6 x-4}{x-7}$.
$y(x-7)=6 x-4$
$x y-7 y=6 x-4$
$x y-6 x=7 y-4$
$x(y-6)=7 y-4$

$$
x=\frac{7 y-4}{y-6}
$$

$\therefore \mathrm{f}^{-1}(x)=\frac{7 x-4}{x-6}, x \neq 6$
5. (a) $2 a^{3} b^{-5} \times\left(3 a^{-1} b^{2}\right)^{2}=2 a^{3} b^{-5} \times 9 a^{-2} b^{4}$

$$
\begin{aligned}
& =18 a^{3-2} b^{-5+4} \\
& =\frac{18 a}{b}
\end{aligned}
$$

(b) $\frac{72 x^{5} y^{2}}{z^{7}} \div\left(\frac{4 x^{4} z^{-3}}{y^{2}}\right)^{3}$

$$
=\frac{72 x^{5} y^{2}}{z^{7}} \times\left(\frac{y^{2}}{4 x^{4} z^{-3}}\right)^{3}
$$

$$
=\frac{72 x^{5} y^{2}}{z^{7}} \times \frac{y^{6}}{64 x^{12} z^{-9}}
$$

$$
=\frac{9 y^{8}}{8 x^{7} z^{-2}}
$$

$$
=\frac{9 y^{8} z^{2}}{8 x^{7}}
$$

6. (a) $2 x+y=2\left(4.8 \times 10^{-15}\right)+2.4 \times 10^{-17}$

$$
\begin{aligned}
& =9.6 \times 10^{-15}+2.4 \times 10^{-17} \\
& =10^{-17}\left(9.6 \times 10^{2}+2.4\right) \\
& =9.62 \times 10^{-15}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(b) $5 x y=5\left(4.8 \times 10^{-15}\right)\left(2.4 \times 10^{-17}\right)$

$$
\begin{aligned}
& =57.6 \times 10^{-32} \\
& =5.76 \times 10^{-31}
\end{aligned}
$$

(c) $\frac{3 x}{y}=\frac{3\left(4.8 \times 10^{-15}\right)}{2.4 \times 10^{-17}}$

$$
=6 \times 10^{-15-(-17)}
$$

$$
=6 \times 10^{2}
$$

7. Least possible value of
(a) $x-y=-5-8$

$$
=-13
$$

(b) $\frac{4 x}{y}=\frac{4(-5)}{3}$

$$
=-6 \frac{2}{3}
$$

(c) $(3 x+y)^{2}=[3(-2)+6]^{2}$

$$
=0
$$

(d) $x^{2}-y^{2}=(-2)^{2}-8^{2}$

$$
\begin{aligned}
& =4-64 \\
& =-60
\end{aligned}
$$

8. (a)

$$
\begin{aligned}
& \frac{x+1}{x+2}=\frac{2}{x+5}+\frac{x}{x+3} \\
& \frac{x+1}{x+2}=\frac{2(x+3)+x(x+5)}{(x+5)(x+3)} \\
&(x+1)(x+5)(x+3)=(x+2)\left(x^{2}+5 x+2 x+6\right) \\
&(x+1)\left(x^{2}+8 x+15\right)=(x+2)\left(x^{2}+7 x+6\right) \\
& x^{3}+8 x^{2}+15 x+x^{2}+8 x+15 \\
&=x^{3}+7 x^{2}+6 x+2 x^{2}+14 x+12 \\
& 23 x+15=20 x+12 \\
& 3 x=-3 \\
& x=-1
\end{aligned}
$$

$$
x^{3}+8 x^{2}+15 x+x^{2}+8 x+15
$$

$$
=x^{3}+7 x^{2}+6 x+2 x^{2}+14 x+12
$$

(b) $\frac{3}{x-5}-\frac{2 x}{3-x}=5$

$$
\begin{aligned}
3(3-x)-2 x(x-5) & =5(x-5)(3-x) \\
9-3 x-2 x^{2}+10 x & =5\left(3 x-x^{2}-15+5 x\right) \\
-2 x^{2}+7 x+9 & =-5 x^{2}+40 x-75 \\
3 x^{2}-33 x+84 & =0 \\
x^{2}-11 x+28 & =0 \\
(x-4)(x-7) & =0
\end{aligned}
$$

$$
\therefore x=4 \text { or } x=7
$$

(c) $(4 x-5)^{2}=17$

$$
\begin{aligned}
4 x-5 & =\sqrt{17} & \text { or } & 4 x-5 & =-\sqrt{17} \\
x & =\frac{5+\sqrt{17}}{4} & & x & =\frac{5-\sqrt{17}}{4}
\end{aligned}
$$

$$
x=2.28 \text { (to } 2 \text { d.p.) or } x=0.44 \text { (to } 2 \text { d.p.) }
$$

9. Let the numerator be x.
\therefore The denominator is $(8-x)$ and the fraction is $\frac{x}{8-x}$.

$$
\begin{aligned}
& \frac{x+1}{(8-x)+1}-\frac{x}{8-x}=\frac{1}{15} \\
& \frac{x+1}{9-x}-\frac{x}{8-x}=\frac{1}{15} \\
& \frac{(x+1)(8-x)-x(9-x)}{(9-x)(8-x)}=\frac{1}{15} \\
& 15\left(7 x-x^{2}+8-9 x+x^{2}\right)=72-17 x+x^{2} \\
& x^{2}-17 x+30 x+72-120=0 \\
& x^{2}+13 x-48=0 \\
&(x-3)(x+16)=0 \\
& x=3 \text { or } x=-16(\text { rejected })
\end{aligned}
$$

\therefore The fraction is $\frac{3}{5}$.
10. (a) $-5<3 x-7 \leqslant 15$

$$
\begin{aligned}
& -5<3 x-7 \quad \text { and } \quad 3 x-7 \leqslant 15 \\
& 2<3 x \quad 3 x \leqslant 22 \\
& x>\frac{2}{3} \\
& x \leqslant 7 \frac{1}{3} \\
& \therefore \frac{2}{3}<x \leqslant 7 \frac{1}{3}
\end{aligned}
$$

(b) (i) Greatest rational number is $7 \frac{1}{3}$.
(ii) Least prime number is 2 .
11. (i) Gradient $=\frac{2-(-9)}{-4-2}$

$$
=-\frac{11}{6}
$$

(ii) Equation of line is $y=-\frac{11}{6} x+c$.

Since the line passes through the point $(-4,2)$,
$2=-\frac{11}{6}(-4)+c$
$c=-\frac{16}{3}$
\therefore Equation of the line is $y=-\frac{11}{6} x-\frac{16}{3}$
(or $6 y+11 x+32=0)$.
(iii) Gradient of required line $=-1 \div-\frac{11}{6}$

$$
=\frac{6}{11}
$$

Equation of required line: $y=\frac{6}{11} x+c$
Since the line passes through $(2,5)$,
$5=\frac{6}{11}(2)+c$
$c=\frac{43}{11}$
\therefore Equation of line is $y=\frac{6}{11} x+\frac{43}{11}$
i.e. $11 y=6 x+43$
12. (a) $2 x+5 y=51$

Since the point $(p, 3 p)$ lies on the line,

$$
\begin{aligned}
2(p)+5(3 p) & =51 \\
17 p & =51 \\
p & =3
\end{aligned}
$$

(b) (i) $2 x+3 y=k$

Since the line passes through the point $(3,2)$,

$$
\begin{aligned}
2(3)+3(2) & =k \\
k & =12
\end{aligned}
$$

(ii) Gradient of $2 x+3 y=12$ is $-\frac{2}{3}$.

Gradient of $7 x-h y=97$ is $\frac{7}{h}$.

$$
\begin{aligned}
\therefore \frac{7}{h} & =-\frac{2}{3} \\
-2 h & =21 \\
h & =-10 \frac{1}{2}
\end{aligned}
$$

13. Interest earned from Bank $A=\frac{7500 \times 4.2 \times 10}{100}$

$$
=\$ 3150
$$

Interest earned from Bank $B=7500\left(1+\frac{\frac{4.08}{4}}{100}\right)^{40}$

$$
\begin{aligned}
& =7500\left(1+\frac{1.02}{100}\right)^{40} \\
& =\$ 3755.27
\end{aligned}
$$

\therefore Nora should invest her money in Bank B as the interest earned is higher.

Part II

Section A

1. (a) $8^{-\frac{1}{3}}+625^{\frac{1}{4}}=\frac{1}{\sqrt[3]{8}}+\sqrt[4]{625}$

$$
\begin{aligned}
& =\frac{1}{2}+5 \\
& =5 \frac{1}{2}
\end{aligned}
$$

(b) $36^{1.5}-32^{-0.2}=\left(6^{2}\right)^{1.5}-\frac{1}{\sqrt[5]{32}}$

$$
\begin{aligned}
& =6^{3}-\frac{1}{2} \\
& =216-\frac{1}{2} \\
& =215 \frac{1}{2}
\end{aligned}
$$

2. (a) $\sqrt[3]{\frac{27 p^{6} q^{9}}{8 r^{12}}} \times\left(\frac{3 r}{2 p q^{3}}\right)^{2}$

$$
\begin{aligned}
& =\frac{3 p^{2} q^{3}}{2 r^{4}} \times \frac{9 r^{2}}{4 p^{2} q^{6}} \\
& =\frac{27}{8 r^{2} q^{3}}
\end{aligned}
$$

(b) $\sqrt{2 \frac{1}{4} x^{8} y^{2}} \div \sqrt[4]{\frac{81}{16 x^{12} y^{20}}}$

$$
\begin{aligned}
& =\frac{3}{2} x^{4} y \times \frac{2 x^{3} y^{5}}{3} \\
& =x^{7} y^{6}
\end{aligned}
$$

3. (i) $h=9$ and $k=2$
(ii) $9-(x-2)^{2}=0$

$$
\begin{array}{rlrlrl}
(x-2)^{2} & =9 & & \\
x-2 & =3 & \text { or } & x-2 & =-3 \\
x & =5 & \text { or } & x & =-1
\end{array}
$$

(iii)

4. (i)

(ii) Speed, $x \mathrm{~km} / \mathrm{h}=\frac{90 \mathrm{~km}}{1.75 \mathrm{~h}}$

$$
=51.42 \mathrm{~km} / \mathrm{h}
$$

$$
\therefore x=51.4 \mathrm{~km} / \mathrm{h} \text { (to } 3 \text { s.f.) }
$$

(iv) From the graph, they met at 1148 at a point 57 km from Town A.

Section B

5. (i) $\frac{v}{x}=\frac{20}{15} \Rightarrow v=\frac{4}{3} x$
(ii) $\frac{20}{t}=\frac{4}{5} \Rightarrow t=25$
\therefore Duration for which car is travelling at constant speed $=80-15-25$

$$
=40 \mathrm{~s}
$$

(iii) Total distance moved $=\frac{1}{2}(40+80) \times 20$

$$
=1200 \mathrm{~m}
$$

\therefore Average speed $=\frac{1200}{80}$

$$
=15 \mathrm{~m} / \mathrm{s}
$$

6. (i) Time taken $=\frac{380}{v} \mathrm{~h}$
(ii) Time taken for return journey $=\frac{380}{v-15} \mathrm{~h}$
(iii) $\frac{380}{v-15}-\frac{380}{v}=\frac{40}{60}$

$$
\begin{aligned}
380 v-380(v-15) & =\frac{2}{3}(v)(v-15) \\
3(5700) & =2 v^{2}-30 v \\
v^{2}-15 v-8550 & =0(\text { shown })
\end{aligned}
$$

(iv) $v^{2}-15 v-8550=0$
$a=1, b=-15, c=-8550$
$v=\frac{-(-15) \pm \sqrt{(-15)^{2}-4(1)(-8550)}}{2(1)}$
$v=\frac{15-\sqrt{34425}}{2} \quad$ or $\quad v=\frac{15+\sqrt{34425}}{2}$
$=-85.27$ (rejected) or $\quad=100.269$ (to 3 d.p.)
$\therefore v=100.27 \mathrm{~km} / \mathrm{h}$ (to 2.d.p.)
(v) Time taken from Singapore to Selangor
$=\frac{380}{100.269} \mathrm{~h}$
$=3.789 \mathrm{~h}$
$=3 \mathrm{~h} 47 \mathrm{~min}$ (to the nearest minute)
Time taken for return journey
$=\frac{380}{100.269-15}$
$=4.456 \mathrm{~h}$
$=4 \mathrm{~h} 27 \mathrm{~min}$ (to the nearest minute)
7. (i) $h=2(3)+\frac{16}{3}-5$

$$
=6.3
$$

(ii)

(iii) From the graph, the gradient is equal to 0 at $x=2.8$.

Chapter 8 Further Trigonometry

Basic

1. (a) $\sin 140^{\circ}=\sin \left(180^{\circ}-40^{\circ}\right)$

$$
\begin{aligned}
& =\sin 40^{\circ} \\
& =0.643
\end{aligned}
$$

(b) $\cos 66^{\circ}=-\cos \left(180^{\circ}-66^{\circ}\right)$

$$
\begin{aligned}
& =-\cos 114^{\circ} \\
& =-(-0.407)
\end{aligned}
$$

$$
=0.407
$$

(c) $2 \cos 114^{\circ}+3 \sin 140^{\circ}=2(-0.407)+3(0.643)$

$$
=1.115
$$

2. (a) $3 \sin 55^{\circ}+\cos 105^{\circ}=3(0.819)+(-0.259)$

$$
=2.198
$$

(b) $5 \cos 105^{\circ}-2 \sin 55^{\circ}=5(-0.259)-2(0.819)$

$$
=-2.933
$$

(c) $5 \sin 125^{\circ}-4 \sin 55^{\circ}=5(0.819)-4(0.819)$

$$
=0.819
$$

(d) $7 \cos 75^{\circ}-3 \cos 105^{\circ}=7(0.259)-3(-0.259)$

$$
=2.59
$$

3. (a) $\sin x=0.453$

$$
\begin{array}{rlrl}
x & =26.93^{\circ} \text { (to } 2 \text { d.p.) } \quad \text { or } \quad x & =180^{\circ}-26.93^{\circ} \\
& =26.9^{\circ} \text { (to } 1 \text { d.p.) } & & =153.1^{\circ} \text { (to } 1 \text { d.p.) }
\end{array}
$$

(b) $\sin x=0.729$

$$
\begin{aligned}
x & \left.=46.80^{\circ} \text { (to } 2 \text { d.p. }\right) & \text { or } \quad x & =180^{\circ}-46.80^{\circ} \\
& =46.8^{\circ}(\text { to } 1 \text { d.p. }) & & \left.=133.2^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

(c) $\tan x=0.568$

$$
\left.x=29.6^{\circ} \text { (to } 1 \mathrm{~d} . \mathrm{p} .\right)
$$

(d) $\tan x=1.387$

$$
x=54.2^{\circ} \text { (to } 1 \text { d.p.) }
$$

(e) $\cos x=-0.763$

$$
x=139.7^{\circ} \text { (to } 1 \text { d.p.) }
$$

(f) $\cos x=-0.624$

$$
\left.x=128.6^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

4. Using Pythagoras' Theorem,

$$
A B^{2}+B C^{2}=A C^{2}
$$

$A B^{2}+5^{2}=13^{2}$
$A B^{2}=144$
$A B=12$ units
(a) $3 \sin \angle P A C+2 \cos \angle P A C=3\left(\frac{5}{13}\right)+2\left(-\frac{12}{13}\right)$

$$
=-\frac{9}{13}
$$

(b) $3 \tan \angle B A C+\cos \angle A C B=3\left(\frac{5}{12}\right)+\frac{5}{13}$

$$
=1 \frac{33}{52}
$$

(c) $\cos \angle P A C-\tan \angle A C B=-\frac{12}{13}-\frac{12}{5}$

$$
=-3 \frac{21}{65}
$$

5. Let H be the point $(12,-2)$,
i.e. $Q H=8$ units and $R H=6$ units.

Using Pythagoras' Theorem,

$$
\begin{aligned}
Q R^{2} & =Q H^{2}+R H^{2} \\
& =8^{2}+6^{2} \\
& =100 \\
Q R & =10 \text { units }
\end{aligned}
$$

(a) $\sin \angle P Q R=\sin \angle R Q H$

$$
\begin{aligned}
& =\frac{6}{10} \\
& =\frac{3}{5}
\end{aligned}
$$

(b) $\cos \angle P Q R=-\cos \angle R Q H$

$$
\begin{aligned}
& =-\frac{8}{10} \\
& =-\frac{4}{5}
\end{aligned}
$$

(c) $\tan \angle Q P R=\frac{6}{18}$

$$
=\frac{1}{3}
$$

6. (a) Using Pythagoras' Theorem,

$$
\begin{aligned}
P Q^{2} & =3^{2}+4^{2} \\
& =25
\end{aligned}
$$

$$
P Q=5 \text { units }
$$

(b) Let H be the point $(-3,4)$.
$\sin \angle P Q R=\sin \angle P Q H$

$$
=\frac{4}{5}
$$

$\cos \angle P Q R=-\cos \angle P Q H$

$$
=-\frac{3}{5}
$$

(c) (i) Area of $\triangle P Q R=\frac{1}{2} \times P Q \times Q R \times \sin \angle P Q R$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 6 \times \frac{4}{5} \\
& =12 \text { units }^{2}
\end{aligned}
$$

(ii) Using Cosine Rule,

$$
\begin{aligned}
P R^{2} & =P Q^{2}+Q R^{2}-2(P Q)(Q R) \cos \angle P Q R \\
& =5^{2}+6^{2}-2(5)(6)\left(-\frac{3}{5}\right) \\
& =97 \\
P R & =9.85 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

7. Using Pythagoras' Theorem,

$$
\begin{aligned}
A B^{2} & =A K^{2}+B K^{2} \\
& =8^{2}+15^{2} \\
& =289 \\
A B & =17 \text { units }
\end{aligned}
$$

(a) $\sin \angle A B C=\sin \angle A B K$

$$
=\frac{8}{17}
$$

(b) $\cos \angle A B C=-\cos \angle A B K$

$$
=-\frac{15}{17}
$$

(c) $\sin \angle A B K+\tan \angle A C B=\frac{8}{17}+\frac{8}{32}$

$$
=\frac{49}{68}
$$

8. (a) Area of $\triangle A B C=\frac{1}{2} \times 9.2 \times 7.6 \times \sin 56^{\circ}$

$$
=29.0 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(b) Area of $\triangle P Q R=\frac{1}{2} \times 13 \times 12 \times \sin 108^{\circ}$

$$
=74.2 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(c) $\angle L M N=180^{\circ}-76^{\circ}-41^{\circ}(\angle$ sum of a $\triangle)$

$$
=63^{\circ}
$$

Area of $\triangle L M N=\frac{1}{2} \times 6.8 \times 11.3 \times \sin 63^{\circ}$

$$
=34.2 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(d) $\angle X Y Z=180^{\circ}-38^{\circ}-29^{\circ}(\angle$ sum of a $\triangle)$

$$
=113^{\circ}
$$

Area of $\triangle X Y Z=\frac{1}{2} \times 14 \times 19 \times \sin 113^{\circ}$

$$
=122 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(e) Area of $A B C D=2 \times \frac{1}{2} \times 23 \times 15 \times \sin 114^{\circ}$

$$
=315 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(f) Area of $P Q R S=2 \times \frac{1}{2} \times 9.8 \times 16.8 \times \sin 94^{\circ}$

$$
=164 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

9. (a) Using Sine Rule,
$\frac{\sin \angle B}{11}=\frac{\sin 59^{\circ}}{13}$
$\sin \angle B=\frac{11 \sin 59^{\circ}}{13}$

$$
\angle B=46.5^{\circ} \text { (to } 1 \text { d.p.) }
$$

$\angle C=180^{\circ}-59^{\circ}-46.49^{\circ}(\angle$ sum of a $\triangle)$

$$
\left.=74.5^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

Using Cosine Rule,
$A B^{2}=11^{2}+13^{2}-2(11)(13) \cos 74.50^{\circ}$
$A B=14.6 \mathrm{~cm}$ (to 3 s.f.)
(b) Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle P}{9.5}=\frac{\sin 84^{\circ}}{15} \\
& \sin \angle P=\frac{9.5 \sin 84^{\circ}}{15} \\
& \angle P=39.0^{\circ} \text { (to } 1 \text { d.p.) } \\
& \angle R=180^{\circ}-84^{\circ}-39.04^{\circ}(\angle \text { sum of a } \triangle) \\
& =57.0^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

Using Cosine Rule,

$$
P Q^{2}=9.5^{2}+15^{2}-2(9.5)(15) \cos 56.95^{\circ}
$$

$$
P Q=12.6 \mathrm{~cm}(\text { to } 3 \text { s.f.) }
$$

(c) $\angle N=180^{\circ}-46^{\circ}-73^{\circ}(\angle$ sum of a $\triangle)$

$$
=61^{\circ}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{M N}{\sin 46^{\circ}} & =\frac{17.6}{\sin 61^{\circ}} \\
M N & =\frac{17.6 \sin 46^{\circ}}{\sin 61^{\circ}} \\
& =14.5 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{L N}{\sin 73^{\circ}} & =\frac{17.6}{\sin 61^{\circ}} \\
L N & =\frac{17.6 \sin 73^{\circ}}{\sin 61^{\circ}} \\
& =19.2 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(d) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin \angle X}{14} & =\frac{\sin 128^{\circ}}{26} \\
\sin \angle X & =\frac{14 \sin 128^{\circ}}{26} \\
\angle X & \left.=25.1^{\circ} \text { (to } 1 \text { d.p. }\right) \\
\angle Z & =180^{\circ}-128^{\circ}-25.10^{\circ}(\angle \text { sum of a } \triangle) \\
& =26.9^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

Using Cosine Rule,

$$
X Y^{2}=26^{2}+14^{2}-2(26)(14) \cos 26.89^{\circ}
$$

$$
X Y=14.9 \mathrm{~cm}(\text { to } 3 \text { s.f. })
$$

10. (a) Using Cosine Rule,
$B C^{2}=8.9^{2}+7.7^{2}-2(8.9)(7.7) \cos 68^{\circ}$
$B C=9.34 \mathrm{~cm}$ (to 3 s.f.)
Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle B}{8.9}=\frac{\sin 68^{\circ}}{9.335} \\
& \quad \angle B=62.1^{\circ} \text { (to } 1 \text { d.p.) } \\
& \begin{aligned}
\angle C & =180^{\circ}-68^{\circ}-62.11^{\circ}(\angle \text { sum of a } \triangle) \\
& \left.=49.9^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
\end{aligned}
$$

(b) Using Cosine Rule,
$P R^{2}=12^{2}+19^{2}-2(12)(19) \cos 132^{\circ}$

$$
P R=28.5 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{\sin \angle P}{19} & =\frac{\sin 132^{\circ}}{28.46} \\
\angle P & \left.=29.7^{\circ} \text { (to } 1 \mathrm{~d} . \mathrm{p} .\right) \\
\angle R & =180^{\circ}-132^{\circ}-29.74^{\circ}(\angle \text { sum of a } \triangle) \\
& \left.=18.3^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

(c) Using Cosine Rule,

$$
\begin{aligned}
L N^{2} & =16^{2}+13.5^{2}-2(16)(13.5) \cos 106^{\circ} \\
L N & =23.6 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle L}{13.5}=\frac{\sin 106^{\circ}}{23.60} \\
& \quad \angle L=33.3^{\circ} \text { (to } 1 \text { d.p.) } \\
& \angle N=180^{\circ}-106^{\circ}-33.34^{\circ}(\angle \text { sum of a } \triangle) \\
& \quad=40.7^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(d) Using Cosine Rule,
$Y Z^{2}=16.8^{2}+24.7^{2}-2(16.8)(24.7) \cos 23^{\circ}$
$Y Z=11.3 \mathrm{~cm}$ (to 3 s.f.)
Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle Z}{16.8}=\frac{\sin 23^{\circ}}{11.33} \\
& \quad \angle Z=35.4^{\circ} \text { (to } 1 \text { d.p.) } \\
& \begin{aligned}
\angle Y & =180^{\circ}-23^{\circ}-35.40^{\circ}(\angle \text { sum of a } \triangle) \\
& \left.=121.6^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
\end{aligned}
$$

Intermediate

11. $\sin x=-\cos 108^{\circ}$

$$
\begin{aligned}
& =\cos 72^{\circ} \\
& =\sin 18^{\circ} \text { or } \sin 162^{\circ}
\end{aligned}
$$

$\therefore x=18^{\circ}$ or $x=162^{\circ}$
12. (a) Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2}+6^{2} & =10^{2} \\
x^{2} & =10^{2}-6^{2} \\
& =64 \\
x & =8
\end{aligned}
$$

(b) $2 \sin \angle A B D+\cos \angle B D C=2\left(\frac{6}{10}\right)+\frac{6}{10}$

$$
=1 \frac{4}{5}
$$

(c) $3 \cos \angle A B D+5 \cos \angle C B D=3\left(-\frac{8}{10}\right)+5\left(\frac{8}{10}\right)$

$$
=1 \frac{3}{5}
$$

13. (a) $\cos x=-\cos 40^{\circ}$

$$
\begin{aligned}
& =\cos 140^{\circ} \\
x & =140^{\circ}
\end{aligned}
$$

(b) $\sin x=\sin 72^{\circ}$

$$
\begin{aligned}
x=72^{\circ} \quad \text { or } \quad x & =180^{\circ}-72^{\circ} \\
& =108^{\circ}
\end{aligned}
$$

(c) $\cos x=-\cos 107^{\circ}$

$$
\begin{aligned}
& =\cos 73^{\circ} \\
x & =73^{\circ}
\end{aligned}
$$

(d) $\cos x=\cos 126^{\circ}$

$$
x=126^{\circ}
$$

(e) $\sin x=\sin 134^{\circ}$

$$
\begin{aligned}
& =\sin 46^{\circ} \\
x & =46^{\circ} \text { or } x=134^{\circ}
\end{aligned}
$$

(f) $\sin \left(180^{\circ}-x\right)=\sin 20^{\circ}$

$$
\begin{aligned}
\sin x & =\sin 20^{\circ} \\
x & =20^{\circ} \text { or } x=160^{\circ}
\end{aligned}
$$

14. Using Pythagoras' Theorem,
$P R^{2}=24^{2}+7^{2}$

$$
=625
$$

$P R=25$ units
(a) $\sin P \hat{R} Q=\frac{24}{25}$
(b) $\cos S \hat{P} R=-\frac{24}{25}$
(c) $\sin S \hat{P} R+\tan P \hat{R} Q=\frac{7}{25}+\frac{24}{7}$

$$
=3 \frac{124}{175}
$$

(d) $4 \cos Q \hat{P} R+3 \cos S \hat{P} R=4\left(\frac{24}{25}\right)+3\left(-\frac{24}{25}\right)$

$$
=\frac{24}{25}
$$

15.

(a) $\cos A=-\frac{21}{29}$
(b) $2 \cos A+\tan \left(180^{\circ}-A\right)=2\left(-\frac{21}{29}\right)+\frac{20}{21}$

$$
=-\frac{302}{609}
$$

(c) $5 \cos A+4 \cos \left(180^{\circ}-A\right)=5\left(-\frac{21}{29}\right)+4\left(\frac{21}{29}\right)$

$$
=-\frac{21}{29}
$$

(d) $7 \sin A-6 \sin \left(180^{\circ}-A\right)=7\left(\frac{20}{29}\right)-6\left(\frac{20}{29}\right)$

$$
=\frac{20}{29}
$$

16.

(i) Using Cosine Rule,

$$
\begin{aligned}
Q R^{2} & =24^{2}+16^{2}-2(24)(16) \cos 38^{\circ} \\
Q R & =15.1 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin P Q R}{16} & =\frac{\sin 38^{\circ}}{15.06} \\
\sin \angle P Q R & =\frac{16 \sin 38^{\circ}}{15.06} \\
\angle P Q R & =40.9^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

17. Using Cosine Rule,

$$
\begin{aligned}
Q R^{2} & =P Q^{2}+P R^{2}-2(P Q)(P R) \cos Q \hat{P} R \\
12^{2} & =11.8^{2}+9.8^{2}-2(11.8)(9.8) \cos Q \hat{P} S
\end{aligned}
$$

$\cos \angle Q P R=\frac{11.8^{2}+9.8^{2}-12^{2}}{2(11.8)(9.8)}$

$$
\angle Q P R=66.8^{\circ} \text { (to } 1 \text { d.p.) }
$$

18.

(i) Using Cosine Rule,

$$
\begin{aligned}
B C^{2} & =5^{2}+8^{2}-2(5)(8) \cos 72^{\circ} \\
B C & =8.02 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin A B C}{8} & =\frac{\sin 72^{\circ}}{8.017} \\
\sin \angle A B C & =\frac{8 \sin 72^{\circ}}{8.017} \\
\angle A B C & =71.6^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

19. Using Cosine Rule,

$$
\begin{aligned}
y^{2} & =x^{2}+z^{2}-2 x z \cos Y \\
6.9^{2} & =7.8^{2}+11.2^{2}-2(7.8)(11.2) \cos Y \\
\cos Y & =\frac{7.2^{2}+11.2^{2}-6.9^{2}}{2(7.8)(11.2)} \\
Y & \left.=37.5^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

Area of $\triangle X Y Z=\frac{1}{2}(7.8)(11.2) \sin 37.47^{\circ}$

$$
=26.6 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

20. (i) Using Cosine Rule,

$$
\begin{aligned}
21^{2} & =14^{2}+15^{2}-2(14)(15) \cos \angle B A C \\
\cos B \hat{A} C & =\frac{14^{2}+15^{2}-21^{2}}{2(14)(15)} \\
& =-\frac{1}{21}
\end{aligned}
$$

(ii) Since $\cos B \hat{A} C=-\frac{1}{21}$,

$$
\begin{aligned}
B \hat{A C} & \left.=92.72^{\circ} \text { (to } 2 \text { d.p. }\right) \\
\text { Area of } \triangle A B C & =\frac{1}{2}(14)(15) \sin 92.72^{\circ} \\
& =105 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

21. (i) Using Cosine Rule,
$A D^{2}=9^{2}+20^{2}-2(9)(20) \cos 128^{\circ}$
$A D=26.5 \mathrm{~cm}$ (to 3 s.f.)
(ii) $\angle D B C=180^{\circ}-128^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line $)$ $=52^{\circ}$
Using Sine Rule,

$$
\begin{array}{rlrl}
\frac{\sin \angle B C D}{20} & =\frac{\sin 52^{\circ}}{17.5} \\
\sin \angle B C D & =\frac{20 \sin 52^{\circ}}{17.5} \\
\angle B C D & =64.23^{\circ} \text { or } & B \hat{C} D & =180^{\circ}-64.23^{\circ} \\
& \text { (to } 2 \text { d.p.) } & & =115.76^{\circ} \text { (to } 2 \text { d.p.) }
\end{array}
$$

$$
\angle B D C=180^{\circ}-52^{\circ}-115.76^{\circ}
$$

$$
\left.=12.2^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

(iii) Using Cosine Rule,

$$
\begin{aligned}
B C^{2} & =20^{2}+17.5^{2}-2(20)(17.5) \cos 12.23^{\circ} \\
B C & =4.71 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iv) $\frac{\text { Area of } \triangle A B D}{\text { Area of } \triangle B C D}=\frac{A B}{B C}$

$$
=\frac{9}{4.71}
$$

$$
=1.91 \text { (to 3s.f.) }
$$

22. (i) $\angle A D B=180^{\circ}-27^{\circ}-136^{\circ}(\angle$ sum of a $\triangle)$

$$
=17^{\circ}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{A B}{\sin 17^{\circ}} & =\frac{9}{\sin 27^{\circ}} \\
A B & =\frac{9 \sin 17^{\circ}}{\sin 27^{\circ}} \\
& =5.80 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Sine Rule,

$$
\begin{aligned}
\frac{A D}{\sin 136^{\circ}} & =\frac{9}{\sin 27^{\circ}} \\
A D & =\frac{9 \sin 136^{\circ}}{\sin 27^{\circ}} \\
& =13.8 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) $\angle D B C=180^{\circ}-136^{\circ}$ (adj. $\angle \mathrm{s}$ on a str. line)

$$
=44^{\circ}
$$

Using Cosine Rule,
$C D^{2}=9^{2}+5^{2}-2(9)(5) \cos 44^{\circ}$
$C D=6.42 \mathrm{~cm}$ (to 3 s.f.)
(iv) Area of $\triangle A C D=\frac{1}{2}(5.796)(9) \sin 136^{\circ}$

$$
+\frac{1}{2}(9)(5) \sin 44^{\circ}
$$

$$
=33.7 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

23. Let the perpendicular distance from A to $B D$ be $h \mathrm{~cm}$.

Area of $\triangle A C D=\frac{1}{2}(24) h$

$$
178=12 h
$$

$$
h=14 \frac{5}{6} \mathrm{~cm}
$$

Area of $\triangle A B C=\frac{1}{2}(36)\left(14 \frac{5}{6}\right)$

$$
=267 \mathrm{~cm}^{2}
$$

24. Area of $P Q B C=\frac{1}{2}(21.7)(15.9) \sin 74^{\circ}$

$$
\begin{aligned}
& -\frac{1}{2}(15)(5.5) \sin 74^{\circ} \\
= & 126 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Using Cosine Rule,
$B C^{2}=21.7^{2}+15.9^{2}-2(21.7)(15.9) \cos 74^{\circ}$
$B C=23.1 \mathrm{~cm}$ (to 3 s.f.)
25. (i)

Let the distance between $P Q$ and $S R$ be $h \mathrm{~cm}$.

$$
\begin{aligned}
\angle Q R S & \left.=180^{\circ}-120^{\circ} \text { (int. } \angle \mathrm{s}, P Q / / S R\right) \\
& =60^{\circ} \\
\sin 60^{\circ} & =\frac{h}{12} \\
h & =12 \sin 60^{\circ} \\
& =10.4 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Cosine Rule,
$S Q^{2}=23^{2}+12^{2}-2(23)(12) \cos 60^{\circ}$

$$
S Q=19.9 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(iii) $\cos 60^{\circ}=\frac{y}{12}$

$$
\begin{aligned}
y & =12 \cos 60^{\circ} \\
& =6 \\
x & =23-7-6 \\
& =10
\end{aligned}
$$

$$
\begin{aligned}
\tan \angle P S R & =\frac{10.39}{10} \\
\angle P S R & \left.=46.1^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

(iv) Using Pythagoras' Theorem,

$$
\begin{aligned}
P S^{2} & =10.49^{2}+10^{2} \\
P S & =14.4 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

26. Using Cosine Rule,
$B C^{2}=8^{2}+7^{2}-2(8)(7)\left(\frac{11}{16}\right)$
$B C=6 \mathrm{~cm}$
27. (i) $\angle A C B=180^{\circ}-31^{\circ}-36^{\circ}-44^{\circ}(\angle$ sum of a $\triangle)$ $=69^{\circ}$
Using Sine Rule,

$$
\begin{aligned}
\frac{B C}{\sin 31^{\circ}} & =\frac{80}{\sin 69^{\circ}} \\
B C & =\frac{80 \sin 31^{\circ}}{\sin 69^{\circ}} \\
& =44.1 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\angle A D B=180^{\circ}-44^{\circ}-31^{\circ}-37^{\circ}(\angle$ sum of a $\triangle)$ $=68^{\circ}$
Since $\triangle A B D$ is an isosceles triangle, $B D=80 \mathrm{~cm}$.
(iii) Using Cosine Rule,
$C D^{2}=44.13^{2}+80^{2}-2(44.13)(80) \cos 36^{\circ}$
$C D=51.3 \mathrm{~cm}$ (to 3 s.f.)
28. (i) $\sin \angle P S R=\frac{5}{8}$

$$
\angle P S R=38.7^{\circ} \text { (to } 1 \text { d.p.) }
$$

(ii) Area of $\triangle P Q R=\frac{1}{2}(3)(5) \sin 55^{\circ}$

$$
=6.1 \mathrm{~cm}^{2} \text { (to } 1 \text { d.p.) }
$$

29. (i) Using Cosine Rule,

$$
\begin{aligned}
A C^{2} & =58^{2}+35^{2}-2(58)(35) \cos 82^{\circ} \\
A C & =63.4 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin A D C}{63.43} & =\frac{\sin 48^{\circ}}{60} \\
\sin \angle A D C & =\frac{63.43 \sin 48^{\circ}}{60} \\
\angle A D C & =51.78^{\circ} \text { (to } 2 \text { d.p.) } \\
\angle D A C & =180^{\circ}-48^{\circ}-51.78^{\circ} \\
& =80.2^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(iii) Area of $\triangle A C D=\frac{1}{2}(60)(63.43) \sin 80.21^{\circ}$

$$
=1880 \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
$$

30. $\angle R Q P=180^{\circ}-50^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line $)$

$$
=130^{\circ}
$$

Using Cosine Rule,
$P R^{2}=4^{2}+6^{2}-2(4)(6) \cos 130^{\circ}$
$P R=9.10 \mathrm{~cm}$ (to 3 s.f.)
Using Sine Rule,

$$
\begin{aligned}
\frac{\sin P R Q}{4} & =\frac{\sin 130^{\circ}}{9.102} \\
\sin \angle P R Q & =\frac{4 \sin 130^{\circ}}{9.102} \\
\angle P R Q & =19.67^{\circ} \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{\sin Q S R}{6} & =\frac{\sin 50^{\circ}}{8} \\
\sin \angle Q S R & =\frac{6 \sin 50^{\circ}}{8} \\
\angle Q S R & \left.=35.06^{\circ} \text { (to } 2 \text { d.p. }\right) \\
\angle Q R S & =180^{\circ}-50^{\circ}-35.06^{\circ}(\angle \operatorname{sum} \text { of a } \triangle) \\
& \left.=94.39^{\circ} \text { (to } 2 \text { d.p. }\right) \\
\angle P R S & =19.67^{\circ}+94.93^{\circ} \\
& \left.=114.6^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

31. Let the radius of the circle be $r \mathrm{~cm}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
(r-8)^{2}+12^{2} & =r^{2} \\
r^{2}-16 r+64+144 & =r^{2} \\
16 r & =208 \\
r & =13
\end{aligned}
$$

\therefore Radius of circle $=13 \mathrm{~cm}$
$\sin \angle A O B=\frac{12}{13}$

$$
\angle A O B=67.38^{\circ} \text { (to } 2 \text { d.p.) }
$$

Area of $\triangle A O B=\frac{1}{2}(13)(13) \sin 67.38^{\circ}$

$$
=78 \mathrm{~cm}^{2}
$$

32. (i) $\tan \angle P A B=\frac{7.2}{22.4}$

$$
\begin{aligned}
\angle P A B & =17.81^{\circ} \text { (to } 2 \text { d.p.) } \\
\angle C A B & =2\left(17.81^{\circ}\right) \\
& =35.63^{\circ} \text { (to } 2 \text { d.p.) } \\
\tan 35.63^{\circ} & =\frac{C P+7.2}{22.4} \\
C P & =22.4 \tan 35.63^{\circ}-7.2 \\
& =8.86 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) $\angle A C B=180^{\circ}-90^{\circ}-35.63^{\circ}(\angle$ sum of a $\triangle)$

$$
\left.=54.36^{\circ} \text { (to } 2 \text { d.p. }\right)
$$

Using Cosine Rule,
$P Q^{2}=6.8^{2}+8.859^{2}-2(6.8)(8.859) \cos 54.36^{\circ}$

$$
P Q=7.38 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(iii) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin C Q P}{8.859} & =\frac{\sin 54.36^{\circ}}{7.383} \\
\sin \angle C Q P & =\frac{8.859 \sin 54.36^{\circ}}{7.383} \\
\angle C Q P & =77.18^{\circ} \text { (to } 2 \text { d.p.) } \\
\angle A Q P & =180^{\circ}-77.18^{\circ} \text { (adj. } \angle \text { s on a str. line) } \\
& =102.8^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(iv) Using Pythagoras' Theorem,

$$
\begin{aligned}
A C^{2} & =22.4^{2}+(7.2+8.859)^{2} \\
A C & =27.56 \mathrm{~cm} \text { (to } 4 \text { s.f.) } \\
A Q & =27.56-6.8 \\
& =20.76 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

Area of $\triangle A P Q=\frac{1}{2}(20.76)(7.383) \sin 102.81^{\circ}$

$$
=74.7 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

Advanced

33. (i) Using Cosine Rule,

$$
\begin{aligned}
(\sqrt{127})^{2}= & (2 x-1)^{2}+(x+2)^{2} \\
& -2(2 x-1)(x+2) \cos 120^{\circ} \\
127= & 4 x^{2}-4 x+1+x^{2}+4 x+4+2 x^{2} \\
& +4 x-x-2 \\
7 x^{2}+3 x- & 124=0 \text { (shown) }
\end{aligned}
$$

(ii) $7 x^{2}+3 x-124=0$
$(7 x+31)(x-4)=0$
$x=-4 \frac{3}{7}$ or $x=4$
$x=-4 \frac{3}{7}$ is rejected since length cannot take a negative value.
(iii) $A B=7 \mathrm{~cm}$
$B C=6 \mathrm{~cm}$

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2}(7)(6) \sin 120^{\circ} \\
& =18.2 \mathrm{~cm}^{2}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

New Trend

34. Let the angle be x.

$$
\begin{aligned}
\sin x & =0.672 \\
x & =42.2^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

Obtuse $\angle x=180^{\circ}-42.2^{\circ}$

$$
=137.8^{\circ}
$$

\therefore Two possible angles are 42.2° and 137.8°.
35. (i) Using Cosine Rule,
$A C^{2}=70^{2}+80^{2}-2(70)(80) \cos 120^{\circ}$

$$
A C=130 \mathrm{~m}
$$

(ii) Area of $\triangle A B C=\frac{1}{2}(70)(80) \sin 120^{\circ}$

$$
\left.=2420 \mathrm{~m}^{2} \text { (to } 3 \text { s.f. }\right)
$$

(iii) Using Cosine Rule,

$$
\begin{aligned}
142^{2} & =130^{2}+130^{2}-2(130)(130) \cos A \hat{C} D \\
\cos \angle A C D & =\frac{130^{2}+130^{2}-142^{2}}{2(130)(130)} \\
\angle A C D & =66.2^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

36. (a) (i) $\angle A D B=180^{\circ}-103^{\circ}-42^{\circ}$ (alt. $\angle \mathrm{s}, A B / / D C$,

$$
\left.=35^{\circ} \quad \angle \operatorname{sum} \text { of a } \triangle\right)
$$

(ii) Using Sine Rule,

$$
\begin{aligned}
\frac{B D}{\sin 103^{\circ}} & =\frac{14}{\sin 35^{\circ}} \\
B D & =\frac{14 \sin 103^{\circ}}{\sin 35^{\circ}} \\
& =23.8 \mathrm{~mm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) Area of $A B C D$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 14 \times 23.783 \times \sin 42^{\circ}\right)+\left(\frac{1}{2} \times 19 \times 23.783 \times \sin 42^{\circ}\right) \\
& =262.579898 \\
& =263 \mathrm{~mm}^{2} \text { (to } 3 \text { s.f.) } \\
& =2.63 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Let $A_{2} \mathrm{~cm}^{2}$ be the area of the enlarged school badge.
$19 \mathrm{~mm}=1.9 \mathrm{~cm}$
$0.95 \mathrm{~m}=95 \mathrm{~cm}$

$$
\begin{aligned}
\left(\frac{1.9}{95}\right)^{2} & =\frac{2.6258}{A_{2}} \\
\frac{2.6258}{A_{2}} & =\frac{1}{2500} \\
A_{2} & =6560 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The area of the enlarged school badge is $6560 \mathrm{~cm}^{2}$.
37.

(i) $\tan 54^{\circ}=\frac{X C}{8}$

$$
\begin{aligned}
X C & =8 \tan 54^{\circ} \\
& =11.0 \mathrm{~cm} \text { (to } 3 \text { s.f.) } \\
\cos 54^{\circ} & =\frac{8}{B C} \\
B C & =\frac{8}{\cos 54^{\circ}} \\
& =13.6 \mathrm{~cm}(\text { to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\tan \angle B A X=\frac{8}{10}$

$$
\angle B A X=38.7^{\circ} \text { (to } 1 \text { d.p.) }
$$

(iii) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin B D C}{13.61} & =\frac{\sin 54^{\circ}}{18} \\
\sin \angle B D C & =\frac{13.61 \sin 54^{\circ}}{18} \\
\angle B D C & \left.=37.7^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

Chapter 9 Applications of Trigonometry

Basic

1.

$\tan 39^{\circ}=\frac{B C}{35}$

$$
\begin{aligned}
B C & =35 \tan 39^{\circ} \\
& =28.34 \mathrm{~m} \text { (to } 4 \text { s.f. })
\end{aligned}
$$

\therefore Height of the tree $=28.34+1.6$

$$
=29.9 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

2. $\tan 18^{\circ}=\frac{72}{x}$

$$
\begin{aligned}
x & =\frac{72}{\tan 18^{\circ}} \\
& =222 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

3. (a) (i) $101^{\circ}+49^{\circ}=150^{\circ}$ (ext. $\angle=$ sum of int. opp. \angle s)

Bearing of Q from $R=150^{\circ}$
(ii) $180^{\circ}+49^{\circ}+101^{\circ}=330^{\circ}$

Bearing of R from $Q=330^{\circ}$
(b) Using Sine Rule,

$$
\begin{aligned}
\frac{P R}{\sin 101^{\circ}} & =\frac{1.45}{\sin \left(180^{\circ}-49^{\circ}-101^{\circ}\right)} \\
P R & =\frac{1.45 \sin 101^{\circ}}{\sin 30^{\circ}} \\
& =2.85 \mathrm{~km} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

4. (i) $42^{\circ}+60^{\circ}=102^{\circ}$

Bearing of C from A is 102°
(ii)

$\theta_{1}=42^{\circ}($ alt. $\angle \mathrm{s}$)
$\theta_{2}=60^{\circ}-42^{\circ}$

$$
=18^{\circ}
$$

$180^{\circ}-18^{\circ}=162^{\circ}(\angle \mathrm{s}$ on a str. line $)$
Bearing of C from B is 162°.
5.

(a) $\angle C A B=180^{\circ}-92^{\circ}-54^{\circ}(\angle$ sum of a $\triangle)$

$$
=34^{\circ}
$$

$50^{\circ}+34^{\circ}=84^{\circ}$
Bearing of B from A is 084°.
(b) Bearing of C from A is 050°.
(c) $\theta_{1}=84^{\circ}$
$180^{\circ}+84^{\circ}=264^{\circ}$
Bearing of A from B is 264°.
(d) $264^{\circ}+54^{\circ}=318^{\circ}$

Bearing of C from B is 318°.
(e) $180^{\circ}+50^{\circ}=230^{\circ}$

Bearing of A from C is 230°.
(f) $\theta_{2}=180^{\circ}-50^{\circ}$ (int. $\angle \mathrm{s}$)

$$
=130^{\circ}
$$

$360^{\circ}-130^{\circ}-92^{\circ}=138^{\circ}(\angle \mathrm{s}$ at a pt. $)$
Bearing of B from C is 138°.
6.

(a) Bearing of B from A is 120°.
(b) $\angle C A B=180^{\circ}-55^{\circ}-32^{\circ}(\angle$ sum of a $\triangle)$

$$
=93^{\circ}
$$

$120^{\circ}+93^{\circ}=213^{\circ}$
Bearing of C from A is 213°.
(c) $\theta_{1}=180^{\circ}-120^{\circ}($ int. $\angle \mathrm{s})$

$$
=60^{\circ}
$$

$360^{\circ}-60^{\circ}=300^{\circ}$ ($\angle \mathrm{s}$ at a pt. $)$
Bearing of A from B is 300°.
(d) $360^{\circ}-55^{\circ}-60^{\circ}=245^{\circ}(\angle \mathrm{s}$ at a pt. $)$

Bearing of C from B is 245°.
(e) $\theta_{2}=360^{\circ}-120^{\circ}-93^{\circ}(\angle \mathrm{s}$ at a pt. $)$

$$
\begin{aligned}
& =147^{\circ} \\
\theta_{3} & =180^{\circ}-147^{\circ}(\text { int. } \angle \mathrm{s}) \\
& =33^{\circ}
\end{aligned}
$$

Bearing of A from C is 033°.
(f) $33^{\circ}+32^{\circ}=65^{\circ}$

Bearing of B from C is 065°.

Using Cosine Rule,
$P R^{2}=3^{2}+5^{2}-2(3)(5) \cos 144^{\circ}$
$P R=7.63 \mathrm{~km}$ (to 3 s.f.)
Using Sine Rule,

$$
\begin{aligned}
\frac{\sin \angle R P Q}{5} & =\frac{\sin 144^{\circ}}{7.633} \\
\sin \angle R P Q & =\frac{5 \sin 144^{\circ}}{7.633} \\
\angle R P Q & =22.64^{\circ} \text { (to } 2 \text { d.p.) } \\
90^{\circ}-22.64^{\circ} & =67.4^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

Bearing of R from P is 067.4°.
8.

Using Cosine Rule,
$x^{2}=18^{2}+21^{2}-2(18)(21) \cos 76^{\circ}$
$x=24.1$ (to 3 s.f.)
They will be 24.1 km apart.

Intermediate

9. $\tan 24^{\circ}=\frac{65}{x}$

$$
\begin{aligned}
x & =\frac{65}{\tan 24^{\circ}} \\
& =146 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Let the height of the lighthouse be $h \mathrm{~m}$.
$\tan 32^{\circ}=\frac{h+65}{145.9}$

$$
\begin{aligned}
h & =145.9 \tan 32^{\circ}-65 \\
& =26.2 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Height of lighthouse is 26.2 m .
10. Let $P H=x \mathrm{~m}$ and $T H=h \mathrm{~m}$.

$$
\begin{aligned}
\tan 31^{\circ} & =\frac{h}{x} \\
x & =\frac{h}{\tan 31^{\circ}}-(1)
\end{aligned}
$$

$$
\begin{equation*}
\tan 18^{\circ}=\frac{h}{x+28} \tag{2}
\end{equation*}
$$

$x \tan 18^{\circ}+28 \tan 18^{\circ}=h$
Substitute (1) into (2):

$$
\begin{aligned}
\left(\frac{\tan 18^{\circ}}{\tan 31^{\circ}}\right) h+28 \tan 18^{\circ} & =h \\
h-\left(\frac{\tan 18^{\circ}}{\tan 31^{\circ}}\right) h & =28 \tan 18^{\circ} \\
\left(1-\frac{\tan 18^{\circ}}{\tan 31^{\circ}}\right) h & =28 \tan 18^{\circ} \\
h & =\frac{28 \tan 18^{\circ}}{1-\frac{\tan 18^{\circ}}{\tan 31^{\circ}}} \\
& =19.8(\operatorname{to} 3 \text { s.f. })
\end{aligned}
$$

\therefore Height of the building is 19.8 m .
11. (i) Let $Q R=x \mathrm{~m}$ and $T R=h \mathrm{~m}$.

$$
\begin{aligned}
\tan 38^{\circ} & =\frac{h}{x} \\
x & =\frac{h}{\tan 38^{\circ}}-(1) \\
\tan 27^{\circ} & =\frac{h}{x+580}
\end{aligned}
$$

$$
\begin{equation*}
x \tan 27^{\circ}+580 \tan 27^{\circ}=h \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
\begin{aligned}
\left(\frac{\tan 27^{\circ}}{\tan 38^{\circ}}\right) h+580 \tan 27^{\circ} & =h \\
h-\left(\frac{\tan 27^{\circ}}{\tan 38^{\circ}}\right) h & =580 \tan 27^{\circ} \\
\left(1-\frac{\tan 27^{\circ}}{\tan 38^{\circ}}\right) h & =580 \tan 27^{\circ} \\
h & =\frac{580 \tan 27^{\circ}}{1-\frac{\tan 27^{\circ}}{\tan 38^{\circ}}} \\
& =850 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$$
\therefore T R=850 \mathrm{~m}
$$

(ii) Substitute $h=849.6$ into (1):

$$
\begin{aligned}
x & =\frac{849.6}{\tan 38^{\circ}} \\
& =1090 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$$
\therefore Q R=1090 \mathrm{~m}
$$

12. (i) Let $B C=x \mathrm{~m}$ and $P B=h \mathrm{~m}$.

$$
\begin{aligned}
\tan 22^{\circ} & =\frac{h}{x} \\
h & =x \tan 22^{\circ}-(1) \\
\tan 28^{\circ} & =\frac{h+20}{x} \\
x \tan 28^{\circ} & =h+20 \quad-(2)
\end{aligned}
$$

Substitute (1) into (2):

$$
x \tan 28^{\circ}=x \tan 22^{\circ}+20
$$

$x \tan 28^{\circ}-x \tan 22^{\circ}=20$
$x\left(\tan 28^{\circ}-\tan 22^{\circ}\right)=20$

$$
\begin{aligned}
x & =\frac{20}{\tan 28^{\circ}-\tan 22^{\circ}} \\
& =157 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore B C=157 \mathrm{~m}$
(ii) Substitute $x=156.6$ into (1):

$$
\begin{aligned}
h & =156.6 \tan 22^{\circ} \\
& =63.28(\text { to } 4 \text { s.f. })
\end{aligned}
$$

$\therefore A B=63.28+20$

$$
=83.3 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

13. (i)

(ii) Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle P}{72}=\frac{\sin 127^{\circ}}{114.7} \\
& \sin \angle P=\frac{72 \sin 127^{\circ}}{114.7} \\
& \angle P\left.=30.06^{\circ} \text { (to } 2 \text { d.p. }\right) \\
& \theta=65^{\circ}(\text { alt. } \angle \mathrm{s}) \\
& 180^{\circ}+65^{\circ}+30.06^{\circ}\left.=275.1^{\circ} \text { (to } 1 \text { d.p. }\right) \\
& \text { Bearing of } Q \text { from } P \text { is } 275.1^{\circ} .
\end{aligned}
$$

14. In $\triangle C P B$,
$\angle C P B=17^{\circ}$
$\angle P C B=30^{\circ}$ (alt. $\angle \mathrm{s}$)
Using Sine Rule,

$$
\begin{aligned}
\frac{B C}{\sin 17^{\circ}} & =\frac{1200}{\sin 30^{\circ}} \\
B C & =\frac{1200 \sin 17^{\circ}}{\sin 30^{\circ}} \\
& =701.6 \mathrm{~m} \text { (to } 4 \text { s.f.) } \\
x & =\frac{\frac{701.6}{\frac{1000}{15}}}{60} \\
& =2.81 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

15.

(i) $\cos 60^{\circ}=\frac{Q R}{40}$

$$
\begin{aligned}
Q R & =40 \cos 60^{\circ} \\
& =20 \mathrm{~m}
\end{aligned}
$$

$$
\sin 60^{\circ}=\frac{P R}{40}
$$

$$
\begin{aligned}
P R & =40 \sin 60^{\circ} \\
& =34.6 \mathrm{~m} \\
\angle P R S & =180^{\circ}-60^{\circ}-90^{\circ}(\text { int. } \angle \mathrm{s}, Q P / / R S) \\
& =30^{\circ} \\
\angle P S R & =45^{\circ}(\text { alt. } \angle \mathrm{s}, Q P / / R S)
\end{aligned}
$$

Using Cosine Rule,
$P Q^{2}=72^{\circ}+56^{2}-2(72)(56) \cos 127^{\circ}$
$P Q=115 \mathrm{~km}$ (to 3 s.f.)
The ships are 115 km apart.

Using Sine Rule,

$$
\begin{aligned}
\frac{P S}{\sin 30^{\circ}} & =\frac{34.64}{\sin 45^{\circ}} \\
P S & =\frac{34.64 \sin 30^{\circ}}{\sin 45^{\circ}} \\
& =24.5 \mathrm{~m}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) $\angle Q P S=180^{\circ}-45^{\circ}(\angle \mathrm{s}$ on a str. line $)$

$$
=135^{\circ}
$$

Area of $\triangle P Q S=\frac{1}{2}(40)(24.49) \sin 135^{\circ}$

$$
=346 \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
$$

16. N

(i) Using Cosine Rule,
$P Q^{2}=50^{2}+100^{2}-2(50)(100) \cos 40^{\circ}$
$P Q=69.6 \mathrm{~km}$ (to 3 s.f.)
(ii) Using Sine Rule,
$\frac{\sin \angle P Q A}{50}=\frac{\sin 40^{\circ}}{69.56}$
$\sin \angle P Q A=\frac{50 \sin 40^{\circ}}{69.56}$

$$
\angle P Q A=27.5^{\circ} \text { (to } 1 \text { d.p.) }
$$

(iii) $\theta=180^{\circ}-80^{\circ}-27.51^{\circ}$ (int. $\angle \mathrm{s}$)

$$
=72.48^{\circ} \text { (to } 2 \text { d.p.) }
$$

$360^{\circ}-72.48^{\circ}=287.5^{\circ}(\angle \mathrm{s}$ at a pt.) (to $1 \mathrm{~d} . \mathrm{p}$.)
Bearing of P from Q is 287.5°.
17. (i) Using Cosine Rule,
$A C^{2}=70^{2}+80^{2}-2(70)(80) \cos 115^{\circ}$
$A C=127 \mathrm{~m}$ (to 3 s.f.)
(ii) Using Cosine Rule,

$$
\begin{aligned}
126.6^{2} & =190^{2}+110^{2}-2(190)(110) \cos \angle A D C \\
\cos \angle A D C & =\frac{190^{2}+110^{2}-126.6^{2}}{2(190)(110)} \\
\angle A D C & =39.7^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(iii) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin \angle A C B}{70} & =\frac{\sin 115^{\circ}}{126.6} \\
\sin \angle A C B & =\frac{70 \sin 115^{\circ}}{126.6} \\
\angle A C B & =30.1^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(iv) $\angle B A C=180^{\circ}-115^{\circ}-30.06^{\circ}(\angle$ sum of a $\triangle)$

$$
=34.93^{\circ} \text { (to } 2 \text { d.p.) }
$$

Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle C A D}{110}=\frac{\sin 39.68^{\circ}}{126.6} \\
& \sin \angle C A D=\frac{110 \sin 39.68^{\circ}}{126.6} \\
& \angle C A D=33.69^{\circ} \text { (to } 2 \text { d.p.) } \\
& 90^{\circ}+33.69^{\circ}+34.93^{\circ}=158.6^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

Bearing of B from A is 158.6°.
(v) Area of $A B C D$
$=\frac{1}{2}(70)(80) \sin 115^{\circ}+\frac{1}{2}(190)(110) \sin 39.68^{\circ}$
$=9210 \mathrm{~m}^{2}$ (to 3 s.f.)
18.

(i) $\angle D B C=180^{\circ}-80^{\circ}-55^{\circ}$ (int. $\angle \mathrm{s}$)

$$
=45^{\circ}
$$

$360^{\circ}-45^{\circ}=315^{\circ}(\angle \mathrm{s}$ at a pt. $)$
Bearing of C from B is 315°.
(ii) Using Cosine Rule,
$A C^{2}=30^{2}+27^{2}-2(30)(27) \cos 80^{\circ}$
$A C=36.7 \mathrm{~km}$ (to $3 \mathrm{~s} . \mathrm{f}$.)
(iii) Using Sine Rule,

$$
\begin{aligned}
\frac{C D}{\sin 45^{\circ}} & =\frac{30}{\sin \left(180^{\circ}-45^{\circ}-75^{\circ}\right)} \\
C D & =\frac{30 \sin 45^{\circ}}{\sin 60^{\circ}} \\
& =24.49 \mathrm{~km} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

Time taken to sail from B to D
$=\frac{30}{60}+\frac{30}{12}+\frac{45}{60}+\frac{24.49}{14}$
$=5.499 \mathrm{~h}$ (to 4 s.f.)
$=5 \mathrm{~h} 30 \mathrm{~min}$ (to the nearest minute)
The ship reached port D at 1645 .
(iv) Using Cosine Rule,
$B D^{2}=24.49^{2}+30^{2}-2(24.49)(30) \cos 75^{\circ}$
$B D=33.5 \mathrm{~km}$ (to 3 s.f.)
(v) Using Cosine Rule,
$A D^{2}=27^{2}+33.46^{2}-2(27)(33.46) \cos 125^{\circ}$
$A D=53.71 \mathrm{~km}$ (to 4 s.f.)
Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle D A B}{33.46}=\frac{\sin 125^{\circ}}{53.71} \\
& \sin \angle D A B=\frac{33.46 \sin 125^{\circ}}{53.71} \\
& \angle D A B=30.68^{\circ} \text { (to } 2 \text { d.p.) } \\
& 55^{\circ}-30.68^{\circ}=24.3^{\circ} \text { (to } 1 \text { d.p.) } \\
& \text { Bearing of } D \text { from } A \text { is } 024.3^{\circ} .
\end{aligned}
$$

19.

(a) (i) $\angle Q H P=90^{\circ}-48^{\circ}$

$$
=42^{\circ}
$$

Using Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle H Q P}{62}=\frac{\sin 42^{\circ}}{44} \\
& \sin \angle H Q P=\frac{62 \sin 42^{\circ}}{44} \\
& \angle H Q P=70.53^{\circ} \text { (to } 2 \mathrm{~d} . \mathrm{p} \text {.) } \\
& \angle Q P H=180^{\circ}-42^{\circ}-70.53^{\circ}(\angle \text { sum of a } \triangle) \\
& =67.46^{\circ} \text { (to } 2 \text { d.p.) } \\
& 270^{\circ}+67.46^{\circ}=337.5^{\circ} \text { (to } 1 \mathrm{~d} . \mathrm{p} . \text {) }
\end{aligned}
$$

Bearing of Q from P is 337.5°.
(ii) Using Cosine Rule,
$H Q^{2}=62^{2}+44^{2}-2(62)(44) \cos 67.46^{\circ}$
$H Q=60.7 \mathrm{~km}$ (to 3 s.f.)
(b) Time taken $=2\left(\frac{45}{15}\right)+\frac{40}{60}$

$$
\begin{aligned}
& =6 \frac{2}{3} \mathrm{~h} \\
& =6 \mathrm{~h} 40 \text { minutes }
\end{aligned}
$$

It returns to H At 1755.
(c) Using Cosine Rule,

$$
\begin{aligned}
45^{2} & =61^{2}+60.73^{2}-2(61)(60.73) \cos \angle H Q R \\
\cos \angle H Q R & =\frac{62^{2}+60.73^{2}-45^{2}}{2(61)(60.73)} \\
\angle H Q R & =43.4^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(d) Let the shortest distance from R to $H Q$ to $x \mathrm{~km}$.

$$
\begin{aligned}
\sin 43.38^{\circ} & =\frac{x}{61} \\
x & =61 \sin 43.38^{\circ} \\
& =41.9 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

The shortest distance from R to $H Q$ is 41.9 km .
(e) Area of $H P Q R=\frac{1}{2}(60.73)(41.90)$

$$
\begin{aligned}
& +\frac{1}{2}(62)(44) \sin 67.46^{\circ} \\
= & 2530 \mathrm{~km}^{2}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

20. (i) Using Cosine Rule,

$$
D F^{2}=1^{2}+1^{2}-2(1)(1) \cos 50^{\circ}
$$

$$
D F=0.845 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

(ii) Using Pythagoras' Theorem,
$B D^{2}=1^{2}+2^{2}$
$B D=2.24 \mathrm{~m}$ (to 3 s.f.)
(iii) Using Cosine Rule,

$$
\begin{aligned}
0.8452^{2}= & 2.236^{2}+2.236^{2} \\
& -2(2.236)(2.236) \cos \angle D B F \\
\cos \angle D B F= & \frac{2.236^{2}+2.236^{2}-0.8452^{2}}{2(2.236)(2.236)} \\
\angle D B F= & 21.8^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

21. (i) $A B=A C=12 \mathrm{~m}$

Using Pythagoras' Theorem,

$$
\begin{aligned}
A T^{2}+12^{2} & =16^{2} \\
A T^{2} & =16^{2}-12^{2} \\
A T & =10.6 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\tan \angle T C A=\frac{10.58}{12}$

$$
\angle T C A=41.4^{\circ} \text { (to } 1 \text { d.p.) }
$$

\therefore Angle of elevation is 41.4°.
(iii) Area of $\triangle A B C=\frac{1}{2}(12)(12) \sin 120^{\circ}$

$$
\left.=62.4 \mathrm{~m}^{2} \text { (to } 3 \text { s.f. }\right)
$$

22. (i) $B P=A Q=32 \mathrm{~cm}$

Using Pythagoras' Theorem,
$C P^{2}+22^{2}=32^{2}$

$$
\begin{aligned}
C P^{2} & =32^{2}-22^{2} \\
C P & =23.2 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Pythagoras’ Theorem,

$$
\begin{aligned}
A C^{2} & =35^{2}+22^{2} \\
A C & =41.34 \mathrm{~cm} \text { (to } 4 \text { s.f.) } \\
\tan \angle P A C & =\frac{23.23}{41.34} \\
\angle P A C & =29.3^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(iii) $A D=B C=22 \mathrm{~cm}$

$$
\begin{aligned}
\cos \angle Q A D & =\frac{22}{32} \\
\angle Q A D & \left.=46.6^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

23. (i) $\tan 24^{\circ}=\frac{B T}{80}$

$$
\begin{aligned}
B T & =80 \tan 24^{\circ} \\
& =35.6 \mathrm{~m} \text { (to } 3 \text { s.f. })
\end{aligned}
$$

(ii) Using Pythagoras' Theorem,
$A C^{2}+80^{2}=110^{2}$
$A C^{2}=110^{2}-80^{2}$
$A C=75.5 \mathrm{~m}$ (to 3 s.f.)
(iii) $\tan \angle T C B=\frac{35.61}{110}$

$$
\angle T C B=17.9^{\circ} \text { (to } 1 \text { d.p.) }
$$

24. (i) $\cos 55^{\circ}=\frac{B Q}{48}$

$$
\begin{aligned}
B Q & =48 \cos 55^{\circ} \\
& =27.5 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\sin 28^{\circ}=\frac{C Q}{27.53}$

$$
\begin{aligned}
C Q & =27.53 \sin 28^{\circ} \\
& =12.9 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(iii) $P D=C Q=12.92 \mathrm{~cm}$

$$
\begin{aligned}
\sin \angle P B D & =\frac{12.92}{48} \\
\angle P B D & =15.6^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

25. (i) $\tan 32^{\circ}=\frac{C T}{17}$

$$
\begin{aligned}
C T & =17 \tan 32^{\circ} \\
& =10.6 \mathrm{~m}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) $D C=A B=22 \mathrm{~m}$

$$
\begin{aligned}
\tan \angle T D C & =\frac{10.62}{22} \\
\angle T D C & =25.8^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(iii) Using Pythagoras' Theorem,

$$
\begin{aligned}
A C^{2} & =22^{2}+17^{2} \\
A C & =27.80 \mathrm{~m} \text { (to } 4 \text { s.f.) } \\
\tan \angle T A C & =\frac{10.62}{27.80} \\
\angle T A C & =20.9^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

26. (i) $\tan 38^{\circ}=\frac{A T}{80}$

$$
\begin{aligned}
A T & =80 \tan 38^{\circ} \\
& =62.5 \mathrm{~m}(\text { to } 3 \mathrm{~s} . \mathrm{f} .)
\end{aligned}
$$

(ii) $\tan 48^{\circ}=\frac{A B}{80}$

$$
\begin{aligned}
A B & =80 \tan 48^{\circ} \\
& =88.8 \mathrm{~m} \text { (to } 3 \text { s.f. })
\end{aligned}
$$

(iii) $\tan \angle T B A=\frac{62.50}{88.84}$

$$
\angle T B A=35.1^{\circ} \text { (to } 1 \text { d.p.) }
$$

\therefore Angle of elevation is 35.1°.

Advanced

27. (i) $\tan 22.3^{\circ}=\frac{A T}{24}$

$$
\begin{aligned}
A T & =24 \tan 22.3^{\circ} \\
& =9.84 \mathrm{~m}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) $\tan \angle T C A=\frac{9.843}{22}$

$$
\angle T C A=24.1^{\circ} \text { (to } 1 \text { d.p.) }
$$

\therefore Angle of elevation is 24.1°.
(iii) $\angle B A C=360^{\circ}-90^{\circ}-146^{\circ}(\angle \mathrm{s}$ at a pt.)

$$
=124^{\circ}
$$

Using Cosine Rule,
$B C^{2}=24^{2}+22^{2}-2(24)(22) \cos 124^{\circ}$
$B C=40.63 \mathrm{~m}$ (to 4 s.f.)
Using Sine Rule,
$\frac{\sin \angle A C B}{24}=\frac{\sin 124^{\circ}}{40.63}$
$\sin \angle A C B=\frac{24 \sin 124^{\circ}}{40.63}$

$$
\angle A C B=29.32^{\circ} \text { (to } 2 \text { d.p.) }
$$

$\sin 29.32^{\circ}=\frac{A P}{22}$

$$
\begin{aligned}
A P & =22 \sin 29.32^{\circ} \\
& =10.77 \mathrm{~m}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

$\tan \angle T P A=\frac{9.843}{10.77}$

$$
\angle T P A=42.4^{\circ} \text { (to } 1 \text { d.p.) }
$$

\therefore Angle of elevation is 42.4°.
28. (a) (i) $\sin 38.5^{\circ}=\frac{A T}{14.6}$

$$
\begin{aligned}
A T & =14.6 \sin 38.5^{\circ} \\
& =9.09 \mathrm{~m}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) $\cos 38.5^{\circ}=\frac{A C}{14.6}$

$$
\begin{aligned}
A C & =14.6 \cos 38.5^{\circ} \\
& =11.42 \mathrm{~m} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$\tan 32.6^{\circ}=\frac{11.42}{A B}$

$$
\begin{aligned}
A B & =\frac{11.42}{\tan 32.6^{\circ}} \\
& =17.9 \mathrm{~m} \text { (to } 3 \text { s.f. })
\end{aligned}
$$

(iii) $\tan \angle T B A=\frac{9.088}{17.86}$

$$
\angle T B A=27.0^{\circ} \text { (to } 1 \text { d.p.) }
$$

\therefore Angle of elevation is 27.0°.
(b) (i) $\sin 32.6^{\circ}=\frac{A P}{17.86}$

$$
\begin{aligned}
A P & =17.86 \sin 32.6^{\circ} \\
& =9.63 \mathrm{~m}(\text { to } 3 \mathrm{s.f.})
\end{aligned}
$$

(ii) $\tan \angle T P A=\frac{9.088}{9.625}$

$$
\angle T P A=43.4^{\circ} \text { (to } 1 \text { d.p.) }
$$

29. (i) $P X=Q R=8 \mathrm{~m}$
$\tan 18^{\circ}=\frac{S X}{8}$
$S X=8 \tan 18^{\circ}$

$$
=2.599 \mathrm{~m} \text { (to } 3 \mathrm{~s} . \mathrm{f} .)
$$

$X R=P Q=5 \mathrm{~m}$
$S R=5+2.599$

$$
=7.60 \mathrm{~m} \text { (to } 3 \text { s.f. })
$$

(ii) Using Pythagoras' Theorem,

$$
M R^{2}=20^{2}+8^{2}
$$

$$
M R=21.54 \mathrm{~m}(\text { to } 4 \text { s.f. })
$$

$\tan \angle S M R=\frac{7.599}{21.54}$

$$
\angle S M R=19.4^{\circ} \text { (to } 1 \text { d.p.) }
$$

(iii) $\tan \angle Q M R=\frac{8}{20}$

$$
\angle Q M R=21.8^{\circ} \text { (to } 1 \text { d.p.) }
$$

Bearing of R from M is 021.8°.
(iv) $\cos 18^{\circ}=\frac{8}{P S}$

$$
\begin{aligned}
P S & =\frac{8}{\cos 18^{\circ}} \\
& =8.41 \mathrm{~m}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

New Trend

30. (i) Using Cosine Rule,

$$
\begin{aligned}
60^{2} & =80^{2}+30^{2}-2(80)(30) \cos \angle C B P \\
\cos \angle C B P & =\frac{80^{2}+30^{2}-60^{2}}{2(80)(30)} \\
\angle C B P & =39.6^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(ii) Using Cosine Rule,
$A C^{2}=80^{2}+80^{2}-2(80)(80) \cos 39.57^{\circ}$
$A C=54.16 \mathrm{~m}$ (to 4 s.f.)
Using Sine Rule,

$$
\begin{aligned}
\frac{\sin \angle A C B}{80} & =\frac{\sin 39.57^{\circ}}{54.16} \\
\sin \angle A C B & =\frac{80 \sin 39.57^{\circ}}{54.16} \\
\angle A C B & =70.2^{\circ} \text { (to } 1 \text { d.p.) } \\
90^{\circ}-70.2^{\circ} & =19.8^{\circ}
\end{aligned}
$$

Bearing of A from C is 019.8°.
31. (a) (i) Using Cosine Rule,

$$
\begin{aligned}
Q S^{2} & =84^{2}+130^{2}-2(84)(130) \cos 68^{\circ} \\
Q S & =126 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Let the shortest distance from R to $Q S$ be $x \mathrm{~m}$.

$$
\begin{aligned}
\sin 50^{\circ} & =\frac{x}{90} \\
x & =90 \sin 50^{\circ} \\
& =68.9 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

The shortest distance from R to $Q S$ is 68.9 m .
(iii) Using Sine Rule,

$$
\begin{aligned}
& \frac{130}{\sin \angle P Q S}=\frac{125.60}{\sin 68^{\circ}} \\
& \sin \angle P Q S=\frac{130 \sin 68^{\circ}}{125.60} \\
& \angle P Q S=73.671^{\circ} \text { (to } 3 \text { d.p.) } \\
& \begin{aligned}
\angle P Q R & =73.671^{\circ}+50^{\circ} \\
= & 123.7^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
\end{aligned}
$$

(b) Area of land
$=\frac{1}{2}(84)(130) \sin 68^{\circ}+\frac{1}{2}(90)(125.60) \sin 50^{\circ}$
$=9392.1 \mathrm{~m}^{2}$ (to 5 s.f.)
Value $=50000 \times \frac{9392.1}{10000}$

$$
=\$ 46960.50
$$

(c)

$\tan 38^{\circ}=\frac{T P}{84}$
$T P=84 \tan 38^{\circ}$

Let the angle of elevation of T from S be θ.
$\tan \theta=\frac{84 \tan 38^{\circ}}{130}$

$$
\theta=26.8^{\circ} \text { (to } 1 \text { d.p.) }
$$

32. (a) $\tan \theta=\frac{1}{9}$

$$
\theta=6.3402^{\circ} \text { (to } 5 \text { s.f.) }
$$

(b) Length of horizontal distance $=0.18 \times 9$

$$
=1.62 \mathrm{~m}
$$

Volume of cement needed $=\frac{1}{2}(0.18)(1.62)(2)$

$$
=0.2916 \mathrm{~m}^{3}
$$

(c) Let the total length of the handrail be $l \mathrm{~m}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
(l-0.4)^{2} & =0.18^{2}+1.62^{2} \\
l-0.4 & =1.629969325 \\
l & =2.03 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Total length of metallic material $=2.03+2(1.5)$

$$
=5.03 \mathrm{~m}
$$

33. (a) $\tan \angle B A C=\frac{30}{40}$

$$
\angle B A C=36.9^{\circ} \text { (to } 1 \text { d.p.) }
$$

(b) (i) Using Sine Rule,

$$
\begin{aligned}
\tan 50^{\circ} & =\frac{A D}{40} \\
A D & =47.7 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Pythagoras' Theorem,

$$
A C^{2}=40^{2}+30^{2}
$$

$$
A C=50 \mathrm{~m}
$$

$$
\tan \angle A C D=\frac{47.67}{50}
$$

$$
\angle A C D=43.6^{\circ}
$$

(iii) $\cos 43.63^{\circ}=\frac{50}{D C}$

$$
\begin{aligned}
D C & =\frac{50}{\cos 43.63^{\circ}} \\
& =69.08 \mathrm{~m}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

Area of $\triangle B C D=\frac{1}{2} \times 69.08 \times 30 \times \sin 64.26^{\circ}$

$$
=933 \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
$$

(c) $\frac{1}{2} \times D X \times 30=933.382$

$$
D X=62.2 \text { (to } 3 \text { s.f.) }
$$

\therefore The shortest possible length of cable $D X$ is 62.2 m .
34. (a)

(b) 1 cm represents 20 km
2.4 cm represent $2.4 \times 20=48 \mathrm{~km}$
\therefore The actual distance of the helicopter from B is 48 km .
(c) Bearing of the helicopter from $B=360^{\circ}-66^{\circ}$

$$
=294^{\circ}
$$

35. (i) $\sin \angle C A D=\frac{24}{43}$

$$
\left.\angle C A D=33.93^{\circ} \text { (to } 2 \text { d.p. }\right)
$$

$90^{\circ}-33.93^{\circ}=56.1^{\circ}$ (to 1 d.p.)
Bearing of C from A is 056.1°.
(ii) $\angle B X A=180^{\circ}-108^{\circ}-40^{\circ}(\angle$ sum of a $\triangle)$

$$
=32^{\circ}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{A X}{\sin 40^{\circ}} & =\frac{25}{\sin 32^{\circ}} \\
A X & =\frac{25 \sin 40^{\circ}}{\sin 32^{\circ}} \\
& =30.32 \mathrm{~m} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$$
C X=43-30.32
$$

$$
=12.7 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

(iii) Using Cosine Rule,

$$
\begin{aligned}
B C^{2} & =25^{2}+43^{2}-2(25)(43) \cos 108^{\circ} \\
B C & =56.0 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iv) Area of $A B C D=\frac{1}{2}(25)(43) \sin 108^{\circ}$

$$
\begin{aligned}
& +\frac{1}{2}(43)(24) \sin 56.07^{\circ} \\
= & 939 \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Chapter 10 Arc Length, Area of Sector, and Radian Measure

Basic

1. (a) (i) Perimeter $=\frac{70^{\circ}}{360^{\circ}}(2 \pi)(6)+2(6)$

$$
=19 \frac{1}{3} \mathrm{~cm}
$$

(ii) Area $=\frac{70^{\circ}}{360^{\circ}}(\pi)(6)^{2}$

$$
=22 \mathrm{~cm}^{2}
$$

(b) (i) Perimeter $=\frac{280^{\circ}}{360^{\circ}}(2 \pi)(9)+2(9)$

$$
=62 \mathrm{~cm}
$$

(ii) Area $=\frac{280^{\circ}}{360^{\circ}}(\pi)(9)^{2}$

$$
=198 \mathrm{~cm}^{2}
$$

(c) (i) Perimeter $=\frac{360^{\circ}-36^{\circ}}{360^{\circ}}(2 \pi)(35)+2(35)$

$$
=268 \mathrm{~cm}
$$

(ii) Area $=\frac{360^{\circ}-36^{\circ}}{360^{\circ}}(\pi)(35)^{2}$

$$
=3465 \mathrm{~cm}^{2}
$$

2. (a) Perimeter $=\frac{140^{\circ}}{360^{\circ}}(2 \pi)(27)+2(27)$

$$
=(21 \pi+54) \mathrm{cm}
$$

$$
\begin{aligned}
\text { Area } & =\frac{140^{\circ}}{360^{\circ}}(\pi)(27)^{2} \\
& =283.5 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Perimeter $=\frac{72^{\circ}}{360^{\circ}}(2 \pi)(15)+2(15)$

$$
=(6 \pi+30) \mathrm{cm}
$$

$$
\begin{aligned}
\text { Area } & =\frac{72^{\circ}}{360^{\circ}}(\pi)(15)^{2} \\
& =45 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

(c) Perimeter $=\frac{240^{\circ}}{360^{\circ}}(2 \pi)(6)+2(6)$

$$
=(8 \pi+12) \mathrm{cm}
$$

$$
\begin{aligned}
\text { Area } & =\frac{240^{\circ}}{360^{\circ}}(\pi)(6)^{2} \\
& =24 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

3. (a) Arc length $=8 \mathrm{~cm}$

$$
\begin{aligned}
\frac{\theta}{360}(2 \pi)(24) & =8 \\
\theta & =19.1 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(b) Arc length $=10.6 \mathrm{~cm}$

$$
\begin{aligned}
\frac{\theta}{360}(2 \pi)(24) & =10.6 \\
\theta & =25.3 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(c) Arc length $=6.5 \mathrm{~cm}$

$$
\begin{aligned}
\frac{\theta}{360}(2 \pi)(24) & =6.5 \\
\theta & =15.5 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

4. (a) Area of sector $=25.5 \mathrm{~m}^{2}$

$$
\begin{aligned}
\frac{\theta}{360}(\pi)(8)^{2} & =25.5 \\
\theta & =45.7 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(b) Area of sector $=6.6 \mathrm{~m}^{2}$

$$
\begin{aligned}
\frac{\theta}{360}(\pi)(8)^{2} & =6.6 \\
\theta & =11.8 \text { (to } 1 \text { d.p. })
\end{aligned}
$$

(c) Area of sector $=8 \mathrm{~m}^{2}$

$$
\begin{aligned}
\frac{\theta}{360}(\pi)(8)^{2} & =8 \\
\theta & =14.3 \text { (to } 1 \text { d.p. })
\end{aligned}
$$

5. (a) $76^{\circ}=\frac{76^{\circ}}{180^{\circ}} \times \pi$

$$
=1.33 \mathrm{rad}(\text { to } 3 \text { s.f. })
$$

(b) $124.8^{\circ}=\frac{124.8^{\circ}}{180^{\circ}} \times \pi$

$$
=2.18 \mathrm{rad}(\text { to } 3 \text { s.f. })
$$

(c) $257.3^{\circ}=\frac{257.3^{\circ}}{180^{\circ}} \times \pi$

$$
=4.49 \mathrm{rad}(\text { to } 3 \text { s.f.) }
$$

(d) $345.4^{\circ}=\frac{345.4^{\circ}}{180^{\circ}} \times \pi$

$$
=6.03 \mathrm{rad} \text { (to } 3 \text { s.f.) }
$$

6. (a) $\frac{2 \pi}{9} \mathrm{rad}=\frac{2 \pi}{9} \times \frac{180^{\circ}}{\pi}$

$$
=40^{\circ}
$$

(b) $\frac{5 \pi}{17} \mathrm{rad}=\frac{5 \pi}{17} \times \frac{180^{\circ}}{\pi}$

$$
\left.=52.9^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

(c) $2.16 \mathrm{rad}=2.16 \times \frac{180^{\circ}}{\pi}$

$$
=123.8^{\circ} \text { (to } 1 \text { d.p.) }
$$

(d) $3.07 \mathrm{rad}=3.07 \times \frac{180^{\circ}}{\pi}$

$$
\left.=175.9^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

7. (a) $\sin 0.47=0.453$ (to 3 s.f.)
(b) $\cos 0.128=0.992$ (to 3 s.f.)
(c) $\tan 1.175=2.39$ (to 3 s.f.)
(d) $\sin \frac{2 \pi}{7}=0.782$ (to 3 s.f.)
(e) $\cos 0.85 \pi=-0.891$ (to 3 s.f.)
(f) $\tan \frac{15 \pi}{37}=3.27$ (to 3 s.f.)
8. (a) $\sin x=0.69$

$$
x=0.761 \text { (to } 3 \text { s.f.) }
$$

(b) $\cos x=0.476$

$$
x=1.07 \text { (to } 3 \text { s.f.) }
$$

(c) $\tan x=0.369$

$$
x=0.354 \text { (to } 3 \text { s.f.) }
$$

(d) $\sin x=0.137$

$$
x=0.137 \text { (to } 3 \text { s.f.) }
$$

9. (i) $\tan 1.07=\frac{9.4}{P Q}$

$$
\begin{aligned}
P Q & =\frac{9.4}{\tan 1.07} \\
& =5.14 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\sin 1.07=\frac{9.4}{P R}$

$$
\begin{aligned}
P R & =\frac{9.4}{\sin 1.07} \\
& =10.7 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

10. (a) (i) Arc length $=16(1.75)$

$$
=28 \mathrm{~cm}
$$

(ii) Perimeter $=28+2(16)$

$$
=60 \mathrm{~cm}
$$

(iii) Area $=\frac{1}{2}(16)^{2}(\pi-1.75)$

$$
=178 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(b) (i) Arc length $=5(0.7)$

$$
=3.5 \mathrm{~cm}
$$

(ii) Perimeter $=3.5+2(5)$

$$
=13.5 \mathrm{~cm}
$$

(iii) Area $=\frac{1}{2}(5)^{2}(\pi-0.7)$

$$
=30.5 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(c) (i) Arc length $=10(2.09)$

$$
=20.9 \mathrm{~m}
$$

(ii) Perimeter $=20.9+2(10)$

$$
=40.9 \mathrm{~m}
$$

(iii) Area $=\frac{1}{2}(10)^{2}(\pi-2.09)$

$$
=52.6 \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
$$

(d) (i) Arc length $=20(2.62)$

$$
=52.4 \mathrm{~cm}
$$

(ii) Perimeter $=52.4+2(20)$

$$
=92.4 \mathrm{~cm}
$$

(iii) Area $=\frac{1}{2}(20)^{2}(\pi-2.62)$

$$
=104 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

11. (a) $r=\frac{45}{0.63}$

$$
=71 \text { (to the nearest integer) }
$$

$E=\frac{1}{2}(71.4)^{2}(0.63)$
$=1606$ (to the nearest integer)
(b) $r=\frac{72.5}{0.87}$

$$
=83 \text { (to the nearest integer) }
$$

$E=\frac{1}{2}(83.3)^{2}(0.87)$
$=3018$ (to the nearest integer)
(c) $r=\frac{48.6}{1.29}$

$$
=38 \text { (to the nearest integer) }
$$

$E=\frac{1}{2}(37.674)^{2}(1.29)$
$=915$ (to the nearest integer)
(d) $r=\frac{95}{2.16}$

$$
=44(\text { to the nearest integer })
$$

$$
\begin{aligned}
E & =\frac{1}{2}(43.981)^{2}(2.16) \\
& =2089 \text { (to the nearest integer) }
\end{aligned}
$$

12. (i) $s=r \theta$

$$
\begin{aligned}
& \theta=\frac{s}{r}-(1) \\
& A=\frac{1}{2} r^{2} \theta-(2)
\end{aligned}
$$

Substitute (1) into (2):

$$
\begin{aligned}
A & =\frac{1}{2} r^{2}\left(\frac{s}{r}\right) \\
& =\frac{r s}{2}(\text { shown })
\end{aligned}
$$

(ii) (a) $A=\frac{7 \times 12}{2}$

$$
=42 \mathrm{~cm}^{2}
$$

(b) $A=\frac{8 \times 5}{2}$

$$
=20 \mathrm{~m}^{2}
$$

(c) $A=\frac{10 \times 11.8}{2}$

$$
=59 \mathrm{~cm}^{2}
$$

(d) $A=\frac{9 \times 30}{2}$

$$
=135 \mathrm{~cm}^{2}
$$

13. (a) Perimeter $=\frac{30^{\circ}}{360^{\circ}}(2 \pi)(20)+\frac{30^{\circ}}{360^{\circ}}(2 \pi)(30)+2(10)$

$$
=46.2 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

$$
\begin{aligned}
\text { Area } & =\frac{30^{\circ}}{360^{\circ}}(\pi)(30)^{2}-\frac{30^{\circ}}{360^{\circ}}(\pi)(20)^{2} \\
& =131 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) Perimeter $=\frac{120^{\circ}}{360^{\circ}}(2 \pi)(21)^{2}+\frac{120^{\circ}}{360^{\circ}}(2 \pi)(11)+2(10)$

$$
=87.0 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

$$
\begin{aligned}
\text { Area } & =\frac{120^{\circ}}{360^{\circ}}(\pi)(21)^{2}-\frac{120^{\circ}}{360^{\circ}}(\pi)(11)^{2} \\
& =335 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Intermediate

14. (i) $\sin \angle A C B=\frac{8.9}{23.4}$

$$
\angle A C B=0.390 \mathrm{rad} \text { (to } 3 \text { s.f.) }
$$

(ii) $\quad \angle B A C=\pi-\frac{\pi}{2}-0.3901(\angle$ sum of a $\triangle)$

$$
\begin{aligned}
& =1.180 \mathrm{rad} \text { (to } 4 \text { s.f.) } \\
\angle B A D & =1.180+0.24 \\
& =1.420 \mathrm{rad} \text { (to } 4 \text { s.f.) } \\
\cos 1.420 & =\frac{8.9}{A D} \\
A D & =\frac{8.9}{\cos 1.420} \\
& =59.5 \mathrm{~m}(\text { to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) Using Cosine Rule,

$$
\begin{aligned}
C D^{2} & =23.4^{2}+59.49^{2}-2(23.4)(59.49) \cos 0.24 \\
& =37.2 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

15. (a) Let the angle subtended at the centre of the circle be θ rad.

$$
\begin{aligned}
\theta & =\frac{17.6}{21} \\
& =0.838 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Angle subtended is 0.838 rad .
(b) Let the angle subtended at the centre of the circle be $\theta \mathrm{rad}$.
$\frac{1}{2}(12)^{2} \theta=128$

$$
\theta=1.78 \text { (to } 3 \text { s.f.) }
$$

\therefore Angle subtended is 1.78 rad .
16. (i) Perimeter $=\frac{50^{\circ}}{360^{\circ}}(2 \pi)(20)+\frac{50^{\circ}}{360^{\circ}}(2 \pi)(36)+2(16)$ $=80.9 \mathrm{~m}$ (to 3 s.f.)
(ii) Using Cosine Rule,
$A C^{2}=20^{2}+36^{2}-2(20)(36) \cos 50^{\circ}$
$A C=27.8 \mathrm{~m}$ (to 3 s.f.)
17. (i) Circumference of circle $=35.2+52.8$

$$
=88 \mathrm{~cm}
$$

Let the radius of the circle be $r \mathrm{~cm}$.

$$
\begin{aligned}
2 \pi r & =88 \\
r & =14.0 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Radius of circle is 14.0 cm .
(ii) Let the angle subtended at the centre of the circle be $\theta \mathrm{rad}$.

$$
\begin{aligned}
\theta & =\frac{35.2}{14.00} \\
& =2.51 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Angle subtended is 2.51 rad .
18. (a) Time taken $=\frac{156^{\circ}}{360^{\circ}} \times 60$

$$
=26 \text { minutes }
$$

(b) (i) Distance moved $=\frac{12}{60}(\pi)(42)$

$$
=26.4 \mathrm{~cm}
$$

(ii) Distance moved $=\frac{45}{60}(\pi)(42)$

$$
=99 \mathrm{~cm}
$$

19. Arc length $=\left(\frac{42}{2}\right)(25 \times 4)$

$$
\begin{aligned}
& =2100 \mathrm{~cm} \\
& =21 \mathrm{~m}
\end{aligned}
$$

20. (i) Let the angle subtended at the centre of the circle be θ rad.

$$
\begin{aligned}
\frac{1}{2}(6)^{2} \theta & =72 \\
\theta & =4
\end{aligned}
$$

Length of wire $=6(4)$

$$
=24 \mathrm{~cm}
$$

(ii) Let the radius of the circle be $r \mathrm{~cm}$.
$2 \pi r=24$

$$
r=\frac{12}{\pi}
$$

\therefore Radius of circle is $\frac{12}{\pi} \mathrm{~cm}$.
21. (i) Perimeter $=\frac{1}{4}(2 \pi)(8)+8$

$$
=20.6 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii)

$$
\cos \angle C A D=\frac{4}{8}
$$

$$
\angle C A D=60^{\circ}
$$

Area of segment $C Y B=\frac{60^{\circ}}{360^{\circ}}(\pi)(8)^{2}-\frac{1}{2}(8)^{2} \sin 60^{\circ}$

$$
=5.797 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) }
$$

$$
\begin{aligned}
\angle C B Q & =90^{\circ}-60^{\circ} \\
& =30^{\circ}
\end{aligned}
$$

Area of sector $C B Q=\frac{30^{\circ}}{360^{\circ}}(\pi)(8)^{2}$

$$
=16.76 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) }
$$

Area of shaded region $=16.76-5.797$

$$
=11.0 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

22. (a) (i) Perimeter $=\frac{180^{\circ}-60^{\circ}}{360^{\circ}}(2 \pi)(21)+2(21)$

$$
=86.0 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) Area $=\frac{180^{\circ}-60^{\circ}}{360^{\circ}}(\pi)(21)^{2}$

$$
=462 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(b) (i) Perimeter $=\frac{75^{\circ}+75^{\circ}}{360^{\circ}}(2 \pi)(63)+2(63)$

$$
=291 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(ii) Area $=\frac{75^{\circ}+75^{\circ}}{360^{\circ}}(\pi)(63)^{2}$

$$
=5200 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(c) (i) Perimeter $=35(1.26)+2(35)$

$$
=114.1 \mathrm{~cm}
$$

(ii) Area $=\frac{1}{2}(35)^{2}(1.26)$

$$
=771.75 \mathrm{~cm}^{2}
$$

23. Total area $=\left[\frac{120^{\circ}}{360^{\circ}}(\pi)(10)^{2}-\frac{120^{\circ}}{360^{\circ}}(\pi)(6)^{2}\right]$

$$
\begin{aligned}
& +\frac{360^{\circ}-120^{\circ}}{360^{\circ}}(\pi)(6)^{2} \\
= & \left.142 \mathrm{~cm}^{2} \text { (to the nearest } \mathrm{cm}^{2}\right)
\end{aligned}
$$

24. (i) Volume $=\frac{1}{3} \pi(10)^{2}(24)$

$$
=2510 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

(ii) Curved surface area $=\pi(10)(26)$

$$
=817 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(iii) Perimeter of net $=2 \pi(10)+2(26)$

$$
=115 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

25. $\frac{1}{2}(5)^{2} \theta=20$

$$
\theta=1.6 \mathrm{rad}
$$

Using Cosine Rule,
$P Q^{2}=5^{2}+5^{2}-2(5)(5) \cos 1.6$
$P Q=7.17 \mathrm{~cm}$ (to 3 s.f.)
26. (i) $O P=O Q=7 \mathrm{~cm}$
$\tan 60^{\circ}=\frac{O R}{7}$

$$
\begin{aligned}
O R & =7 \tan 60^{\circ} \\
& =12.1 \mathrm{~cm}(\text { to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\cos 60^{\circ}=\frac{7}{P R}$

$$
\begin{aligned}
P R & =\frac{7}{\cos 60^{\circ}} \\
& =14 \mathrm{~cm}
\end{aligned}
$$

(iii) Area $=\frac{120^{\circ}}{360^{\circ}}(\pi)(7)^{2}$

$$
=51.3 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

27. (i) $10(\angle A O C)=5$

$$
\angle A O C=0.5 \mathrm{rad}
$$

(ii) Area $=\frac{1}{2}(10)(15) \sin 0.5-\frac{1}{2}(10)^{2}(0.5)$

$$
=11.0 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

28. (i) $\cos \frac{\pi}{3}=\frac{O A}{8}$

$$
\begin{aligned}
O A & =8 \cos \frac{\pi}{3} \\
& =4 \mathrm{~cm} \\
\sin \frac{\pi}{3} & =\frac{A C}{8} \\
A C & =8 \sin \frac{\pi}{3} \\
& =6.928 \mathrm{~cm}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

Perimeter $=6.928+(8-4)+4\left(\frac{\pi}{3}\right)$

$$
=15.1 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) Area $=\frac{1}{2}(4)(6.928)-\frac{1}{2}(4)^{2}\left(\frac{\pi}{3}\right)$.

$$
=5.48 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

29. (i) Area $=\frac{1}{2} r s$
(ii) $\quad r\left(\frac{1}{3}\right)=s$

$$
\begin{gathered}
s=\frac{r}{3}-(1) \\
\frac{1}{2} r^{2}\left(\frac{1}{3}\right)=8 \\
r^{2}=48 \\
r=6.93 \text { (to } 3 \text { s.f.) }
\end{gathered}
$$

Substitute $r=6.928$ into (1):

$$
\begin{aligned}
s & =\frac{6.928}{3} \\
& =2.31 \text { (to } 3 \text { s.f. })
\end{aligned}
$$

30. Using Cosine Rule,
$10^{2}=12^{2}+12^{2}-2(12)(12) \cos \angle P R Q$
$\cos \angle P R Q=\frac{12^{2}+12^{2}-10^{2}}{2(12)(12)}$
$\angle P R Q=0.8595 \mathrm{rad}$ (to 4 s.f.)
$\angle P O Q=2 \pi-\frac{\pi}{2}-\frac{\pi}{2}-0.8595(\angle$ sum of a quadrilateral $)$

$$
=2.282 \mathrm{rad} \text { (to } 4 \text { s.f.) }
$$

$\sin \frac{2.282}{2}=\frac{5}{O P}$

$$
\begin{aligned}
O P & =\frac{5}{\sin 1.141} \\
& =5.500 \mathrm{~cm}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

Area $=(12)(5.500)-\frac{1}{2}(5.500)^{2}(2.282)$

$$
=31.5 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

31. (i) $\tan \angle P S T=\frac{5}{12}$

$$
\begin{aligned}
& \angle P S T=0.395 \mathrm{rad} \text { (to } 3 \text { s.f.) } \\
& \angle P O T=0.3947+0.3947 \text { (ext. } \angle=\text { sum of int. } \\
& \quad \text { opp. } \angle \text { s) } \\
&=0.790 \mathrm{rad} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\angle P O S=\pi-0.7895$ (\angle on a str. line)

$$
=2.352 \text { (to } 4 \text { s.f.) }
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
S T^{2} & =12^{2}+5^{2} \\
S T & =13 \mathrm{~cm} \\
O S & =6.5 \mathrm{~cm} \\
\text { Area } & =\frac{1}{2}(6.5)^{2}(2.352)-\frac{1}{2}(6.5)^{2} \sin 2.352 \\
& \left.=34.7 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f. }\right)
\end{aligned}
$$

32. (i) $8(\angle A O B)=6$

$$
\angle A O B=0.75 \mathrm{rad}
$$

(ii) Area $=\frac{1}{2}(8)^{2}(0.75)-\frac{1}{2}(8)(6) \sin 0.75$

$$
=7.64 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

33. (i) $\frac{1}{2}(5 x)^{2}(1.25)-\frac{1}{2}(3 x)^{2}(1.25)=250$

$$
\begin{aligned}
15.625 x^{2}-5.625 x^{2} & =250 \\
10 x^{2} & =250 \\
x^{2} & =25 \\
x & =5
\end{aligned}
$$

(ii) Perimeter $=15(1.25)+25(1.25)+2(10)$

$$
=70 \mathrm{~cm}
$$

Advanced

34. (i) $\cos \angle A B Q=\frac{5}{7+4}$
$=\frac{5}{11}$
$\angle A B Q=1.10 \mathrm{rad}$ (to 3 s.f.)
$\angle B A R=\pi-1.098$ (int. $\angle \mathrm{s}, B Q / / A R$)
$=2.04 \mathrm{rad}$ (to 3 s.f.)
(ii) Using Pythagoras' Theorem,

$$
\begin{aligned}
(Q S+H R)^{2}+5^{2} & =11^{2} \\
(Q S+H R)^{2} & =11^{2}-5^{2} \\
Q S+H R & =9.797 \mathrm{~cm}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

Perimeter $=7(1.098)+4(2.042)+9.797+2$

$$
=27.7 \mathrm{~cm} \text { (to } 3 \text { s.f. })
$$

(iii)

Area of trapezium $A B X R=\frac{1}{2}(9+4)(9.797)$

$$
=63.68 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) }
$$

Using Pythagoras' Theorem,
$H R^{2}+2^{2}=4^{2}$

$$
\begin{aligned}
H R^{2} & =4^{2}-2^{2} \\
H R & =3.464 \mathrm{~cm}(\text { to } 4 \text { s.f. }) \\
X H & =9.797-3.464 \\
& =6.333 \mathrm{~cm}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

Area of shaded region PQSHRSP
$=63.68-\frac{1}{2}(7)^{2}(1.098)-\frac{1}{2}(4)^{2}(2.042)-(6.333)(2)$
$=7.75 \mathrm{~cm}^{2}$ (to 3 s.f.)
35. (i) $\cos \angle P A B=\frac{3.5}{5}$

$$
\begin{aligned}
\angle P A B & =0.7953 \mathrm{rad} \text { (to } 4 \text { s.f.) } \\
\angle P A Q & =\frac{\pi}{2}-0.7953 \\
& =0.775 \mathrm{rad}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) Area $=9(3.5)-\frac{1}{2}(5)(3.5) \sin 0.7953$

$$
\begin{aligned}
& -\frac{1}{2}(5)^{2} \sin 0.7753 \\
= & 16.5 \mathrm{~cm}^{2}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

36. (i) $r \theta+2 r=4$

$$
\begin{aligned}
r \theta & =4-2 r \\
\theta & =\left(\frac{4}{r}-2\right)
\end{aligned}
$$

(ii) Area $=\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{2} r^{2}\left(\frac{4}{r}-2\right) \\
& =2 r-r^{2}
\end{aligned}
$$

Let $A=2 r-r^{2}$

$$
=r(2-r)
$$

When the area is a maximum,

$$
r=1 .
$$

(iii) When $r=1$,

$$
\begin{aligned}
& \text { Area }=1(2-1) \\
& =1 \mathrm{~m}^{2} \\
& \theta=\frac{4}{1}-2 \\
& =2 \mathrm{rad}
\end{aligned}
$$

37. (i) Area of $\triangle P Q R=\frac{1}{2}(2 r)(r)$

$$
=r^{2}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
P R^{2} & =r^{2}+r^{2} \\
& =2 r^{2}
\end{aligned}
$$

$P R=\sqrt{2} r \mathrm{~cm}$
Area of unshaded segment $P T Q$
$=\frac{1}{4} \pi(\sqrt{2} r)^{2}-r^{2}$
$=\left(\frac{1}{2} \pi r^{2}-r^{2}\right) \mathrm{cm}^{2}$
Area of shaded region $=\frac{1}{2} \pi r^{2}-\left(\frac{1}{2} \pi r^{2}-r^{2}\right)$

$$
=r^{2} \mathrm{~cm}^{2}
$$

The two areas are equal.
(ii) Area of segment $Q S R=\frac{1}{4} \pi r^{2}-\frac{1}{2}(r)(r)$

$$
=\left(\frac{1}{4} \pi r^{2}-\frac{1}{2} r^{2}\right) \mathrm{cm}^{2}
$$

$\frac{\text { Area of segment } P T Q}{\text { Area of segment } Q S R}=\frac{\frac{1}{2} \pi r^{2}-r^{2}}{\frac{1}{4} \pi r^{2}-\frac{1}{2} r^{2}}$
$=\frac{\frac{1}{2} r^{2}(\pi-2)}{\frac{1}{4} r^{2}(\pi-2)}$
$=2$
38. Area of sector $O A B=\frac{1}{2}(24)^{2}\left(\frac{\pi}{3}\right)$

$$
=96 \pi \mathrm{~cm}^{2}
$$

$$
\begin{aligned}
\sin \frac{\pi}{6} & =\frac{Q X}{24-Q X} \\
\frac{1}{2} & =\frac{Q X}{24-Q X} \\
24-Q X & =2 Q X \\
3 Q X & =24 \\
Q X & =8 \mathrm{~cm} \\
\angle Q X R & =\frac{\pi}{2}+\frac{\pi}{6}(\text { ext. } \angle=\text { sum of int. opp. } \angle \mathrm{s}) \\
& =\frac{2 \pi}{3} \text { rad } \\
\text { Area of unshaded sector } Q R P X & =\frac{1}{2}(8)^{2}\left(\frac{2 \pi}{3}\right) \times 2 \\
& =\frac{128 \pi}{3} \mathrm{~cm}^{2}
\end{aligned}
$$

$\angle Q X O=\pi-\frac{2 \pi}{3}(\angle \mathrm{~s}$ on a str. line $)$

$$
=\frac{\pi}{3} \mathrm{rad}
$$

Area of quadrilateral $O Q X P=\frac{1}{2}(8)(16) \sin \frac{\pi}{3} \times 2$

$$
=110.8 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) }
$$

Area of shaded region $=96 \pi-110.8-\frac{128 \pi}{3}$

$$
=56.7 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

39. (i)

$$
\begin{aligned}
\sin 0.6 & =\frac{C Q}{12-C Q} \\
12 \sin 0.6-C Q \sin 0.6 & =C Q \\
C Q+C Q \sin 0.6 & =12 \sin 0.6 \\
C Q(1+\sin 0.6) & =12 \sin 0.6 \\
C Q & =\frac{12 \sin 0.6}{1+\sin 0.6} \\
& =4.33 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

\therefore Radius of enclosed circle is 4.33 cm .
(ii) $\angle P C Q=2 \pi-\frac{\pi}{2}-\frac{\pi}{2}-1.2\left(\begin{array}{r}(\angle \operatorname{sum} \text { of a } \\ \text { quadrilateral })\end{array}\right.$

$$
\begin{aligned}
& =1.941 \mathrm{rad} \text { (to } 4 \text { s.f.) } \\
\tan 0.6 & =\frac{4.330}{O Q} \\
O Q & =\frac{4.330}{\tan 0.6} \\
& =6.329 \mathrm{~cm}(\text { to } 4 \text { s.f. }) \\
\text { Perimeter } & =4.330(1.941)+2(6.329) \\
& =21.1 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(iii) Area of shaded region

$$
\begin{aligned}
& =\frac{1}{2}(6.329)(4.330) \times 2-\frac{1}{2}(4.330)^{2}(1.941) \\
& =9.21 \mathrm{~cm}^{2}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

New Trend

40. $\cos \angle B O C=\frac{O B}{O C}$

$$
=\frac{3.5}{5}
$$

$$
\angle B O C=0.7954 \mathrm{rad} \text { (to } 4 \text { s.f.) }
$$

$\angle A O C=2 \angle B O C$

$$
=1.5908 \mathrm{rad}
$$

Area of minor segment
$=\frac{1}{2}(5)^{2}(1.5908)-\frac{1}{2}(5)^{2} \sin 1.5908$
$=7.388 \mathrm{~cm}^{2}$ (to 4 s.f.)
Area of coin pouch $=2\left[\pi(5)^{2}-7.388\right]$

$$
=142 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

41. (i) $(2 d) \theta=20$

$$
\theta=\frac{10}{d}
$$

(ii) Area of $R_{1}=\frac{1}{2}(2 d)^{2} \theta$

$$
=2 d^{2} \theta \mathrm{~cm}^{2}
$$

$$
\text { Area of } R_{2}=6 d^{2} \theta \mathrm{~cm}^{2}
$$

$$
\frac{1}{2}(O D)^{2} \theta=6 d^{2} \theta+2 d^{2} \theta
$$

$$
O D^{2}=16 d^{2}
$$

$$
O D=4 d \mathrm{~cm}
$$

42. (a) $A O=50 \mathrm{~cm}$

Using Pythagoras' Theorem,

$$
O B^{2}+40^{2}=50^{2}
$$

$$
\begin{gathered}
O B^{2}=50^{2}-40^{2} \\
O B=30 \mathrm{~cm} \\
\sin \angle B O A=\frac{40}{50} \\
\angle B O A=0.92730 \text { (to } 5 \text { s.f.) } \\
\angle B O C=\pi-2(0.92730) \\
=1.2874
\end{gathered}
$$

Total area $=40(30)+\frac{1}{2}(30)^{2}(1.2874)$

$$
=1779 \mathrm{~cm}^{2} \text { (to the nearest } \mathrm{cm}^{2} \text {) }
$$

(b) Total area of 100 kites $=100 \times 1779$

$$
\begin{aligned}
& =177900 \mathrm{~cm}^{2} \\
& =17.79 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\text { Cost }=\$ 23 \times 17.79
$$

$$
=\$ 409.17
$$

43. (a) Perimeter $=4(2.5)+2(4)$

$$
=18 \mathrm{~cm}
$$

Time taken $=\frac{18}{0.2}$

$$
=90 \mathrm{~s}
$$

(b) Let the radius of the base of the cone be $r \mathrm{~cm}$.

$$
\begin{aligned}
2 \pi r & =4(2.5) \\
r & =\frac{4(2.5)}{2 \pi} \\
& =1.59 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The radius of the base of the cone is 1.59 cm .
44. Let the radius of the circle be $r \mathrm{~cm}$.
$6=\frac{35^{\circ}}{360^{\circ}}(2 \pi r)$
$r=\frac{216}{7 \pi} \mathrm{~cm}$
Volume $=\frac{35^{\circ}}{360^{\circ}} \times \pi\left(\frac{216}{7 \pi}\right)^{2} \times 9$

$$
=265 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

45. (i) Length of major arc $P Q=120-16$

$$
=104 \mathrm{~cm}
$$

Reflex $\angle P O Q=\frac{104}{120} \times 2 \pi$

$$
=5.45 \mathrm{rad} \text { (to } 3 \text { s.f.) }
$$

(ii) Number of complete revolutions
$=\frac{10}{1.2}$
$=8$ (round down to the nearest integer)
(iii) Let the radius of the wheel be $r \mathrm{~cm}$.

$$
\begin{aligned}
2 \pi r & =120 \\
r & =19.1 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Radius of wheel is 19.1 cm .
(iv) Area $=\frac{1}{2}(19.09)^{2}(2 \pi-5.445)$

$$
=153 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

Revision Test C1

1. (a) $C D=\sqrt{41^{2}-40^{2}}$

$$
=9 \mathrm{~cm}
$$

(b) (i) $\tan \angle B D C=\frac{40}{9}$

$$
=4 \frac{4}{9}
$$

(ii) $\sin \angle A B D=\frac{9}{41}$
(iii) $\cos \angle B D E=-\frac{9}{41}$
2. (i) $Q R=\sqrt{7.8^{2}+10.4^{2}-2(7.8)(10.4) \cos 82^{\circ}}$

$$
=12.1 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) $\frac{\sin P Q R}{10.4}=\frac{\sin 82^{\circ}}{12.12}$

$$
\begin{aligned}
\angle P Q R & =\sin ^{-1}\left(\frac{10.4 \sin 82^{\circ}}{12.12}\right) \\
& =58.3^{\circ}(\text { to } 1 \text { d.p. })
\end{aligned}
$$

3. (i) $\angle A C B=180^{\circ}-47^{\circ}-51^{\circ}$

$$
\begin{aligned}
& =82^{\circ} \\
\frac{A C}{\sin 51^{\circ}} & =\frac{16.8}{\sin 82^{\circ}} \\
A C & =\frac{16.8 \times \sin 51^{\circ}}{\sin 82^{\circ}} \\
& =13.18 \\
& =13.2 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) Area of $\triangle A B C=\frac{1}{2}(A B)(A C) \sin 47^{\circ}$

$$
\begin{aligned}
& =\frac{1}{2}(16.8)(13.18) \sin 47^{\circ} \\
& =81.0 \mathrm{~cm}^{2}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

4. (i) Length of O to $A B=\sqrt{13^{2}-12^{2}}$

$$
=5 \mathrm{~cm}
$$

$$
\angle A O B=2 \times \sin ^{-1}\left(\frac{12}{13}\right)
$$

$$
=2.35 \mathrm{rad} \text { (to } 3 \mathrm{~s} . \mathrm{f} .)
$$

(ii) Length of $\operatorname{arc} A P B=2.35 \times 13$

$$
=30.6 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(iii) Area of segment $A P B$

$$
\begin{aligned}
& =\frac{1}{2}(13)^{2}(2.35)-\frac{1}{2}(24)(5) \\
& =139 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iv) Area of segment $B Q C$

$$
\begin{aligned}
& =\frac{1}{2}(13)^{2}(\pi-2.35)-\frac{1}{2}(10)(12) \\
& =6.89 \mathrm{~cm}^{2}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

5. (i) In $\triangle P Q R$,

$$
\begin{aligned}
\cos 50^{\circ} & =\frac{6}{P Q} \\
P Q & =\frac{6}{\cos 50^{\circ}} \\
& =9.33 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) In $\triangle V Q R$,

$$
\begin{aligned}
\tan \angle V Q R & =\frac{9}{6} \\
\angle V Q R & =\tan ^{-1} 1.5 \\
& \left.=56.3^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

(iii) $\sin 50^{\circ}=\frac{R T}{6}$

$$
\begin{aligned}
R T & =6 \sin 50^{\circ} \\
\angle V T R & =\tan ^{-1}\left(\frac{9}{6 \sin 50^{\circ}}\right) \\
& =62.9^{\circ}(\text { to } 1 \text { d.p. })
\end{aligned}
$$

6. $\cos \angle B A C=\frac{(5 x+12 y)^{2}+(12 x+5 y)^{2}-(13 x+13 y)^{2}}{2(5 x+12 y)(12 x+5 y)}$

Evaluating the numerator,
$\left(25 x^{2}+144 y^{2}+120 x y\right)+\left(144 x^{2}+25 y^{2}+120 x y\right)$
$-\left[169 x^{2}+169 y^{2}+338 x y\right]$
$=240 x y-338 x y$
$=-98 x y$
Since x and y are positive, \therefore the numerator is negative and the denominator is positive.
$\therefore \cos \angle B A C$ is negative and $\angle B A C$ is an obtuse angle.
7. (a) (i) By Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle A D B}{80}=\frac{\sin \left(180^{\circ}-47^{\circ}\right)}{170} \\
& \angle A D B
\end{aligned}=\sin ^{-1}\left[\frac{80 \sin 133^{\circ}}{170}\right] .
$$

\therefore The bearing of D from B is 026.9°.
(ii) $B C=\sqrt{80^{2}+70^{2}-2(80)(70) \cos 133^{\circ}}$

$$
=138 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

(b) Let the height of the building be $h \mathrm{~m}$.

$$
\begin{aligned}
\tan \theta & =\frac{h}{B D} \\
& =\frac{h}{170} \\
h & =170 \times \tan 33^{\circ} \\
& =110 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The height of the building is 110 m .

Revision Test C2

1. (i) $R S=\sqrt{5^{2}+7^{2}}$

$$
=8.60 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) $\sin 50^{\circ}=\frac{5}{P Q}$

$$
\begin{aligned}
\therefore P Q & =\frac{5}{\sin 50^{\circ}} \\
& =6.53 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) $\tan 50^{\circ}=\frac{5}{P L}$

$$
\begin{aligned}
\therefore P L & =\frac{5}{\tan 50^{\circ}} \\
& =4.20 \mathrm{~cm} \\
\therefore P S & =4.20+4+7 \\
& =15.2 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iv) $\angle M S R=\tan ^{-1}\left(\frac{5}{7}\right)$

$$
=35.5^{\circ} \text { (to } 1 \text { d.p.) }
$$

(v) Area of $P Q R S=\frac{1}{2}(4+15.2) \times 5$

$$
=48 \mathrm{~cm}^{2}
$$

2. $\tan 62^{\circ}=\frac{A B}{46}$

$$
\begin{aligned}
\therefore A B & =46 \tan 62^{\circ} \\
& =86.5 \\
& =87 \mathrm{~m} \text { (to the nearest metre) }
\end{aligned}
$$

$$
\begin{aligned}
\tan 64^{\circ} & =\frac{A C}{46} \\
\therefore A C & =46 \tan 64^{\circ} \\
& =94.3 \mathrm{~m} \\
\therefore B C & =94.3-86.5 \\
& =7.8 \\
& =8 \mathrm{~m} \text { (to the nearest metre) }
\end{aligned}
$$

3. (a) Area of sector $A O C=\frac{1}{2}(8)^{2}\left(\pi-\frac{3}{4}\right)$

$$
=76.5 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(b) Arc $A C=8(\pi-\theta)$

Arc $B C=8 \theta$
$8 \pi-8 \theta=8 \theta+16$

$$
16 \theta=8 \pi-16
$$

$$
\theta=\frac{8 \pi-16}{16}
$$

$$
=0.571 \mathrm{rad}(\text { to } 3 \text { s.f. })
$$

4. (i) $N R=\sqrt{26^{2}-10^{2}}$

$$
=24 \mathrm{~cm}
$$

(ii) $\angle Q R P=\sin ^{-1}\left(\frac{10}{26}\right)$

$$
=22.6^{\circ} \text { (to } 1 \text { d.p.) }
$$

(iii) $\cos 34^{\circ}=\frac{10}{P Q}$

$$
\begin{aligned}
\therefore P Q & =\frac{10}{\cos 34^{\circ}} \\
& =12.1 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iv) $\tan 34^{\circ}=\frac{N Q}{10}$

$$
\begin{aligned}
N Q & =10 \tan 34^{\circ} \\
& =6.75 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(v) Area of $\triangle P Q R=\frac{1}{2}(25+6.75) \times 10$

$$
=154 \mathrm{~cm}^{2}
$$

5. (i) $O B=\sqrt{12^{2}+16^{2}}$

$$
=20 \mathrm{~cm}
$$

(ii) $\sin 45^{\circ}=\frac{A M}{16}$

$$
\begin{aligned}
\therefore A M & =16 \sin 45^{\circ} \\
& =11.3 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) $O M=\sqrt{12^{2}+11.31^{2}}$

$$
=16.5 \mathrm{~cm} \text { (to } 3 \text { s.f. })
$$

(iv) $\angle O M A=\tan ^{-1}\left(\frac{12}{11.31}\right)$

$$
=46.7^{\circ} \text { (to } 1 \text { d.p.) }
$$

6. (i) $\operatorname{Arc} E D=\frac{40^{\circ}}{360^{\circ}} \times 2 \pi(7)$

$$
=4.89 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) $\sin 20^{\circ}=\frac{5}{A B}$

$$
\begin{aligned}
\therefore A B & =\frac{5}{\sin 20^{\circ}} \\
& =14.62 \mathrm{~cm}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

\therefore Area of $B C D E=\frac{1}{2}(14.62)^{2} \sin 40^{\circ}-\frac{40^{\circ}}{360^{\circ}} \pi(7)^{2}$ $=51.6 \mathrm{~cm}^{2}$ (to 3 s.f.)
(iii) Volume $=51.58 \times 0.4$

$$
=20.6 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

7. (i) $\angle A C B=\cos ^{-1}\left(\frac{(23 x)^{2}+(17 x)^{2}-(26 x)^{2}}{2(23 x)(17 x)}\right)$

$$
\left.=79.5^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

(ii) $\frac{1}{2}(23 x)(17 x) \sin 79.54^{\circ}=325$

$$
\begin{aligned}
\therefore x & =\sqrt{\frac{325 \times 2}{(23)(17) \sin 79.54^{\circ}}} \\
& =1.30 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

Chapter 11 Congruence and Similarity Tests

Basic

1. (a) $A B=Z Y$
$B C=Y X$
$A C=Z X$
$\therefore \triangle A B C \equiv \triangle Z Y X$ (SSS)
(b) $P Q=L M$
$\angle Q P R=\angle M L N$
$\angle P R Q=\angle L N M$
$\therefore \triangle P Q R \equiv \triangle L M N(\mathrm{AAS})$
(c) $A B=X Y$
$A C=X Z$
$\angle B A C=\angle Y X Z$
$\therefore \triangle A B C \equiv \triangle X Y Z$ (SAS)
(d) $T P=S R$
$T Q=S Q$
$P Q=R Q$
$\therefore \triangle T P Q \equiv \triangle S R Q(\mathrm{SSS})$
(e) $\angle C A B=\angle C B A$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle F E D=\angle F D E$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle C A B=\angle F E D$
$\angle C B A=\angle F D E$
$C A=F E$
$\therefore \triangle C A B \equiv \triangle F E D(\mathrm{AAS})$
(f) $\quad M L=P Q$
$M O=P O$
$\angle L M O=\angle Q P O$
$\therefore \triangle M L O \equiv \triangle P Q O$ (SAS)
(g) $A B=E D$
$A C=E C$
$\angle A C B=\angle E C D$, which is not the included angle.
\therefore The triangles may not be congruent.
(h) $P Q=P S$
$Q R=S R$
$P R$ is a common side.
$\therefore \triangle P Q R \equiv \triangle P S R$ (SSS)
(i) $\quad O L=O P$
$\angle O L M=\angle O P Q$
$\angle L O M=\angle P O Q$
$\therefore \triangle O L M \equiv \triangle O P Q$ (AAS)
(j) $A B=C B$
$B D$ is a common side.
$\angle B A D=\angle B C D=90^{\circ}$
$\therefore \triangle A B D \equiv \triangle C B D$ (RHS)
(k) $P Q=A B$
$\angle O P Q=\angle O A B($ alt. $\angle \mathrm{s}, Q P / / A B)$
$\angle P O Q=\angle A O B$ (vert. opp. $\angle \mathrm{s}$)
$\therefore \triangle O P Q \equiv \triangle O A B(\mathrm{AAS})$
(l) $B C=E F$
$\angle B A C=\angle E D F$
$\angle B C A=\angle E F D$
$\therefore \triangle A B C \equiv \triangle D E F(\mathrm{AAS})$
2. (a) $\angle B A C=\angle Z X Y$
$\angle A C B=\angle X Y Z$
$\therefore \triangle A B C$ is similar to $\triangle X Z Y$
(2 pairs of corr. $\angle \mathrm{s}$ equal).
(b) $\angle A B C=180^{\circ}-90^{\circ}-30^{\circ}(\angle$ sum of a $\triangle)$
$=60^{\circ}$
$\angle A B C=\angle Y Z X$
$\angle C A B=\angle X Y Z$
$\therefore \triangle A B C$ is similar to $\triangle Y Z X$
(2 pairs of corr. $\angle \mathrm{s}$ equal).
(c) $\frac{A C}{Z X}=\frac{13}{13}=1$
$\frac{A B}{Z Y}=\frac{13}{12}$
$\frac{B C}{Y X}=\frac{5}{10}=\frac{1}{2}$
Since the ratios of the corresponding sides are not equal, the triangles are not similar.
(d) $\frac{A B}{X Y}=\frac{14}{7}=2$

$$
\frac{B C}{Y Z}=\frac{6}{2}=3
$$

Since the ratios of the corresponding sides are not equal, the triangles are not similar.
3. Let the height of the lamp post be $h \mathrm{~m}$.

Using similar triangles,

$$
\begin{aligned}
\frac{h}{1.7} & =\frac{2.3+1.7}{1.7} \\
& =\frac{4.0}{1.7} \\
h & =4.0
\end{aligned}
$$

\therefore Height of lamp post is 4.0 m .

Intermediate

4. (a) $\triangle A P D \equiv \triangle D S C \equiv \triangle B Q A \equiv \triangle C R B$
(b) $\triangle A Q P \equiv \triangle B S R$
$\triangle A Q R \equiv \triangle B S P$
$\triangle A B P \equiv \triangle A B R$
(c) $\triangle R S X \equiv \triangle R Q X$
$\triangle P S X \equiv \triangle P Q X$
$\triangle P S R \equiv \triangle P Q R$
(d) $\triangle P Q T \equiv \triangle S R T$
5. $\angle E A B=\angle E D C$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle E B A=\angle E C D($ adj. $\angle \mathrm{s}$. on a str. line $)$ $E A=E D$
$\therefore \triangle E A B \equiv \triangle E D C(\mathrm{AAS})$
6. $\angle A B E+\angle E B D=\angle E B D+\angle D B C$
i.e. $\angle A B D=\angle C B E$

$$
\begin{aligned}
\angle A D B & =\angle C E B \\
A B & =C B
\end{aligned}
$$

$\therefore \triangle A B D \equiv \triangle C B E(\mathrm{AAS})$
7. (a) $\triangle A Q R$
(b) $\triangle A S P$
8. $\triangle Q Z S$ and $\triangle Y Z X$
9. (a) $\triangle C A X$
(b) $\triangle E Y Z$
10. (a) (i) $\triangle D X C$
(ii) $\triangle C D B$
(b) $\triangle D X A$
11. (a) $\triangle T S R$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{18} & =\frac{5}{9} \\
x & =\frac{5}{9} \times 18 \\
& =10 \\
\frac{y}{6} & =\frac{9}{5} \\
y & =\frac{9}{5} \times 6 \\
& =10.8
\end{aligned}
$$

(b) $\triangle A B R$

Using similar triangles,

$$
\begin{aligned}
\frac{x+5}{5} & =\frac{6}{2} \\
x+5 & =\frac{6}{2} \times 5 \\
& =15 \\
x & =10 \\
\frac{y+4}{4} & =\frac{6}{2} \\
y+4 & =\frac{6}{2} \times 4 \\
& =12 \\
y & =8
\end{aligned}
$$

(c) $\triangle Q A R$

Using similar triangles,

$$
\begin{aligned}
\frac{x+12}{15} & =\frac{15}{12} \\
x+12 & =\frac{15}{12} \times 15 \\
& =18 \frac{3}{4} \\
x & =6 \frac{3}{4} \\
\frac{y}{9} & =\frac{15}{12} \\
y & =\frac{15}{12} \times 9 \\
& =11 \frac{1}{4}
\end{aligned}
$$

(d) $\triangle P X Q$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{12} & =\frac{12}{18} \\
x & =\frac{12}{18} \times 12 \\
& =8 \\
\frac{y}{10} & =\frac{18}{12} \\
y & =\frac{18}{12} \times 10 \\
& =15
\end{aligned}
$$

(e) $\triangle A R B$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{6} & =\frac{15}{12} \\
x & =\frac{15}{12} \times 6 \\
& =7 \frac{1}{2} \\
\frac{y}{10} & =\frac{12}{15} \\
y & =\frac{12}{15} \times 10 \\
& =8
\end{aligned}
$$

(f) $\triangle M L R$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{12-x} & =\frac{6}{9} \\
9 x & =72-6 x \\
15 x & =72 \\
x & =4 \frac{4}{5}
\end{aligned}
$$

12.

Let the horizontal distance between the lizard and the wall be $x \mathrm{~m}$.

Using similar triangles,

$$
\begin{aligned}
\frac{x}{4} & =\frac{4}{6} \\
x & =\frac{4}{6} \times 4 \\
& =2 \frac{2}{3}
\end{aligned}
$$

\therefore Horizontal distance is $2 \frac{2}{3} \mathrm{~m}$.
13. (i) $\angle P Q R=\angle P X Z$ (corr. $\angle \mathrm{s}, Q R / / X Z)$
$\angle P Q R=\angle X Q Y($ common $\angle)$
$\angle Q P R=\angle Q X Y($ corr. $\angle \mathrm{s} . P R / / X Y)$
$\angle Q P R=\angle X P Z($ common $\angle)$
$\therefore \triangle P Q R, \triangle P X Z$ and $\triangle X Q Y$ are similar (2 pairs of corr. $\angle \mathrm{s}$ equal).
(ii) Using similar triangles,

$$
\begin{aligned}
\frac{X Y}{P R} & =\frac{Q Y}{Q R} \\
\frac{X Y}{8.5} & =\frac{Q R-X Z}{6.75} \\
\frac{X Y}{8.5} & =\frac{6.75-3}{6.75} \\
X Y & =4.72 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The length of $X Y$ is 4.72 cm .
14.

Using similar triangles,

$$
\begin{aligned}
\frac{x}{2.4} & =\frac{6}{2.7} \\
x & =\frac{6}{2.7} \times 2.4 \\
& =5 \frac{1}{3}
\end{aligned}
$$

15. $7 O P=5 P Q$
$\frac{O P}{P Q}=\frac{5}{7}$
$\frac{O P}{O Q}=\frac{5}{12}$
$\frac{Q B}{P A}=\frac{12}{5}$
$\therefore Q B: P A=12: 5$
16. $\triangle A B C$ is similar to $\triangle C D E$.

$$
\begin{aligned}
\frac{B C}{12-B C} & =\frac{5}{7} \\
7 B C & =60-5 B C \\
12 B C & =60 \\
B C & =5 \mathrm{~cm}
\end{aligned}
$$

17. $\triangle L M N$ is similar to $\triangle L C B$.
$\frac{B C}{6}=\frac{10}{4}$

$$
B C=\frac{10}{4} \times 6
$$

$$
=15 \mathrm{~cm}
$$

$\triangle A M N$ is similar to $\triangle A B C$.

$$
\begin{aligned}
\frac{A M}{A M+10} & =\frac{6}{15} \\
15 A M & =6 A M+60 \\
9 A M & =60 \\
A M & =6 \frac{2}{3} \mathrm{~cm}
\end{aligned}
$$

18. (i) $\angle S Q T=\angle R P T$ (given)
$\angle S T Q=\angle R T P($ common $\angle)$
$\therefore \triangle S Q T$ is similar to $\triangle R P T$ (2 pairs of corr. $\angle s$ equal).
(ii) Using similar triangles,

$$
\begin{aligned}
\frac{Q S}{9} & =\frac{7}{6} \\
Q S & =\frac{7}{6} \times 9 \\
& =10.5 \mathrm{~cm}
\end{aligned}
$$

19. (a) $\angle B A C=\angle C B D$ (given)
$\angle A B C=\angle B C D($ alt. $\angle \mathrm{s}, A B / / C D)$
$\therefore \triangle A B C$ is similar to $\triangle B C D$ (2 pairs of corr. $\angle \mathrm{s}$ equal).
(b) (i) Using similar triangles,

$$
\begin{aligned}
\frac{B C}{9} & =\frac{16}{B C} \\
B C^{2} & =144 \\
B C & =12 \mathrm{~cm}
\end{aligned}
$$

(ii) $\frac{A C}{B D}=\frac{9}{12}$

$$
=\frac{3}{4}
$$

20. (i) $\angle P S Q=\angle P Q R$ (given) $\angle Q P S=\angle R P Q($ common $\angle)$
$\therefore \triangle P S Q$ is similar to $\triangle P Q R$ (2 pairs of corr. $\angle \mathrm{s}$ equal).
(ii) Using similar triangles,

$$
\begin{aligned}
\frac{P Q}{9+16} & =\frac{9}{P Q} \\
P Q^{2} & =225 \\
P Q & =15 \mathrm{~cm}
\end{aligned}
$$

21. $\triangle A X Z$ is similar to $\triangle B Y Z$.
$\frac{Y Z}{Y Z+10}=\frac{4}{6}$

$$
\begin{aligned}
6 Y Z & =4 Y Z+40 \\
2 Y Z & =40 \\
Y Z & =20 \mathrm{~cm}
\end{aligned}
$$

22. (a) $\triangle Z A B$ is similar to $\triangle Z Y X$.

Using similar triangles,

$$
\begin{aligned}
\frac{B Z}{3 \frac{1}{2}} & =\frac{6}{3} \\
B Z & =\frac{6}{3} \times 3 \frac{1}{2} \\
& =7 \mathrm{~cm}
\end{aligned}
$$

(b) $\triangle Z X Y$ is similar to $\triangle Z Q R$.

Using similar triangles,

$$
\begin{aligned}
\frac{Y Z}{Y Z+16} & =\frac{3}{11} \\
11 Y Z & =3 Y Z+48 \\
8 Y Z & =48 \\
Y Z & =6 \mathrm{~cm}
\end{aligned}
$$

23. $\triangle Z X Y$ is similar to $\triangle Z C B$.

Using similar triangles,

$$
\begin{aligned}
\frac{B C}{2.8} & =\frac{2}{1.4} \\
B C & =\frac{2}{1.4} \times 2.8 \\
& =4 \mathrm{~m}
\end{aligned}
$$

$\triangle A X Y$ is similar to $\triangle A B C$.

$$
\begin{aligned}
& \frac{C Y+3.2}{3.2}=\frac{4}{2.8} \\
& C Y+3.2=\frac{4}{2.8} \times 3.2
\end{aligned}
$$

$$
C Y=1.37 \mathrm{~m} \text { (to } 3 \text { s.f. })
$$

$$
\frac{C Z}{1.2}=\frac{2}{1.4}
$$

$$
C Z=\frac{2}{1.4} \times 1.2
$$

$$
=1.71 \mathrm{~m} \text { (to } 3 \text { s.f. })
$$

Advanced

24. $\triangle M Q P$ is similar to $\triangle M R S$.

$$
\begin{aligned}
\frac{Q P}{R S} & =\frac{6}{10} \\
& =\frac{3}{5}
\end{aligned}
$$

$\triangle P M L$ is similar to $\triangle P S R$.

$$
\begin{aligned}
& P M: M S \\
& 3: 5 \\
& \therefore P M: P S \\
& 3: 8 \\
& \frac{P M}{P S}=\frac{L M}{R S} \\
& \frac{3}{8}=\frac{L M}{10} \\
& L M=\frac{3 \times 10}{8} \\
&=3.75 \mathrm{~cm}
\end{aligned}
$$

25. $\triangle P Q R$ is similar to $\triangle Y X R$.

$$
\begin{aligned}
\frac{2 x-y}{7} & =\frac{2 x+3 y}{9} \\
18 x-9 y & =14 x+21 y \\
4 x & =30 y \\
\frac{x}{y} & =\frac{15}{2}
\end{aligned}
$$

$$
\therefore x: y=15: 2
$$

New Trend

26. (a) $\angle D P Q=\angle A P B$ (common \angle)
$\angle P D Q=\angle P A B$ (corr. $\angle \mathrm{s}, D C / / A B)$
$\therefore \triangle P D Q$ is similar to $\triangle P A B$ (2 pairs of corr. $\angle \mathrm{s}$ equal).
(b) $\triangle B C Q$
(c) Using similar triangles,

$$
\begin{aligned}
\frac{D Q}{A B} & =\frac{P D}{P A} \\
& =\frac{1}{3}
\end{aligned}
$$

$\therefore D Q: A B=1: 3$
(d) $\frac{10}{10+8+R B}=\frac{1}{3}$

$$
30=18+R B
$$

$$
R B=12 \mathrm{~cm}
$$

27. (a) $\angle C A B=\angle N C B$ (given)
$\angle A B C=\angle C B N($ common $\angle)$
$\therefore \triangle A B C$ is similar to $\triangle C B N$ (2 pairs of corr. \angle s equal).
(b) Using similar triangles,

$$
\begin{aligned}
\frac{B C}{25} & =\frac{13}{B C} \\
B C^{2} & =325 \\
B C & =18 \mathrm{~cm}
\end{aligned}
$$

Chapter 12 Area and Volume of Similar

Figures and Solids

Basic

1. (a) $\frac{A_{2}}{50}=\left(\frac{2}{10}\right)^{2}$

$$
\begin{aligned}
A_{2} & =\left(\frac{2}{10}\right)^{2} \times 50 \\
& =2 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) $\frac{A_{1}}{0.7}=\left(\frac{0.8}{0.4}\right)^{2}$

$$
\begin{aligned}
A_{1} & =\left(\frac{0.8}{0.4}\right)^{2} \times 0.7 \\
& =2.8 \mathrm{~m}^{2}
\end{aligned}
$$

(c) $\frac{A_{2}}{96}=\left(\frac{3}{12}\right)^{2}$

$$
\begin{aligned}
A_{2} & =\left(\frac{3}{12}\right)^{2} \times 96 \\
& =6 \mathrm{~cm}^{2}
\end{aligned}
$$

(d) $\frac{A_{1}}{172}=\left(\frac{22.2}{14.8}\right)^{2}$

$$
\begin{aligned}
A_{1} & =\left(\frac{22.2}{14.8}\right)^{2} \times 172 \\
& =387 \mathrm{~m}^{2}
\end{aligned}
$$

(e) $\frac{A_{2}}{56}=\left(\frac{4 p}{6 p}\right)^{2}$

$$
\begin{aligned}
A_{2} & =\left(\frac{4 p}{6 p}\right)^{2} \times 56 \\
& =24 \frac{8}{9} \mathrm{~cm}^{2}
\end{aligned}
$$

(f) $\frac{A_{1}}{125 p}=\left(\frac{6}{10}\right)^{2}$

$$
\begin{aligned}
A_{1} & =\left(\frac{6}{10}\right)^{2} \times 125 p \\
& =45 p \mathrm{~m}^{2}
\end{aligned}
$$

2. (a) $\left(\frac{a}{4}\right)^{2}=\frac{16}{64}$

$$
\begin{aligned}
\frac{a}{4} & =\sqrt{\frac{16}{64}} \\
a & =\sqrt{\frac{16}{64}} \times 4 \\
& =2
\end{aligned}
$$

(b) $\left(\frac{b}{5}\right)^{2}=\frac{480}{125}$

$$
\begin{aligned}
\frac{b}{5} & =\sqrt{\frac{480}{125}} \\
b & =\sqrt{\frac{480}{125}} \times 5 \\
& =9.80 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(c) $\left(\frac{c}{7}\right)^{2}=\frac{4.9}{38.5}$

$$
\begin{aligned}
\frac{c}{7} & =\sqrt{\frac{4.9}{38.5}} \\
c & =\sqrt{\frac{4.9}{38.5}} \times 7 \\
& =2.50 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(d) $\left(\frac{d}{0.6}\right)^{2}=\frac{6 p}{24 p}$

$$
\begin{aligned}
\frac{d}{0.6} & =\sqrt{\frac{6 p}{24 p}} \\
d & =\sqrt{\frac{6 p}{24 p}} \times 0.6 \\
& =0.3
\end{aligned}
$$

(e) $\left(\frac{e}{\frac{35 p}{2}}\right)^{2}=\frac{128}{50}$

$$
\frac{e}{35 p}=\sqrt{\frac{128}{50}}
$$

$$
e=\sqrt{\frac{128}{50}} \times \frac{35 p}{2}
$$

$$
=28 p
$$

(f) $\left(\frac{f}{8}\right)^{2}=\frac{87 \frac{1}{2}}{55}$

$$
\begin{aligned}
\frac{f}{8} & =\sqrt{\frac{87 \frac{1}{2}}{55}} \\
f & =\sqrt{\frac{87 \frac{1}{2}}{55}} \times 8 \\
& =10.1 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

3. (a) $\frac{V_{2}}{32}=\left(\frac{4}{8}\right)^{3}$

$$
\begin{aligned}
V_{2} & =\left(\frac{4}{8}\right)^{3} \times 32 \\
& =4 \mathrm{~mm}^{3}
\end{aligned}
$$

(b) $\frac{V_{1}}{81}=\left(\frac{4}{6}\right)^{3}$

$$
\begin{aligned}
V_{1} & =\left(\frac{4}{6}\right)^{3} \times 81 \\
& =24 \mathrm{~m}^{3}
\end{aligned}
$$

(c) $\frac{V_{2}}{480}=\left(\frac{5}{10}\right)^{3}$

$$
\begin{aligned}
V_{2} & =\left(\frac{5}{10}\right)^{3} \times 480 \\
& =60 \mathrm{~cm}^{3}
\end{aligned}
$$

(d) $\frac{V_{1}}{375 p}=\left(\frac{9.6}{12}\right)^{3}$

$$
\begin{aligned}
V_{1} & =\left(\frac{9.6}{12}\right)^{3} \times 375 p \\
& =192 p \mathrm{~cm}^{3}
\end{aligned}
$$

(e) $\frac{V_{1}}{95}=\left(\frac{12}{6}\right)^{3}$

$$
V_{1}=\left(\frac{12}{6}\right)^{3} \times 95
$$

$$
=760 \mathrm{~cm}^{3}
$$

(f) $\frac{V_{2}}{40}=\left(\frac{13.5}{4.5}\right)^{3}$

$$
\begin{aligned}
V_{2} & =\left(\frac{13.5}{4.5}\right)^{3} \times 40 \\
& =1080 \mathrm{~cm}^{3}
\end{aligned}
$$

4. (a) $\left(\frac{a}{0.5}\right)^{3}=\frac{270}{10}$

$$
\begin{aligned}
\frac{a}{0.5} & =\sqrt[3]{\frac{270}{10}} \\
a & =\sqrt[3]{\frac{270}{10}} \times 0.5 \\
& =1.5
\end{aligned}
$$

(b) $\left(\frac{b}{8}\right)^{3}=\frac{13}{104}$

$$
\begin{aligned}
\frac{b}{8} & =\sqrt[3]{\frac{13}{104}} \\
b & =\sqrt[3]{\frac{13}{104}} \times 8 \\
& =4
\end{aligned}
$$

(c) $\left(\frac{c}{22}\right)^{3}=\frac{7 a}{56 a}$

$$
\begin{aligned}
\frac{c}{22} & =\sqrt[3]{\frac{7 a}{56 a}} \\
c & =\sqrt[3]{\frac{7 a}{56 a}} \times 22 \\
& =11
\end{aligned}
$$

(d) $\left(\frac{d}{14}\right)^{3}=\frac{54 p}{16 p}$

$$
\begin{aligned}
\frac{d}{14} & =\sqrt[3]{\frac{54 p}{16 p}} \\
d & =\sqrt[3]{\frac{54 p}{16 p}} \times 14 \\
& =21
\end{aligned}
$$

(e) $\left(\frac{e}{20.4}\right)^{3}=\frac{81 p}{192 p}$

$$
\begin{aligned}
\frac{e}{20.4} & =\sqrt[3]{\frac{81 p}{192 p}} \\
e & =\sqrt[3]{\frac{81 p}{192 p}} \times 20.4 \\
& =15.3
\end{aligned}
$$

(f) $\left(\frac{f}{8.4}\right)^{3}=\frac{7}{448}$

$$
\begin{aligned}
\frac{f}{8.4} & =\sqrt[3]{\frac{7}{448}} \\
f & =\sqrt[3]{\frac{7}{448}} \times 8.4 \\
& =2.1
\end{aligned}
$$

5. Let the areas of the similar circle and larger circle be $A_{1} \mathrm{~cm}^{2}$ and $A_{2} \mathrm{~cm}^{2}$ respectively.

$$
\begin{aligned}
\frac{A_{1}}{A_{2}} & =\left(\frac{3}{8}\right)^{2} \\
& =\frac{9}{64}
\end{aligned}
$$

$\therefore A_{1}: A_{2}=9: 64$
6. (a) $\triangle A B X$ is similar to $\triangle D C X$.

$$
\begin{aligned}
\frac{\text { Area of } \triangle A B X}{\text { Area of } \triangle C D X} & =\left(\frac{5}{9}\right)^{2} \\
& =\frac{25}{81}
\end{aligned}
$$

(b) $\triangle A B X$ is similar to $\triangle C D X$.

$$
\text { Area of } \begin{aligned}
\frac{\text { Area of } \triangle C D X}{} \triangle C D & =\left(\frac{14}{10}\right)^{2} \\
& =\frac{49}{25}
\end{aligned}
$$

7. (i) $\frac{\text { Area of } \triangle X A B}{490}=\left(\frac{12}{21}\right)^{2}$

$$
\text { Area of } \begin{aligned}
\triangle X A B & =\left(\frac{12}{21}\right)^{2} \times 490 \\
& =160 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) Area of $A B Z Y=490-160$

$$
=330 \mathrm{~m}^{2}
$$

8. $\left(\frac{25+C E}{25}\right)^{2}=\frac{288}{50}$

$$
\begin{aligned}
\frac{25+C E}{25} & =\sqrt{\frac{288}{50}} \\
& =\frac{12}{5} \\
25+C E & =60 \\
C E & =35 \mathrm{~m}
\end{aligned}
$$

9. (i) Let the surface areas of the smaller ball and larger ball be $A_{1} \mathrm{~cm}^{2}$ and $A_{2} \mathrm{~cm}^{2}$ respectively.

$$
\begin{aligned}
\frac{A_{1}}{A_{2}} & =\left(\frac{2}{5}\right)^{2} \\
& =\frac{4}{25}
\end{aligned}
$$

$\therefore A_{1}: A_{2}=4: 25$
(ii) Let the volumes of the balls be $V_{1} \mathrm{~cm}^{3}$ and $V_{2} \mathrm{~cm}^{3}$ respectively.

$$
\begin{aligned}
\frac{V_{1}}{V_{2}} & =\left(\frac{2}{5}\right)^{3} \\
& =\frac{8}{125}
\end{aligned}
$$

$\therefore V_{1}: V_{2}=8: 125$
10. Let the mass of the larger sphere be $m \mathrm{~kg}$.

$$
\begin{aligned}
\frac{m}{27} & =\left(\frac{2.8}{1.2}\right)^{3} \\
m & =\left(\frac{2.8}{1.2}\right)^{3} \times 27 \\
& =343
\end{aligned}
$$

\therefore Mass of larger sphere is 343 kg .

Intermediate

11. (a) (i) $1^{2}: 3^{2}=1: 9$
(ii) $1^{3}: 3^{3}=1: 27$
(b) (i) $1.44: 7.84=9: 49$

$$
\sqrt{9}: \sqrt{49}=3: 7
$$

(ii) $3^{3}: 7^{3}=27: 343$
(c) $\sqrt[3]{1^{2}}: \sqrt[3]{64^{2}}=1: 16$
(d) $\sqrt[3]{1}: \sqrt[3]{2.197}=1: 1.3$

$$
=10: 13
$$

12. (i) Let the total surface areas of the small marker and large marker be $A_{1} \mathrm{~cm}^{2}$ and $A_{2} \mathrm{~cm}^{2}$ respectively.

$$
\begin{aligned}
\frac{A_{1}}{A_{2}} & =\left(\frac{14}{28}\right)^{2} \\
& =\frac{1}{4}
\end{aligned}
$$

$\therefore A_{1}: A_{2}=1: 4$
(ii) $\frac{A_{1}}{208}=\frac{1}{4}$

$$
\begin{aligned}
A_{1} & =\frac{1}{4} \times 208 \\
& =52
\end{aligned}
$$

\therefore Total surface area of the small marker is $52 \mathrm{~cm}^{2}$.
13. (i) Height of original statue $=\frac{5}{2} \times 24$

$$
=60 \mathrm{~cm}
$$

(ii) Let the mass of the original statue be $m \mathrm{~kg}$.

$$
\begin{aligned}
\frac{m}{1.6} & =\left(\frac{5}{2}\right)^{3} \\
m & =\left(\frac{5}{2}\right)^{3} \times 1.6 \\
& =25
\end{aligned}
$$

\therefore Mass of original statue is 25 kg .
14. (i) Let the circumferences of the top of the smaller glass and larger glass be $C_{1} \mathrm{~cm}$ and $C_{2} \mathrm{~cm}$ respectively.

$$
\begin{aligned}
\left(\frac{C_{1}}{C_{2}}\right)^{2} & =\frac{9}{49} \\
\frac{C_{1}}{C_{2}} & =\frac{3}{7}
\end{aligned}
$$

$\therefore C_{1}: C_{2}=3: 7$
(ii) Let the capacity of the smaller glass be $V \mathrm{~cm}^{3}$.

$$
\begin{aligned}
\frac{V}{857.5} & =\left(\frac{3}{7}\right)^{3} \\
V & =\left(\frac{3}{7}\right)^{3} \times 857.5 \\
& =67.5
\end{aligned}
$$

\therefore Capacity of smaller glass is $67.5 \mathrm{~cm}^{3}$.
15. (i) Height of replica $=\frac{7}{300} \times 860$

$$
=20.1 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

(ii) Let the mass of the statue be $m \mathrm{~kg}$.

$$
\begin{aligned}
\frac{m}{0.4} & =\left(\frac{300}{7}\right)^{3} \\
m & =\left(\frac{300}{7}\right)^{3} \times 0.4 \\
& =31500 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Mass of statue is 31500 kg .
16. $\triangle P Q R$ is similar to $\triangle P T S$.

$$
\left.\begin{array}{l}
\frac{\text { Area of } \triangle P T S}{27}
\end{array}=\left(\frac{5}{3}\right)^{2}\right) \text { Area of } \triangle P T S ~=\left(\frac{5}{3}\right)^{2} \times 27 \text {. } \begin{aligned}
& \\
&=75 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of $Q R S T=75-27$

$$
=48 \mathrm{~cm}^{2}
$$

17. $\frac{\text { Area of } A F G H I}{245}=\left(\frac{4}{7}\right)^{2}$

$$
\text { Area of } \begin{aligned}
A F G H I & =\left(\frac{4}{7}\right)^{2} \times 245 \\
& =80 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region $=245-80$

$$
=165 \mathrm{~cm}^{2}
$$

18. Let the actual area occupied be $A \mathrm{~m}^{2}$.

$$
\begin{aligned}
\frac{A}{396 \times 10^{-4}} & =\left(\frac{26}{22 \times 10^{-2}}\right)^{2} \\
A & =\left(\frac{26}{22 \times 10^{-2}}\right)^{2} \times 396 \times 10^{-4} \\
& =553 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Actual area is $553 \mathrm{~m}^{2}$.
19. Let the actual area occupied be $A \mathrm{~m}^{2}$.

$$
\begin{aligned}
\frac{A}{24 \times 10^{-4}} & =\left(\frac{120}{1.5 \times 10^{-2}}\right)^{2} \\
A & =\left(\frac{120}{1.5 \times 10^{-2}}\right)^{2} \times 24 \times 10^{-4} \\
& =153600
\end{aligned}
$$

\therefore Actual area is $153600 \mathrm{~m}^{2}$.
20. (i) $\frac{\text { Area of } \triangle P M N}{\text { Area of } \triangle P Q R}=\left(\frac{4}{5}\right)^{2}$

$$
=\frac{16}{25}
$$

(ii) Area of $M N R Q=\frac{1}{2}(5+4)(2)$

$$
=9 \mathrm{~m}^{2}
$$

Let the area of $\triangle P M N$ be $A \mathrm{~m}^{2}$.

$$
\begin{aligned}
\frac{A}{A+9} & =\frac{16}{25} \\
25 A & =16 A+144 \\
9 A & =144 \\
A & =16
\end{aligned}
$$

\therefore Area of $\triangle P M N=16 \mathrm{~m}^{2}$
21. (i) $S T: Q R=a: a+b$
(ii) Area of $\triangle P S T$: Area of $\triangle P Q R=a^{2}:(a+b)^{2}$
22. (i) $\triangle P B A$ is similar to $\triangle P S Q$.

$$
\begin{aligned}
\frac{A B}{10} & =\frac{1}{2} \\
A B & =\frac{1}{2} \times 10 \\
& =5 \mathrm{~cm}
\end{aligned}
$$

(ii) $\frac{\text { Area of } \triangle P Q S}{45}=\left(\frac{2}{1}\right)^{2}$

$$
\text { Area of } \begin{aligned}
\triangle P Q S & =\left(\frac{2}{1}\right)^{2} \times 45 \\
& =180 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii) $R C: R Q=p: p+q$
(iv) Area of $\triangle R C D$: Area of $\triangle R Q S=p^{2}:(p+q)^{2}$
23. (i) $\frac{\text { Area of } \triangle P R S}{20}=\left(\frac{6}{3}\right)^{2}$

$$
\text { Area of } \begin{aligned}
\triangle P R S & =\left(\frac{6}{3}\right)^{2} \times 20 \\
& =80 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Area of $\triangle P Q S=\frac{10}{6} \times 80$

$$
=133 \frac{1}{3} \mathrm{~cm}^{2}
$$

24. (i) Let the dimeter of the larger container be $d \mathrm{~cm}$.

$$
\begin{aligned}
\frac{d}{7} & =\frac{12}{8} \\
d & =\frac{12}{8} \times 7 \\
& =10 \frac{1}{2}
\end{aligned}
$$

\therefore Diameter of larger container is $10 \frac{1}{2} \mathrm{~cm}$.
(ii) Volume of smaller container
: Volume of larger container
$=8^{3}: 12^{3}$
$=8: 27$
25. (i) Mass $=8640(6.5)$

$$
\begin{aligned}
& =56160 \mathrm{~g} \\
& =56.16 \mathrm{~kg}
\end{aligned}
$$

(ii) Let the height of the model be $h \mathrm{~cm}$.

$$
\begin{aligned}
\left(\frac{h}{86}\right)^{3} & =\frac{135}{8640} \\
\frac{h}{86} & =\sqrt[3]{\frac{135}{8640}} \\
h & =\sqrt[3]{\frac{135}{8640}} \times 86 \\
& =21.5
\end{aligned}
$$

\therefore Height of model is 21.5 cm .
26. Let the volumes of the original ingot and the smaller ingot be $V_{1} \mathrm{~cm}^{3}$ and $V_{2} \mathrm{~cm}^{3}$ respectively.
$\frac{V_{1}}{V_{2}}=\frac{216}{1}$
If the lengths of the ingots are $l_{1} \mathrm{~cm}$ and $l_{2} \mathrm{~cm}$ respectively, then,

$$
\begin{aligned}
\frac{l_{1}}{l_{2}} & =\sqrt[3]{\frac{216}{1}} \\
& =\frac{6}{1} \\
\frac{l_{1}}{4.24} & =\frac{6}{1} \\
l_{1} & =\frac{6}{1} \times 4.24 \\
& =25.44
\end{aligned}
$$

\therefore Length of original ingot is 25.44 cm .
27. (i) Let the circumference of the small tin be $C \mathrm{~cm}$.

$$
\begin{aligned}
\frac{C}{48} & =\frac{7.5}{11.25} \\
C & =\frac{7.5}{11.25} \times 48 \\
& =32
\end{aligned}
$$

\therefore Circumference of small tin is 32 cm .
(ii) Volume of large tin : Volume of small tin

$$
\begin{aligned}
& =11.25^{3}: 7.5^{3} \\
& =27: 8
\end{aligned}
$$

(iii) Cost $=\frac{8}{27} \times \$ 10.80$

$$
=\$ 3.20
$$

28. (i) Let the length of the actual boat $l \mathrm{~m}$.

$$
\begin{aligned}
\frac{l}{1.6} & =\frac{2.1}{0.14} \\
l & =\frac{2.1}{0.14} \times 1.6 \\
& =24
\end{aligned}
$$

\therefore Length of actual boat is 24 m .
(ii) $\frac{\text { Surface area of model boat }}{\text { Surface area of actual boat }}=\left(\frac{2.1}{0.14}\right)^{2}$

$$
=\frac{225}{1}
$$

(iii) Let the cost of painting the actual boat be $\$ C$.

$$
\begin{aligned}
\frac{C}{3.2} & =\frac{225}{1} \\
C & =\frac{225}{1} \times 3.2 \\
& =720
\end{aligned}
$$

\therefore Cost of painting the actual boat is $\$ 720$.
29. (i) Let the volume of the whole cone be $V_{1} \mathrm{~cm}^{3}$.

$$
\begin{aligned}
\frac{V_{1}}{V} & =\left(\frac{2}{1}\right)^{3} \\
V_{1} & =\left(\frac{2}{1}\right)^{3} \times V \\
& =8 \mathrm{~V}
\end{aligned}
$$

\therefore Volume of the whole cone is $8 V \mathrm{~cm}^{3}$.
(ii) $\frac{V}{V+3500}=\left(\frac{1}{2}\right)^{3}$

$$
=\frac{1}{8}
$$

$$
8 V=V+3500
$$

$$
7 V=3500
$$

$$
V=500
$$

\therefore Volume of solid A is $500 \mathrm{~cm}^{3}$.
30. (i) Let the depth of the water be $h \mathrm{~cm}$.

$$
\begin{aligned}
\left(\frac{h}{12}\right)^{3} & =\frac{1}{8} \\
\frac{h}{12} & =\sqrt[3]{\frac{1}{8}} \\
h & =\sqrt[3]{\frac{1}{8}} \times 12 \\
& =6
\end{aligned}
$$

\therefore Depth of water is 6 cm .
(ii) Area of top surface of the water

$$
\begin{aligned}
& : \text { Area of top surface of the container } \\
& =6^{2}: 12^{2} \\
& =1: 4
\end{aligned}
$$

31. (i) Let the height of the container be $h \mathrm{~cm}$.

$$
\begin{aligned}
\left(\frac{h}{5}\right)^{3} & =\frac{27}{1} \\
\frac{h}{5} & =\sqrt[3]{\frac{27}{1}} \\
h & =\sqrt[3]{\frac{27}{1}} \times 5 \\
& =15
\end{aligned}
$$

\therefore Height of container is 15 cm .
(ii) Area of top surface of the water

$$
\begin{aligned}
& \text { : Area of top surface of the container } \\
& =5^{2}: 15^{2} \\
& =1: 9
\end{aligned}
$$

32. Let the lengths of the lighter box and heavier box be $l_{1} \mathrm{~m}$ and $l_{2} \mathrm{~m}$ respectively.

$$
\begin{aligned}
\left(\frac{l_{1}}{l_{2}}\right)^{3} & =\frac{8.58}{68.64} \\
\frac{l_{1}}{l_{2}} & =\sqrt[3]{\frac{8.58}{68.64}} \\
& =\frac{1}{2}
\end{aligned}
$$

Let the base area of the ligher box be $A \mathrm{~m}^{2}$.

$$
\begin{aligned}
\frac{A}{23.72} & =\left(\frac{1}{2}\right)^{2} \\
A & =\left(\frac{1}{2}\right)^{2} \times 23.72 \\
& =5.93
\end{aligned}
$$

\therefore Base area of the lighter box is $5.93 \mathrm{~m}^{2}$.

Advanced

33. (i) $\frac{\text { Area of } S Q R T+20}{20}=\left(\frac{5}{2}\right)^{2}$

$$
\begin{aligned}
\text { Area of } S Q R T+20 & =\left(\frac{5}{2}\right)^{2} \times 20 \\
& =125 \\
\text { Area of } S Q R T & =105 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) $\frac{\text { Area of } \triangle T U R}{20}=\left(\frac{3}{2}\right)^{2}$

Area of $\triangle T U R=\left(\frac{3}{2}\right)^{2} \times 20$

$$
=45 \mathrm{~cm}^{2}
$$

Area of $S T U Q=105-45$

$$
=60 \mathrm{~cm}^{2}
$$

34. (a) $\triangle A R Q$ is similar to $\triangle A B P$.
$\frac{9+R B}{9}=\frac{8}{6}$
$9+R B=12$

$$
R B=3 \mathrm{~cm} \text { (shown) }
$$

(b) (i) $\frac{\text { Area of } \triangle A R Q}{\text { Area of } \triangle A B P}=\left(\frac{6}{8}\right)^{2}$

$$
=\frac{9}{16}
$$

$$
\therefore \frac{\text { Area of } \triangle A R Q}{\text { Area of trapezium } R B P Q}=\frac{9}{7}
$$

(ii) $\frac{\text { Area of } \triangle B Q R}{\text { Area of } \triangle A R Q}=\frac{3}{9}$

$$
=\frac{1}{3}
$$

(iii) $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle B Q R}=\left(\frac{12}{3}\right)^{2}$

$$
=\frac{16}{1}
$$

(c) (i) From (b)(i),

$$
\text { Area of } \begin{aligned}
\triangle A R Q & =\frac{9}{7} \times 21 \\
& =27 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Area of $\triangle B Q R=\frac{3}{7} \times 21$

$$
=9 \mathrm{~cm}^{2}
$$

(iii) Area of $\triangle A B C=16 \times 9$

$$
=144 \mathrm{~cm}^{2}
$$

35. (i) $\angle H M N=\angle A P N($ alt. $\angle \mathrm{s}, M H / / A P)$
$\angle M N H=\angle P N A$ (vert. opp. $\angle \mathrm{s}$)
$\therefore \triangle M N H$ is similar to $\triangle P N A$.
(2 pairs of corr. $\angle \mathrm{s}$ equal).
(ii) $M H: A P=24: 8$

$$
=3: 1
$$

(iii) Area of $\triangle P N A$: Area of $\triangle M N H$
$=1: 9$
Area of $\triangle M A N$: Area of $\triangle M N H$
$=1: 3$
= $3: 9$
\therefore Area of $\triangle M A N$: Area of $H N P T$
= $3: 11$
36. $\left(\frac{40}{30}\right)^{3}=\frac{x^{2}}{x+0.4}$

$$
\begin{gathered}
\frac{64}{27}=\frac{x^{2}}{x+0.4} \\
64 x+25.6=27 x^{2} \\
27 x^{2}-64 x-25.6=0 \\
x=\frac{-(-64) \pm \sqrt{(-64)^{2}-4(27)(-25.6)}}{2(27)} \\
=2.719 \text { or }-0.349 \\
\therefore x=2.72 \text { (to } 3 \text { s.f.) }
\end{gathered}
$$

37. (i) Let the total slant surface areas of A, B and C be $S_{A} \mathrm{~cm}^{2}, S_{B} \mathrm{~cm}^{2}$ and $S_{C} \mathrm{~cm}^{2}$ respectively.

$$
\begin{aligned}
\frac{S_{A}}{S_{A}+S_{B}} & =\left(\frac{2}{5}\right)^{2} \\
& =\frac{4}{25} \\
\frac{S_{A}}{S_{A}+S_{B}+S_{C}} & =\left(\frac{2}{9}\right)^{2} \\
& =\frac{4}{81} \\
\therefore S_{A}: S_{B}: S_{C} & =4: 21: 56
\end{aligned}
$$

(ii) Let the volumes of A, B and C be $V_{A} \mathrm{~cm}^{3}, V_{B} \mathrm{~cm}^{3}$ and and $V_{C} \mathrm{~cm}^{3}$ respectively.

$$
\begin{aligned}
\frac{V_{A}}{V_{A}+V_{B}} & =\left(\frac{2}{5}\right)^{3} \\
& =\frac{8}{125} \\
\frac{V_{A}}{V_{A}+V_{B}+V_{C}} & =\left(\frac{2}{9}\right)^{3} \\
& =\frac{8}{729} \\
\therefore V_{A}: V_{B}: V_{C} & =8: 117: 604
\end{aligned}
$$

38. (i) $\frac{\text { Volume of whole iceberg }}{V}=\left(\frac{72}{6}\right)^{3}$

Volume of whole iceberg $=\left(\frac{72}{6}\right)^{3} \times V$

$$
=1728 \mathrm{~V} \mathrm{~m}^{3}
$$

(ii) Volume of tip of iceberg : Volume of submerged part $=1: 1727$
39. Let the radius of cylinders A and B be r_{A} and r_{B} respectively.

Let the volume of metal balls P and Q be V.
Since the water level in B increases by 3 cm ,

$$
\begin{aligned}
V & =\pi r_{B}^{2}(3) \\
& =3 \pi r_{B}^{2}
\end{aligned}
$$

Let the increase in the water level in A be $x \mathrm{~cm}$,
$V=\pi r_{A}{ }^{2}(x)$

$$
=x \pi r_{A}^{2}
$$

$\therefore 3 \pi r_{B}{ }^{2}=x \pi r_{A}{ }^{2}$

$$
\begin{aligned}
x & =\left(\frac{r_{B}}{r_{A}}\right)^{2} \times 3 \\
& =\left(\frac{6}{1}\right)^{2} \times 3 \\
& =36 \times 3 \\
& =108 \mathrm{~cm}
\end{aligned}
$$

\therefore The increase in the water level in A is 108 cm .

New Trend

40. (a) Let the height of the 40 -litre backpack be $h \mathrm{~cm}$.

$$
\begin{aligned}
\left(\frac{h}{80}\right)^{3} & =\frac{40}{65} \\
\frac{h}{80} & =\sqrt[3]{\frac{40}{65}} \\
h & =\sqrt[3]{\frac{40}{65}} \times 80 \\
& =68.0 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(b) Let the surface areas of the 65 -litre and 40 -litre backpacks be $A_{1} \mathrm{~cm}^{2}$ and $A_{2} \mathrm{~cm}^{2}$ respectively.

$$
\begin{aligned}
\frac{A_{1}}{A_{2}} & =\left(\sqrt[3]{\frac{65}{40}}\right)^{2} \\
& =1.38 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

The ratio is $1.38: 1$.

$$
\therefore k=1.38
$$

41. Let the heights of the smaller oxygen tank and larger oxygen tank be $h_{1} \mathrm{~cm}$ and $h_{2} \mathrm{~cm}$ respectively.

$$
\begin{aligned}
\left(\frac{h_{1}}{h_{2}}\right)^{3} & =\frac{42}{164} \\
\frac{h_{1}}{h_{2}} & =\sqrt[3]{\frac{42}{164}} \\
& =0.635 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Percentage $=0.635 \times 100 \%$

$$
=63.5 \%
$$

\therefore The height of the smaller tank is 63.5% of that of the larger tank.
42. (a) $\angle A O M=360^{\circ} \div 10$

$$
=36^{\circ}
$$

$\tan 36^{\circ}=\frac{3}{O M}$

$$
\begin{aligned}
O M & =\frac{3}{\tan 36^{\circ}} \\
& =4.1291 \mathrm{~cm}(\text { to } 5 \text { s.f. })
\end{aligned}
$$

Area of pentagon $=5 \times \frac{1}{2} \times 6 \times \frac{3}{\tan 36^{\circ}}$

$$
=61.94 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) (shown) }
$$

(b) Using Pythagoras' Theorem,

$$
\begin{aligned}
O X^{2}+4.1291^{2} & =10^{2} \\
O X^{2} & =10^{2}-4.1291^{2} \\
O X & =9.1077 \mathrm{~cm} \text { (to } 5 \text { s.f.) } \\
\text { Volume }= & \frac{1}{3} \times 61.94 \times 9.1077 \\
= & 188 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(c) Let the volume of the second pyramid be $V_{2} \mathrm{~cm}^{3}$.

$$
\begin{aligned}
\frac{V_{2}}{188.04} & =\left(\frac{10}{6}\right)^{3} \\
V_{2} & =\left(\frac{10}{6}\right)^{3} \times 188.04 \\
& =871 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Volume of the second pyramid is $871 \mathrm{~cm}^{3}$.

Chapter 13 Geometrical Properties of Circles

Basic

1. $\angle B O A=2 \angle A C B\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =2\left(47^{\circ}\right) \\
& =94^{\circ} \\
\angle C A O & =180^{\circ}-68^{\circ}-94^{\circ}(\angle \text { sum of a } \triangle) \\
& =18^{\circ}
\end{aligned}
$$

2. (i) $\angle A C D=90^{\circ}$ (rt. \angle in a semicircle)

$$
\begin{aligned}
\angle A D C & =180^{\circ}-90^{\circ}-48^{\circ}(\angle \text { sum of a } \triangle) \\
& =42^{\circ}
\end{aligned}
$$

(ii) $\angle A B C=180^{\circ}-42^{\circ}(\angle \mathrm{s}$ in opp. segments $)$

$$
\begin{aligned}
& =138^{\circ} \\
\angle A C B & =\frac{180^{\circ}-138^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle \text {) } \\
& =21^{\circ}
\end{aligned}
$$

3. $\angle B A D=180^{\circ}-80^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\begin{aligned}
& =100^{\circ} \\
\angle A B D & =\frac{180^{\circ}-100^{\circ}}{2}(\text { base } \angle \text { s of isos. } \triangle) \\
& =40^{\circ} \\
\angle D B C & =180^{\circ}-64^{\circ}-80^{\circ}(\angle \text { sum of a } \triangle) \\
& =36^{\circ} \\
\angle A B C & =\angle A B D+\angle D B C \\
& =40^{\circ}+36^{\circ} \\
& =76^{\circ}
\end{aligned}
$$

4. (i) $\angle A D C=\frac{1}{2} \angle A O C\left(\angle\right.$ at centre $=2 \angle$ at $\left.\mathrm{O}^{\text {ce }}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(42^{\circ}\right) \\
& =21^{\circ}
\end{aligned}
$$

(ii) $\angle O A D=\angle A D C$ (alt. $\angle \mathrm{s}, O A / / D C)$

$$
=21^{\circ}
$$

5. (i) $\angle B A D=180^{\circ}-72^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line $)$

$$
=108^{\circ}
$$

$\angle B C D=180^{\circ}-108^{\circ}(\angle \mathrm{s}$ in opp. segments)

$$
=72^{\circ}
$$

(ii) $\angle B A C=\angle B D C(\angle \mathrm{~s}$ in same segment $)$

$$
=38^{\circ}
$$

$$
\angle D A C=108^{\circ}-38^{\circ}
$$

$$
=70^{\circ}
$$

(iii) $\angle D B A+\angle M A B=\angle A M D$ (ext. $\angle=$ sum of int.

$$
\begin{aligned}
\angle D B A+38^{\circ} & \left.=64^{\circ} \quad \text { opp. } \angle \mathrm{s}\right) \\
\angle D B A & =26^{\circ}
\end{aligned}
$$

6. (i) $\angle A O B=2 \angle A C B\left(\angle\right.$ at centre $=2 \angle$ at $\left.\mathrm{O}^{\text {ce }}\right)$

$$
\begin{aligned}
& =2\left(45^{\circ}\right) \\
& =90^{\circ}
\end{aligned}
$$

(ii) $\angle O B A=\frac{180^{\circ}-90^{\circ}}{2}$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=45^{\circ}
$$

$\angle O B C=61^{\circ}$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle A B C=\angle O B A+\angle O B C$

$$
=45^{\circ}+61^{\circ}
$$

$$
=106^{\circ}
$$

(iii) $\angle B O C=180^{\circ}-61^{\circ}-61^{\circ}(\angle$ sum of a $\triangle)$

$$
=58^{\circ}
$$

7. (i) $\angle P S Q=90^{\circ}$ (rt. \angle in a semicircle)

$$
\begin{aligned}
\angle S P Q & =180^{\circ}-90^{\circ}-38^{\circ}(\angle \text { sum of a } \triangle) \\
& =52^{\circ}
\end{aligned}
$$

(ii) $\angle Q S T+\angle S T Q=\angle P Q S$ (ext. $\angle=$ sum of int.

$$
\left.\angle Q S T+22^{\circ}=38^{\circ} \quad \text { opp. } \angle \text { s }\right)
$$

$\angle Q S T=16^{\circ}$
(iii) $\angle P Q S+\angle S Q R=\angle P S Q+\angle Q S R$ ($\angle \mathrm{s}$ in opp.
$38^{\circ}+\angle S Q R=90^{\circ}+16^{\circ} \quad$ segments $)$
$\angle S Q R=68^{\circ}$
8. $\angle B A D=\frac{1}{2} \angle B O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\mathrm{O}^{\text {ce }}\right)$
$=\frac{1}{2}\left(132^{\circ}\right)$

$$
=66^{\circ}
$$

$\angle B C D+\angle B A D=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\angle B C D+66^{\circ}=180^{\circ}
$$

$$
\angle B C D=114^{\circ}
$$

$$
\angle D C E=180^{\circ}-114^{\circ}(\text { adj. } \angle \mathrm{s} \text { on a str. line })
$$

$$
=66^{\circ}
$$

9. $\angle B A D=\frac{1}{2} \angle B O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(130^{\circ}\right)
$$

$$
=65^{\circ}
$$

$\angle B A X=180^{\circ}-65^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line $)$

$$
=115^{\circ}
$$

10. $\angle A Q B=90^{\circ}$ (rt. \angle in a semicircle)
$\angle P Q B=90^{\circ}-38^{\circ}$

$$
=62^{\circ}
$$

$\angle P B Q=180^{\circ}-32^{\circ}-62^{\circ}($ adj. \angle sum of a $\triangle)$

$$
=86^{\circ}
$$

11. (i) $\angle A B C=90^{\circ}$ (rt. \angle in a semicircle)

$$
\angle D B C=90^{\circ}-24^{\circ}
$$

$$
=66^{\circ}
$$

(ii) $\angle B A P+\angle A B P=\angle B P C$ (ext. $\angle=$ sum of int.

$$
\left.\angle B A P+24^{\circ}=58^{\circ} \quad \text { opp. } \angle \mathrm{s}\right)
$$

$$
\angle B A P=34^{\circ}
$$

$$
\angle B D C=\angle B A P
$$

$$
=34^{\circ}(\angle \mathrm{s} \text { in same segment })
$$

12. (i) reflex $\angle A O C=360^{\circ}-132^{\circ}$ ($\angle \mathrm{s}$ at a pt.)

$$
=228^{\circ}
$$

$$
\begin{aligned}
\angle A B C & =\frac{1}{2} \times \text { reflex } \angle A O C\left(\angle \text { at centre }=2 \angle \text { at } \bigcirc^{\text {ce }}\right) \\
& =\frac{1}{2}\left(228^{\circ}\right) \\
& =114^{\circ}
\end{aligned}
$$

(ii) $\angle O A B=360^{\circ}-114^{\circ}-64^{\circ}-132^{\circ}(\angle$ sum of a
$=50^{\circ} \quad$ quadrilateral $)$
(iii) $\angle O A C=\frac{180^{\circ}-132^{\circ}}{2}$ (base \angle s of isos. \triangle)

$$
=24^{\circ}
$$

13. $\angle P Q R=\frac{1}{2} \times$ reflex $\angle P O R\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(230^{\circ}\right)
$$

$\angle O P Q=180^{\circ}-115^{\circ}$ (int. $\angle \mathrm{s}, P O / / Q R$)

$$
=65^{\circ}
$$

14. (i) $\angle B C D=90^{\circ}$ (rt. \angle in a semicircle)
$\angle B C A=\angle A D B(\angle \mathrm{~s}$ in same segment $)$

$$
=25^{\circ}
$$

$$
\angle A C D=90^{\circ}-25^{\circ}
$$

$$
=65^{\circ}
$$

(ii) $\angle C A D+\angle A D B=\angle C K D$ (ext. $\angle=$ sum of int.

$$
\left.\angle C A D+25^{\circ}=64^{\circ} \quad \text { opp. } \angle \mathrm{s}\right)
$$

$$
\angle C A D=39^{\circ}
$$

15. (i) $\angle A D C=180^{\circ}-124^{\circ}$ (adj. $\angle \mathrm{s}$ on a str. line)

$$
=56^{\circ}
$$

$$
\angle A C D=180^{\circ}-56^{\circ}-56^{\circ}(\angle \text { sum of a } \triangle)
$$

$$
=68^{\circ}
$$

(ii) $\angle A B C+\angle A D C=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\begin{aligned}
\angle A B C+56^{\circ} & =180^{\circ} \\
\angle A B C & =124^{\circ} \\
\angle B A C & =\frac{180^{\circ}-124^{\circ}}{2} \text { (base } \angle \text { s of isos. } \triangle \text {) } \\
& =28^{\circ}
\end{aligned}
$$

16. (i) $\angle B C D+\angle B A D=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\angle B C D+70^{\circ}=180^{\circ}
$$

$$
\angle B C D=110^{\circ}
$$

(ii) $\angle B O D=2 \angle B A D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=2\left(70^{\circ}\right)
$$

$$
=140^{\circ}
$$

$$
\angle O B D=\frac{180^{\circ}-140^{\circ}}{2}(\text { base } \angle \text { s of isos. } \triangle \text {) }
$$

$$
=20^{\circ}
$$

17. (i) $\angle A C D=180^{\circ}-56^{\circ}-78^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line $)$

$$
=46^{\circ}
$$

$\angle A B D=\angle A C D(\angle \mathrm{~s}$ in same segment $)$

$$
=46^{\circ}
$$

(ii) $\angle C A D=180^{\circ}-28^{\circ}-78^{\circ}-46^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$

$$
=28^{\circ}
$$

$\angle C B D=\angle C A D(\angle \mathrm{~s}$ in same segment $)$

$$
=28^{\circ}
$$

18. (i) $\angle A D C+\angle A B C=180^{\circ}(\angle \mathrm{s}$ in opp. segments)

$$
\angle A D C+107^{\circ}=180^{\circ}
$$

$$
\angle A D C=73^{\circ}
$$

(ii) $\angle B C D+\angle B A D=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\begin{aligned}
\angle B C D+80^{\circ} & =180^{\circ} \\
\angle B C D & =100^{\circ} \\
\angle B C P & =180^{\circ}-100^{\circ}(\text { adj. } \angle \mathrm{s} \text { on a str. line }) \\
& =80^{\circ}
\end{aligned}
$$

(iii) $\angle B P C=180^{\circ}-80^{\circ}-73^{\circ}(\angle$ sum of a $\triangle)$

$$
=27^{\circ}
$$

19. (i) $\angle A D E=\angle A C E$ ($\angle \mathrm{s}$ in same segments)

$$
=52^{\circ}
$$

$$
\angle A D C=124^{\circ}-52^{\circ}
$$

$$
=72^{\circ}
$$

(ii) $\angle E A C+\angle C D E=180^{\circ}(\angle \mathrm{s}$ in opp. segments $)$

$$
\begin{aligned}
\angle E A C+124^{\circ} & =180^{\circ} \\
\angle E A C & =56^{\circ}
\end{aligned}
$$

$$
\angle A C B+\angle A C E+\angle E A C+\angle C A B=180^{\circ}(\angle \text { sin opp. }
$$

$$
\angle A C B+52^{\circ}+56^{\circ}+30^{\circ}=180^{\circ} \text { segments) }
$$

$$
\angle A C B=42^{\circ}
$$

20. (i) $\angle C A B=\angle B D C$ ($\angle \mathrm{s}$ in same segments)

$$
=22^{\circ}
$$

$$
\angle B D A=180^{\circ}-46^{\circ}-64^{\circ}-22^{\circ}(\angle \operatorname{sum} \text { of a } \triangle)
$$

$$
=48^{\circ}
$$

$$
\angle A T D=180^{\circ}-22^{\circ}-48^{\circ}-64^{\circ}-22^{\circ}(\angle \text { sum of }
$$

$$
=24^{\circ}
$$

$$
\mathrm{a} \triangle)
$$

(ii) $\angle A B C+\angle A D C=180^{\circ}(\angle \mathrm{s}$ in opp. segments $)$ $\angle A B C+48^{\circ}+22^{\circ}=180^{\circ}$

$$
\begin{aligned}
\angle A B C & =110^{\circ} \\
\angle T B C & =180^{\circ}-110^{\circ}(\angle \mathrm{s} \text { on a str. line }) \\
& =70^{\circ}
\end{aligned}
$$

21. (i) $\angle B O C=2 \angle B A C\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =2\left(24^{\circ}\right) \\
& =48^{\circ}
\end{aligned}
$$

(ii) $\angle O C A=\angle B A C$ (alt. $\angle \mathrm{s}, C O / / B A$)

$$
=24^{\circ}
$$

$\angle O A C=\angle O C A$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle O B A=\angle O A B$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=24^{\circ}+24^{\circ}
$$

$$
=48^{\circ}
$$

Intermediate

22. $\angle A B C=\frac{1}{2} \angle A O C\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(62^{\circ}\right) \\
& =31^{\circ}
\end{aligned}
$$

$\angle O A P=90^{\circ}$ (rt. \angle in a semicircle)
$\angle O A B=180^{\circ}-31^{\circ}-34^{\circ}-90^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$
$=25^{\circ}$
23. (i) $\angle A B D=90^{\circ}$ (rt. \angle in a semicircle)

$$
\begin{aligned}
\angle C B D & =\angle C A D(\angle \mathrm{~s} \text { in same segment }) \\
& =30^{\circ} \\
\angle A B C & =90^{\circ}+30^{\circ} \\
& =120^{\circ}
\end{aligned}
$$

(ii) $\angle A C B=\angle B A Q(\angle \mathrm{~s}$ in alt. segment $)$

$$
=28^{\circ}
$$

(iii) $\quad \angle D A Q=90^{\circ}$ (rt. \angle in a semicircle)

$$
\begin{aligned}
\angle D A C+\angle C A B+\angle B A Q & =90^{\circ} \\
30^{\circ}+\angle C A B+28^{\circ} & =90^{\circ} \\
\angle C A B & =32^{\circ} \\
\angle B D C & =\angle B A C(\angle \mathrm{~s} \text { in same } \\
& \left.=32^{\circ} \quad \text { segment }\right)
\end{aligned}
$$

24. (i) $\quad \angle O C T=90^{\circ}$ (tangent \perp radius)

$$
\begin{aligned}
\angle A C T+\angle O C A & =90^{\circ} \\
36^{\circ}+\angle O C A & =90^{\circ} \\
\angle O C A & =54^{\circ} \\
\angle O A C & =\angle O C A(\text { base } \angle \text { s of isos. } \triangle \text {) } \\
& =54^{\circ}
\end{aligned}
$$

(ii) $\angle C A B=36^{\circ}+50^{\circ}$ (ext. $\angle=$ sum of int. opp. \angle s)

$$
=86^{\circ}
$$

$$
\angle O A B=\angle C A B-\angle O A C
$$

$$
=86^{\circ}-54^{\circ}
$$

$$
=32^{\circ}
$$

$$
\angle A O B=180^{\circ}-2(32)^{\circ}(\angle \text { sum of a } \triangle)
$$

$$
=116^{\circ}
$$

25. (i) $\angle O A T=90^{\circ}$ (tangent \perp radius)

Using Pythagoras' Theorem,

$$
\begin{aligned}
O T^{2} & =O A^{2}+A T^{2} \\
& =4.6^{2}+7.2^{2} \\
& =73 \\
O T & =\sqrt{73} \mathrm{~cm} \\
T C & =\sqrt{73}-4.6 \\
& =3.94 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(ii) $\tan \angle A T O=\frac{4.6}{7.2}$

$$
\begin{aligned}
\angle A T O & =\tan ^{-1} \frac{4.6}{7.2} \\
& \left.=32.57^{\circ} \text { (to } 2 \text { d.p. }\right) \\
\angle A T B & =2\left(32.57^{\circ}\right) \\
& =65.1^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

26. $\angle C O D=180^{\circ}-57^{\circ}-57^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$

$$
=66^{\circ}
$$

$\angle O A C=\frac{1}{2} \angle C O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$
$=\frac{1}{2}\left(66^{\circ}\right)$
$=33^{\circ}$
reflex $\angle A O C=180^{\circ}+66^{\circ}$ $=246^{\circ}$

$$
\begin{aligned}
\angle A B C & =\frac{1}{2} \angle A O C\left(\angle \text { at centre }=2 \angle \text { at } \bigcirc^{\text {ce }}\right) \\
& =\frac{1}{2}\left(246^{\circ}\right) \\
& =123^{\circ} \\
\angle B A C & =\frac{180^{\circ}-123^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =28.5^{\circ}
\end{aligned}
$$

$$
\angle O A B=\angle O A C+\angle B A C
$$

$$
=33^{\circ}+28.5^{\circ}
$$

$$
=61.5^{\circ}
$$

27. $\angle A O C=\frac{1}{2} \angle A B C\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(98^{\circ}\right)
$$

$$
=49^{\circ}
$$

$$
\begin{aligned}
\angle O A C+\angle O C A+98^{\circ} & =180^{\circ}(\angle \text { sum of a } \triangle) \\
\angle O A C+\angle O C A & =82^{\circ} \\
\angle O C B & =180^{\circ}-49^{\circ}-25^{\circ}-82^{\circ}(\angle \text { sum } \\
& \left.=24^{\circ} \quad \text { of a } \triangle\right)
\end{aligned}
$$

28. $\angle A C B=90^{\circ}(\mathrm{rt} . \angle$ in a semicircle $)$
$\angle D C A=\angle A B D(\angle \mathrm{~s}$ in same segment $)$

$$
=13^{\circ}
$$

$\angle B A C=25^{\circ}+13^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$) $=38^{\circ}$
29. (i) $\quad \angle A D B=90^{\circ}$ (rt. \angle in a semicircle) $\angle A B D+\angle A C D=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\angle A B D+108^{\circ}=180^{\circ}
$$

$$
\angle A B D=72^{\circ}
$$

$$
\angle B A D=180^{\circ}-90^{\circ}-72^{\circ}(\angle \text { sum of a } \triangle)
$$

$$
=18^{\circ}
$$

(ii) $\angle B C D=\angle B A D(\angle \mathrm{~s}$ in same segment $)$

$$
=18^{\circ}
$$

(iii) $\angle B D X+\angle B X D=72^{\circ}$ (ext. $\angle=$ sum of int. opp. \angle)

$$
\angle B D X+24^{\circ}=72^{\circ}
$$

$$
\angle B D X=48^{\circ}
$$

30. (i) $\angle C O D=2 \angle C A D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=2\left(28^{\circ}\right)
$$

$$
=56^{\circ}
$$

$\angle O C D=\frac{180^{\circ}-56^{\circ}}{2}$ (base $\angle \mathrm{s}$ of isos. \triangle) $=62^{\circ}$
(ii) $\angle B A C=\frac{1}{2} \angle B A C\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(114^{\circ}\right) \\
& =57^{\circ} \\
\angle B A D & =28^{\circ}+57^{\circ} \\
& =85^{\circ}
\end{aligned}
$$

31. (i) reflex $\angle A O C=360^{\circ}-122^{\circ}$ ($\angle \mathrm{s}$ at a pt.)

$$
=238^{\circ}
$$

$$
\begin{aligned}
\angle A B C & =\frac{1}{2} \times \text { reflex } \angle A O C(\angle \text { at centre }=2 \angle \\
& =\frac{1}{2}\left(238^{\circ}\right) \\
& =119^{\circ}
\end{aligned}
$$

(ii) $\angle D X C=96^{\circ}$ (vert. opp. \angle s)

$$
\begin{aligned}
\angle A D C & =\frac{1}{2} \angle A O C\left(\angle \text { at centre }=2 \angle \text { at } O^{\text {ce }}\right) \\
& =\frac{1}{2}\left(122^{\circ}\right) \\
& =61^{\circ} \\
\angle X C D & =180^{\circ}-96^{\circ}-61^{\circ}(\angle \text { sum of a } \triangle) \\
& =23^{\circ}
\end{aligned}
$$

32. (i)

$$
\begin{aligned}
\angle A Q B & =90^{\circ}(\mathrm{rt} . \angle \text { in a semicircle }) \\
\angle A B Q & =180^{\circ}-90^{\circ}-26^{\circ}(\angle \text { sum of a } \triangle) \\
& =64^{\circ} \\
\angle A P Q+\angle A B Q & =180^{\circ}(\angle \text { s in opp. segments }) \\
\angle A P Q+64^{\circ} & =180^{\circ} \\
\angle A P Q & =116^{\circ}
\end{aligned}
$$

(ii) $\angle A P Q+\angle P A Q+\angle Q A B=180^{\circ}$ (int. $\left.\angle \mathrm{s}, P Q / / A B\right)$

$$
116^{\circ}+\angle P A Q+26^{\circ}=180^{\circ}
$$

$$
\angle P A Q=38^{\circ}
$$

33. (i)

$$
\begin{aligned}
\angle A B C & =180^{\circ}-38^{\circ}-76^{\circ}(\angle \text { sum of a } \triangle) \\
& =66^{\circ}
\end{aligned}
$$

$$
\angle A Q B+\angle A C B=180^{\circ}(\angle \mathrm{s} \text { in opp. segments })
$$

$$
\angle A Q B+76^{\circ}=180^{\circ}
$$

$$
\angle A Q B=104^{\circ}
$$

$$
\angle A B Q=\frac{180^{\circ}-104^{\circ}}{2} \text { (base } \angle \text { s of isos. } \triangle \text {) }
$$

$$
=38^{\circ}
$$

$$
\angle Q B C=66^{\circ}+38^{\circ}
$$

$$
=104^{\circ}
$$

(ii) $\angle P B Q=90^{\circ}$ ($\mathrm{rt} . \angle$ in a semcircle)

$$
\angle P B C=104^{\circ}-90^{\circ}
$$

$$
=14^{\circ}
$$

34. (i) reflex $\angle A O C=2 \angle A B C\left(\angle\right.$ at centre $=2 \angle$ at $\left.O^{\text {cc }}\right)$

$$
\begin{aligned}
& =2\left(118^{\circ}\right) \\
& =236^{\circ}
\end{aligned}
$$

obtuse $\angle A O C=360^{\circ}-236^{\circ}$ ($\angle \mathrm{s}$ at a pt.)

$$
=124^{\circ}
$$

(ii) Let the radius of the circle be $r \mathrm{~cm}$.

Using Cosine Rule,
$24^{2}=r^{2}+r^{2}-2(r)(r) \cos 124^{\circ}$
$576=2 r^{2}-2 r^{2} \cos 124^{\circ}$

$$
=2 r^{2}\left(1-\cos 124^{\circ}\right)
$$

$$
288=r^{2}\left(1-\cos 124^{\circ}\right)
$$

$$
\begin{aligned}
r^{2} & =\frac{288}{1-\cos 124^{\circ}} \\
r & =\sqrt{\frac{288}{1-\cos 124^{\circ}}} \\
& =13.6 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Radius of circle $=13.6 \mathrm{~cm}$
35. (i) $\angle P Q D+\angle P C D=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\begin{aligned}
\angle P Q D+86^{\circ} & =180^{\circ} \\
\angle P Q D & =94^{\circ} \\
\angle P Q A & =180^{\circ}-94^{\circ}(\angle \mathrm{s} \text { on a str. line }) \\
& =86^{\circ} \\
\angle A B C+\angle P Q A & =180^{\circ}(\angle \mathrm{s} \text { in opp. segments }) \\
\angle A B C+86^{\circ} & =180^{\circ}
\end{aligned}
$$

(ii) $\angle B P Q+\angle B A Q=180^{\circ}(\angle \mathrm{s}$ in opp. segments)

$$
\angle B P Q+95^{\circ}=180^{\circ}
$$

$$
\angle B P Q=85^{\circ}
$$

$$
\angle Q P C=180^{\circ}-85^{\circ}(\angle \mathrm{s} \text { on a str. line })
$$

$$
=95^{\circ}
$$

$\angle A D C+\angle Q P C=180^{\circ} \quad$ ($\angle \mathrm{s}$ in opp. segments)
$\angle A D C+95^{\circ}=180^{\circ}$

$$
\angle A D C=85^{\circ}
$$

36. $\angle A C D=\frac{1}{2} \angle A O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(104^{\circ}\right)
$$

$$
=52^{\circ}
$$

$\angle A C P=180^{\circ}-52^{\circ}(\mathrm{adj} . \angle \mathrm{s}$ on a str. line $)$

$$
=128^{\circ}
$$

$\angle A B D=\angle A C D(\angle \mathrm{~s}$ in same segment $)$

$$
=52^{\circ}
$$

$\angle D B P=180^{\circ}-52^{\circ}(\mathrm{adj} . \angle \mathrm{s}$ on a str. line $)$

$$
=128^{\circ}
$$

$$
\angle B K C=360^{\circ}-32^{\circ}-128^{\circ}-128^{\circ}(\angle \text { sum of a }
$$

$$
=72^{\circ}
$$ quadrilateral)

37. $\angle A E D+\angle A C D=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\angle A C B=90^{\circ}(\mathrm{rt} . \angle \mathrm{in} \text { a semicircle })
$$

$\angle B C D+\angle A E D=\angle A C B+\angle A C D+\angle A E D$
$=90^{\circ}+180^{\circ}$

$$
=270^{\circ}
$$

38. (i) $\angle A B D=21^{\circ}+29^{\circ}$ (ext. $\angle=$ sum of int. opp. \angle s)

$$
=50^{\circ}
$$

(ii) $\angle B A C=\angle B D C(\angle \mathrm{~s}$ in same segment $)$

$$
=21^{\circ}
$$

$$
\angle A K D=21^{\circ}+50^{\circ}(\text { ext. } \angle=\text { sum of int. opp. } \angle \text { s })
$$

$$
=71^{\circ}
$$

(iii) $\quad \angle A C D=\angle A B D(\angle \mathrm{~s}$ in same segment $)$

$$
=50^{\circ}
$$

$\angle P B C+29^{\circ}=50^{\circ}+55^{\circ}$ (ext. $\angle=$ sum of int. opp.

$$
\left.\angle P B C=76^{\circ} \quad \angle \mathrm{s}\right)
$$

39. $\angle A C D=90^{\circ}$ (rt. \angle in a semicircle)

$$
\begin{aligned}
\angle B A D+\angle B C D & =180^{\circ}(\angle \mathrm{s} \text { in opp. segments }) \\
\angle B A D+38^{\circ}+90^{\circ} & =180^{\circ} \\
\angle B A D & =52^{\circ} \\
\angle B E D & =52^{\circ}+38^{\circ}(\text { ext. } \angle=\text { sum of int. } \\
& \left.=90^{\circ} \quad \text { opp. } \angle \mathrm{s}\right)
\end{aligned}
$$

40.

Using Pythagoras' Theorem, $h^{2}+12.5^{2}=21^{2}$

$$
\begin{aligned}
h^{2} & =284.75 \\
h & =16.9 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Perpendicular distance from the centre of circle to the chord is 16.9 cm .
41. (i) $\angle A O D=2 \angle A B D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =2\left(42^{\circ}\right) \\
& =84^{\circ}
\end{aligned}
$$

$$
\angle O A D=\frac{180^{\circ}-84^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle)
$$

$$
=48^{\circ}
$$

(ii) $\quad \angle A C D=\angle A B D(\angle \mathrm{~s}$ in same segment $)$

$$
=42^{\circ}
$$

$\angle B D C+42^{\circ}=64^{\circ}$ (ext. $\angle=$ sum. of int. opp. $\angle \mathrm{s}$)

$$
\begin{aligned}
\angle B D C & =22^{\circ} \\
\angle A D C & =90^{\circ}(\text { rt. } \angle \text { in a semicircle }) \\
\angle A D B & =90^{\circ}-22^{\circ} \\
& =68^{\circ}
\end{aligned}
$$

42. $\angle A C D=\frac{1}{2} \angle A O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(114^{\circ}\right)
$$

$$
=57^{\circ}
$$

$\angle A K D+18^{\circ}=57^{\circ}$ (ext. $\angle=$ sum of int. opp. \angle s) $\angle A K D=39^{\circ}$
43. (i) $\angle A O B=180^{\circ}-2\left(40^{\circ}\right)(\angle \operatorname{sum}$ of a $\triangle)$

$$
=100^{\circ}
$$

$\angle A C B=\frac{1}{2} \angle A O B\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$
$=\frac{1}{2}\left(100^{\circ}\right)$

$$
=50^{\circ}
$$

(ii) $\angle O B C=180^{\circ}-50^{\circ}-69^{\circ}-40^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$

$$
=21^{\circ}
$$

$\angle O B D=180^{\circ}-21^{\circ}(\angle$ s on a str. line $)$

$$
=159^{\circ}
$$

44. (i) $\angle B A C=\angle B D C(\angle \mathrm{~s}$ in same segment $)$

$$
=19^{\circ}
$$

$$
\angle A C P=180^{\circ}-19^{\circ}-35^{\circ}(\angle \operatorname{sum} \text { of a } \triangle)
$$

$$
=126^{\circ}
$$

(ii) $\angle D B P=180^{\circ}-19^{\circ}-35^{\circ}(\angle$ sum of a $\triangle)$

$$
=126^{\circ}
$$

$$
\angle B X C=360^{\circ}-126^{\circ}-126^{\circ}-35^{\circ}(\angle \text { sum of a }
$$

$$
\left.=73^{\circ} \quad \text { quadrilateral }\right)
$$

45.

$$
\begin{aligned}
\angle A C B & =90^{\circ}(\mathrm{rt} . \angle \text { in a semicircle }) \\
\angle C B E & =90^{\circ}+28^{\circ}(\text { ext. } \angle \mathrm{s} \text { sum of int. opp. } \angle \mathrm{s}) \\
& =118^{\circ} \\
\angle A D E+\angle C B E & =180^{\circ}(\angle \mathrm{s} \text { in opp. segments }) \\
\angle A D E+118^{\circ} & =180^{\circ} \\
\angle A D E & =62^{\circ}
\end{aligned}
$$

46. $\angle A D C+\angle A B C=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)
$\angle A D C+108^{\circ}=180^{\circ}$

$$
\begin{aligned}
& \angle A D C=72^{\circ} \\
& \angle A C D=180^{\circ}-72^{\circ}-71^{\circ}(\angle \text { sum of a } \triangle)
\end{aligned}
$$

$$
=37^{\circ}
$$

47. $\angle A C B=\frac{1}{2} \angle A O B\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(96^{\circ}\right)
$$

$$
=48^{\circ}
$$

$$
\angle O A B+\angle O B A=180^{\circ}-96^{\circ}(\angle \text { sum of a } \triangle)
$$

$$
=84^{\circ}
$$

$$
\begin{aligned}
\angle O B C & =180^{\circ}-48^{\circ}-32^{\circ}-84^{\circ}(\angle \operatorname{sum} \text { of a } \triangle) \\
& =16^{\circ}
\end{aligned}
$$

48. (i) $\angle A C B=\frac{1}{2} \angle A O B$ (\angle at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$
$=\frac{1}{2}\left(48^{\circ}\right)$
$=24^{\circ}$
$\angle B X C=180^{\circ}-24^{\circ}-46^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$

$$
=110^{\circ}
$$

(ii) $\angle O X A=\angle B X C$ (vert. opp. $\angle \mathrm{s}$)
$=110^{\circ}$
$\angle O A C=180^{\circ}-48^{\circ}-110^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$
$=22^{\circ}$
49. $\angle O A T=90^{\circ}$ (tangent \perp radius)
$\angle O A B=90-26^{\circ}$

$$
=64^{\circ}
$$

$\angle C O A=180^{\circ}-64^{\circ}($ int. $\angle \mathrm{s}, C O / / B A)$

$$
=116^{\circ}
$$

reflex $\angle C O A=360^{\circ}-116^{\circ}(\angle \mathrm{s}$ at a pt. $)$

$$
=244^{\circ}
$$

$\angle A B C=\frac{1}{2} \times$ reflex $\angle C O A\left(\angle\right.$ at centre $=2 \angle$ at $\left.\mathrm{O}^{\text {ce }}\right)$
$=\frac{1}{2}\left(244^{\circ}\right)$

$$
=122^{\circ}
$$

$\angle O C B=180^{\circ}-122^{\circ}$ (int. $\angle \mathrm{s}, C O / / B A$)

$$
=58^{\circ}
$$

50. $\angle O R P=\angle O P R($ base $\angle \mathrm{s}$ of isos. $\triangle)$

$$
=x^{\circ}
$$

$\angle P O Q=x^{\circ}+x^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)

$$
=2 x^{\circ}
$$

$\angle O P T=\angle O Q T$ (tangent \perp radius)

$$
=90^{\circ}
$$

$\angle P T Q=360^{\circ}-90^{\circ}-2 x^{\circ}-90^{\circ}$
$=180^{\circ}-2 x^{\circ}$
$=(180-2 x)^{\circ}$
51. (i) $\angle O A T=90^{\circ}$ (tangent \perp radius)

$$
\begin{aligned}
\angle O A B & =180^{\circ}-32^{\circ}-40^{\circ}-90^{\circ}(\angle \operatorname{sum} \text { of a } \triangle) \\
& =18^{\circ}
\end{aligned}
$$

(ii) $\angle A O C=2 \angle A B C\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =2\left(32^{\circ}\right) \\
& =64^{\circ}
\end{aligned}
$$

$\angle O A C+\angle O C A=180^{\circ}-64^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$ $=116^{\circ}$
$\angle O C B=180^{\circ}-116^{\circ}-18^{\circ}-32^{\circ}(\angle$ sum of a $\triangle)$ $=14^{\circ}$
52. (i) $\angle A D C+\angle A B C=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\angle A D C+124^{\circ}=180^{\circ}
$$

$$
\angle A D C=56^{\circ}
$$

$$
\angle D A C=180^{\circ}-63^{\circ}-56^{\circ}(\angle \text { sum of a } \triangle)
$$

$$
=61^{\circ}
$$

(ii) $\angle D O A=2 \angle D C A\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$ $=2\left(63^{\circ}\right)$
$=126^{\circ}$
$\angle O D A=\frac{180^{\circ}-126^{\circ}}{2}$ (base \angle s of isos. \triangle) $=27^{\circ}$
$\angle O D C=56^{\circ}-27^{\circ}$

$$
=29^{\circ}
$$

53. (i) $\angle O X C=\angle A X D$ (vert. opp. \angle s)

$$
=128^{\circ}
$$

$\angle O C A=\angle O A C($ base \angle s of isos. \triangle)

$$
=17^{\circ}
$$

$$
\angle C O D=180^{\circ}-128^{\circ}-17^{\circ}(\angle \operatorname{sum} \text { of a } \triangle)
$$

OXIVERSTYY PRESS
$=35^{\circ}$
(ii) $\angle D A X=\frac{1}{2} \angle C O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.O^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(35^{\circ}\right)
$$

$$
=17.5^{\circ}
$$

54. (a) Since $B D$ is a diameter of the circle, $\angle B C D=90^{\circ}$ (rt. \angle in a semicircle).
(b) (i) $\angle A C D=\frac{1}{2} \angle A O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(124^{\circ}\right) \\
& =62^{\circ}
\end{aligned}
$$

(ii) $\angle O A T=\angle O D T$ (tangent \perp radius)

$$
=90^{\circ}
$$

$$
\begin{array}{rlr}
\angle A T D & =360^{\circ}-90^{\circ}-124^{\circ}-90^{\circ}(\angle \text { sum of a } \\
& \left.=56^{\circ} \quad \text { quadrilateral }\right)
\end{array}
$$

(iii) $T A=T D$ (symmetric properties of tangents to circle)

(iv) $\angle B X C=62^{\circ}+32^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)

$$
=94^{\circ}
$$

55. (i) $\angle A D P=180^{\circ}-36^{\circ}-x^{\circ}(\angle$ sum of a $\triangle)$

$$
\begin{aligned}
& =144^{\circ}-x^{\circ} \\
& =(144-x)^{\circ}
\end{aligned}
$$

(ii) $\angle A B Q+34^{\circ}=x^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)

$$
\begin{aligned}
\angle A B Q & =x^{\circ}-34^{\circ} \\
& =(x-34)^{\circ}
\end{aligned}
$$

(iii) $\angle A B C=180^{\circ}-(x-34)^{\circ}(\angle \mathrm{s}$ on a str. line $)$

$$
=214^{\circ}-x^{\circ}
$$

$\angle A B C+\angle A D P=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\begin{aligned}
214^{\circ}-x^{\circ}+144^{\circ}-x^{\circ} & =180^{\circ} \\
2 x^{\circ} & =178^{\circ} \\
x^{\circ} & =89^{\circ} \\
\therefore x & =89
\end{aligned}
$$

56. (i) $\angle P R S=\angle P Q S(\angle \mathrm{~s}$ in same segment $)$

$$
=40^{\circ}
$$

(ii) $\angle P Q R=90^{\circ}$ (rt. \angle in a semicircle) $\angle Q P R=180^{\circ}-38^{\circ}-90^{\circ}(\angle$ sum of a $\triangle)$

$$
=52^{\circ}
$$

(iii) $\angle P X Q=180^{\circ}-40^{\circ}-52^{\circ}(\angle$ sum of a $\triangle)$
$=88^{\circ}$
$\angle S X R=\angle P X Q$ (vert. opp. $\angle \mathrm{s}$)
$=88^{\circ}$
57. (i) $\angle O C A=\angle O A C$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=32^{\circ}
$$

$\angle B A C=90^{\circ}$ (rt. \angle in a semicircle)
$\angle O B A=180^{\circ}-90^{\circ}-32^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$
$=58^{\circ}$
(ii) $\angle O A B=\angle O B A$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=58^{\circ}
$$

$\angle O A T=90^{\circ}$ (tangent \perp radius)
$\angle B A T=90^{\circ}-58^{\circ}$
$=32^{\circ}$
(iii) $\angle A T C=180^{\circ}-90^{\circ}-32^{\circ}-32^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$

$$
=26^{\circ}
$$

58. (i) $\angle A C B=90^{\circ}$ (rt. \angle in a semicirle)

$$
\begin{aligned}
\angle O A C & =\angle O C A(\text { base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =90^{\circ}-58^{\circ} \\
& =32^{\circ}
\end{aligned}
$$

(ii) $\angle O B C=\angle O C B$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=58^{\circ}
$$

$$
\begin{aligned}
\angle A D C+\angle A B C & =180^{\circ}(\angle \mathrm{s} \text { in opp. segments }) \\
\angle A D C+58^{\circ} & =180^{\circ} \\
\angle A D C & =122^{\circ} \\
\angle C A D & =\frac{180^{\circ}-122^{\circ}}{2}(\text { base } \angle \text { s of isos. } \triangle \text {) } \\
& =29^{\circ}
\end{aligned}
$$

59. (i) $\angle A D B=\angle T A B$

$$
=60^{\circ}(\angle \mathrm{s} \text { in alt. segment })
$$

(ii) $\angle O A T=90^{\circ}$ (tangent \perp radius)

$$
\begin{aligned}
\angle O A B & =90^{\circ}-60^{\circ} \\
& =30^{\circ} \\
\angle B C D & =180^{\circ}-45^{\circ}-30^{\circ} \\
& =105^{\circ}(\angle \text { s in opp. segments are supp. })
\end{aligned}
$$

60. (i) $\angle T A B=\frac{180^{\circ}-48^{\circ}}{2}$

$$
=66^{\circ}(\text { base } \angle \text { of isos. } \triangle)
$$

(ii) $\angle A C B=\angle T A B$
$=66^{\circ}(\angle \mathrm{s}$ in alt. segment $)$
(iii) $\angle C A P=180^{\circ}-66^{\circ}-66^{\circ}$
$=48^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line $)$

Advanced

61. $\angle Q P R=\frac{1}{2} \angle Q O R\left(\angle\right.$ at centre $\left.=2 \angle O^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(54^{\circ}\right)
$$

$$
=27^{\circ}
$$

$$
\angle P R S=\frac{1}{2} \angle P O S\left(\angle \text { at centre }=2 \angle \text { at } \bigcirc^{\text {ce }}\right)
$$

$$
=\frac{1}{2}\left(116^{\circ}\right)
$$

$$
=58^{\circ}
$$

$$
\angle P R T=180^{\circ}-58^{\circ}(\angle \mathrm{s} \text { on a str. line })
$$

$$
=122^{\circ}
$$

$$
\angle P T S=180^{\circ}-122^{\circ}-27^{\circ}(\angle \operatorname{sum} \text { of a } \triangle)
$$

$$
=31^{\circ}
$$

62. (i) $\angle B A C=\angle B C A$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=33^{\circ}
$$

$$
\angle B D C=\angle B A C(\angle \mathrm{~s} \text { in same segment })
$$

$$
=33^{\circ}
$$

(ii) $\angle B D A=\angle B C A(\angle \mathrm{~s}$ in same segment $)$

$$
=33^{\circ}
$$

$\angle B E A=\angle B C A(\angle \mathrm{~s}$ in same segment $)$

$$
=33^{\circ}
$$

$\angle A B E=\angle A E B($ base $\angle \mathrm{s}$ of isos. $\triangle)$

$$
=33^{\circ}
$$

$\angle A D E=\angle A B E(\angle \mathrm{~s}$ in same segment $)$

$$
=33^{\circ}
$$

$$
\angle C D E=33^{\circ}+33^{\circ}+33^{\circ}
$$

$$
=99^{\circ}
$$

(iii) $\angle A O E=2 \angle A D E\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
\begin{aligned}
& =2\left(33^{\circ}\right) \\
& =66^{\circ}
\end{aligned}
$$

$\angle O E A=\frac{180^{\circ}-66^{\circ}}{2}$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=57^{\circ}
$$

63. $\angle D B C=90^{\circ}$ (rt. \angle in a semicircle)
$\angle Y B C=\angle Y C B$ (base \angle of isos. \triangle)

$$
=48^{\circ}
$$

$$
\angle D B Y=90^{\circ}-48^{\circ}
$$

$$
=42^{\circ}
$$

$$
\angle X B D=\frac{180^{\circ}-80^{\circ}}{2}(\text { base } \angle \text { s of isos. } \triangle)
$$

$$
=50^{\circ}
$$

$$
\angle X B Y=50^{\circ}+42^{\circ}
$$

$$
=92^{\circ}
$$

64. Let $\angle D F E=x^{\circ}$.

$$
\begin{aligned}
\angle A F B & =\angle D F E(\text { vert. opp. } \angle \mathrm{s}) \\
& =x^{\circ}
\end{aligned}
$$

$\angle F D E=x^{\circ}+68^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)
$\angle F B C=x^{\circ}+26^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)
$\angle F D E+\angle F B C=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\begin{aligned}
x^{\circ}+68^{\circ}+x^{\circ}+26^{\circ} & =180^{\circ} \\
2 x^{\circ} & =86^{\circ} \\
x^{\circ} & =43^{\circ}
\end{aligned}
$$

$\therefore \angle D F E=43^{\circ}$
65. (i) $\angle A C B=90^{\circ}$ (rt. \angle in a semicircle)

$$
\begin{aligned}
& \angle C A B= 180^{\circ}-\angle A B C-90^{\circ}(\angle \text { sum of a } \triangle) \\
&= 90^{\circ}-\angle A B C \\
& \angle C D A= 180^{\circ}-\angle A B C(\angle \text { s in opp. segments }) \\
& \quad \angle C D A+\angle D A T+\angle A T D=180^{\circ}
\end{aligned}
$$

(\angle sum of a \triangle)
$180^{\circ}-\angle A B C+46^{\circ}+90^{\circ}-\angle A B C+22^{\circ}=180^{\circ}$
$2 \angle A B C=158^{\circ}$
$\angle A B C=79^{\circ}$
(ii) $\angle C D A=180^{\circ}-79^{\circ}$

$$
\begin{aligned}
& =101^{\circ} \\
\angle A C D & =180^{\circ}-101^{\circ}-46^{\circ}(\angle \operatorname{sum} \text { of a } \triangle) \\
& =33^{\circ}
\end{aligned}
$$

66. (i) $\angle C A T=\angle A B C(\angle \mathrm{~s}$ in alt. segment $)$

$$
=40^{\circ}
$$

(ii) Let O be the centre of the circle.

$$
\begin{aligned}
\angle O A B & =\angle O B A(\text { base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =40^{\circ} \\
\angle O A T & =90^{\circ} \text { (tangent } \perp \text { radius) } \\
\angle A T C & =180^{\circ}-90^{\circ}-40^{\circ}-40^{\circ} \\
& =10^{\circ}
\end{aligned}
$$

67. $\angle A O C=180^{\circ}-18^{\circ}-18^{\circ}(\angle$ sum of a $\triangle)$

$$
=144^{\circ}
$$

$\angle O A Q=90^{\circ}$ (tangent \perp radius)
$\angle A Q B=360^{\circ}-90^{\circ}-144^{\circ}-18^{\circ}-41^{\circ}(\angle$ sum of a

$$
=67^{\circ}
$$

quadrilateral)
68. (i) $\angle C P T=\angle P T Q$ (alt. $\angle \mathrm{s}, C P / / A Q)$

$$
=58^{\circ}
$$

$P B=P C$ (symmetric properties of tangents to circle)

$$
\begin{aligned}
\angle P C B & =\frac{180^{\circ}-58^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =61^{\circ}
\end{aligned}
$$

(ii) $\angle T A B=\frac{58^{\circ}}{2}$ (ext. $\angle=$ sum of int. opp. \angle s) $=29^{\circ}$
(iii) $\angle P B C=\angle P C B$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=61^{\circ}
$$

$\angle T B A=\angle T A B$ (base $\angle \mathrm{s}$ of isos. \triangle)
$=29^{\circ}$
$\angle A B C=180^{\circ}-61^{\circ}-29^{\circ}(\angle \mathrm{s}$ on a str. line $)$
$=90^{\circ}$
i.e. $A C$ is a diameter of the circle.
$\angle A C P=90^{\circ}$ (tangent \perp radius)
$\angle A C B=90^{\circ}-61^{\circ}$
$=29^{\circ}$

New Trend

69. (a) (i) $\angle B D C=34^{\circ}(\angle$ s in same segment $)$
(ii) $\angle A C D=\frac{1}{2} \angle A O D\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=\frac{1}{2}\left(118^{\circ}\right)
$$

$$
=59^{\circ}
$$

(iii) $\angle B O A=180^{\circ}-118^{\circ}$ (adj. $\angle \mathrm{s}$ on a str. line)
$\begin{aligned} \angle O B A & =\frac{180^{\circ}-62^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle \text {) } \\ & =59^{\circ}\end{aligned}$

$$
=59^{\circ}
$$

$\angle B X A=180^{\circ}-59^{\circ}-34^{\circ}(\angle$ sum of a $\triangle)$

$$
=87^{\circ}
$$

$\angle C X D=87^{\circ}$ (vert. opp. $\angle \mathrm{s}$)
(iv) $\angle B A T=90^{\circ}-59^{\circ}$ (tangent \perp radius)

$$
=31^{\circ}
$$

(b) Let the radius of the other circle be $r \mathrm{~cm}$.

$$
\begin{aligned}
r+r+r(1.8) & =22.8 \\
3.8 r & =22.8 \\
r & =6 \\
\text { Area of sector } & =\frac{1}{2}(6)^{2}(1.8) \\
& =32.4 \mathrm{~cm}^{2}
\end{aligned}
$$

70. (i) $\angle A O B=180^{\circ}-36^{\circ}-36^{\circ}(\angle$ sum of a $\triangle)$ $=108^{\circ}$
$\angle A D B=\frac{1}{2} \angle A O B\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$
$=\frac{1}{2}\left(108^{\circ}\right)$
$=54^{\circ}$
(ii) $\angle O B D=180^{\circ}-54^{\circ}-28^{\circ}-36^{\circ}-36^{\circ}(\angle$ sum of a

$$
=26^{\circ}
$$

(iii) $\angle A D C=90^{\circ}$ (rt. \angle in a semicircle)
$\angle A C D=180^{\circ}-90^{\circ}-28^{\circ}(\angle$ sum of a $\triangle)$

$$
=62^{\circ}
$$

$\angle A E D+\angle A C D=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\angle A E D+62^{\circ}=180^{\circ}
$$

$$
\angle A E D=118^{\circ}
$$

71. (a) $\angle A B C=180^{\circ}-43^{\circ}-44^{\circ}(\angle$ sum of a $\triangle)$

$$
=93^{\circ}
$$

Since $\angle A B C \neq 90^{\circ}, A B$ is not perpendicular to $B C$.
$\therefore B C$ is not a tangent to the circle.
(b) (i) $\angle A C T=48^{\circ}-28^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)

$$
=20^{\circ}
$$

$$
\begin{aligned}
\angle A B D & =\angle A C T(\angle \mathrm{~s} \text { in same segment }) \\
& =20^{\circ}
\end{aligned}
$$

(ii) $\angle A D C=28^{\circ}+75^{\circ}$ (ext. $\angle=$ sum of int. opp. \angle s)

$$
=103^{\circ}
$$

$$
\angle A B D+\angle D B C+\angle A D C=180^{\circ}(\angle \mathrm{s} \text { in opp. }
$$

$$
20^{\circ}+\angle D B C+103^{\circ}=180^{\circ} \text { segments) }
$$

$$
\angle D B C=57^{\circ}
$$

72. (a) $\triangle O A T \equiv \triangle O B T$ (RHS)
(b) (i) $T A=T B$ (symmetric properties of tangents to circle)

$$
\begin{aligned}
\angle T A B & =\frac{180^{\circ}-50^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle \text {) } \\
& =65^{\circ}
\end{aligned}
$$

(ii) $\angle O A T=\angle O B T$ (tangent \perp radius)

$$
=90^{\circ}
$$

$$
\angle A O B=360^{\circ}-90^{\circ}-50^{\circ}-90^{\circ}
$$

(\angle sum of a quadrilateral)

$$
=130^{\circ}
$$

$$
\angle A C B=\frac{1}{2} \angle A O B\left(\angle \text { at centre }=2 \angle \text { at } \bigcirc^{\text {ce }}\right)
$$

$$
=\frac{1}{2}\left(130^{\circ}\right)
$$

$$
=65^{\circ}
$$

(iii) $\angle O A B+\angle O B A=180^{\circ}-130^{\circ}(\angle$ sum of a $\triangle)$

$$
=50^{\circ}
$$

$$
\begin{aligned}
\angle O B C & =180^{\circ}-50^{\circ}-20^{\circ}-65^{\circ}(\angle \text { sum of a } \triangle) \\
& =45^{\circ}
\end{aligned}
$$

73. (i) $T A=T B$ (symmetric properties of tangents to circle)

$$
\begin{aligned}
\angle B A T & =\frac{180^{\circ}-46^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle \text {) } \\
& =67^{\circ}
\end{aligned}
$$

$$
\angle O A T=90^{\circ} \text { (tangent } \perp \text { radius) }
$$

$$
\angle O A B=90^{\circ}-67^{\circ}
$$

$$
=23^{\circ}
$$

(ii) $\angle A O B=180^{\circ}-2\left(23^{\circ}\right)($ base $\angle \mathrm{s}$ of isos. \triangle)

$$
=134^{\circ}
$$

$$
\angle A C B=\frac{1}{2} \angle A O B\left(\angle \text { at centre }=2 \angle \text { at } \bigcirc^{\text {ce }}\right)
$$

$$
=\frac{1}{2}\left(134^{\circ}\right)
$$

$$
=67^{\circ}
$$

(iii) $\angle O B A=\angle O A B$ (base \angle s of isos. \triangle)

$$
=23^{\circ}
$$

$\angle O B K=90^{\circ}$ (tangent \perp radius)
$\angle O C B=\angle O B C$ (base $\angle \mathrm{s}$ of isos. \triangle)

$$
=90^{\circ}-58^{\circ}
$$

$$
=32^{\circ}
$$

$\angle C A O+\angle O C A$
$=180^{\circ}-23^{\circ}-23^{\circ}-32^{\circ}-32^{\circ}(\angle$ sum of a $\triangle)$

$$
=70^{\circ}
$$

$$
\angle O C A=\angle C A O(\text { base } \angle \mathrm{s} \text { of isos. } \triangle)
$$

$2 \angle C A O=70^{\circ}$

$$
\angle C A O=35^{\circ}
$$

(iv) In $\triangle O A T$,

$$
\begin{aligned}
\tan 23^{\circ} & =\frac{O A}{T A} \\
& =\frac{8}{T A} \\
T A & =\frac{8}{\tan 23^{\circ}} \\
& =18.8 \mathrm{~cm}(\text { to } 3 \text { s.f.) }
\end{aligned}
$$

74. (a) $\angle C B D=180^{\circ}-90^{\circ}-42^{\circ}$

$$
\text { (rt. } \angle \text { in semicircle, } \angle \text { sum of a } \triangle \text {) }
$$

$$
=48^{\circ}
$$

$\angle B A C=42^{\circ}(\angle \mathrm{s}$ in same segment $)$

$$
\angle A C D=180^{\circ}-72^{\circ}-42^{\circ}(\text { corr. } \angle \mathrm{s}, B D / / A E
$$

$$
\left.=66^{\circ} \quad \angle \operatorname{sum} \text { of } \mathrm{a} \triangle\right)
$$

(b) (i) $\angle D B A=\angle A C D(\angle \mathrm{~s}$ in same segment $)$

$$
=66^{\circ}
$$

(ii) $\angle C D E+\angle C A E=180^{\circ}$ ($\angle \mathrm{s}$ in opp. segments)

$$
\begin{aligned}
42^{\circ}+\angle B D E+72^{\circ} & =180^{\circ} \\
\angle B D E & =66^{\circ}
\end{aligned}
$$

75. $\angle A B P=180^{\circ}-54^{\circ}-42^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$

$$
=84^{\circ}
$$

$$
\begin{aligned}
& \angle A D C+\angle A B C=180^{\circ}(\angle \mathrm{s} \text { in opp. segments }) \\
& \angle A D C+84^{\circ}=180^{\circ} \\
& \angle A D C=96^{\circ} \\
& \angle A Q D=180^{\circ}-96^{\circ}-54^{\circ}(\angle \text { sum of a } \triangle) \\
& =30^{\circ}
\end{aligned}
$$

76. (a) (i) $\angle A O D=2 \angle A B O\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=2\left(36^{\circ}\right)
$$

$$
=72^{\circ}
$$

$$
\begin{aligned}
\angle O A D & =\frac{180^{\circ}-72^{\circ}}{2}(\text { base } \angle \text { s of isos. } \triangle \text {) }) \text { } 51^{\circ}
\end{aligned}
$$

$$
=54^{\circ}
$$

(ii) $\angle O C T=\angle O A T$ (tangent \perp radius)

$$
=90^{\circ}
$$

$$
\angle C O T=\angle A O T
$$

$$
=72^{\circ}
$$

$$
\angle A T C=360^{\circ}-90^{\circ}-72-72^{\circ}-90^{\circ}(\angle \text { sum of a }
$$

$$
=36^{\circ}
$$

quadrilateral)
(b) $\triangle O C T \equiv \triangle O A T$ (RHS)

$$
\begin{aligned}
\tan 72^{\circ} & =\frac{C T}{8} \\
C T & =8 \tan 72^{\circ} \\
& =24.621 \mathrm{~cm}(\text { to } 5 \text { s.f. })
\end{aligned}
$$

Area of $O A T C=2 \times \frac{1}{2}(24.621)(8)$

$$
=197 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

Revision Test D1

1. $\triangle A B C$ and $\triangle A P Q$ are similar.
$\frac{A B}{A P}=\frac{A C}{A Q}=\frac{B C}{P Q}$
$\therefore \frac{x}{x+5}=\frac{8}{14}=\frac{4}{y}$
$8 x+40=14 x \quad$ and $\quad 8 y=4 \times 14$

$$
40=6 x \quad y=7
$$

$$
\begin{aligned}
x & =\frac{40}{6} \\
& =6 \frac{2}{3}
\end{aligned}
$$

2. (a) Scale $45: 3000$

$$
\text { i.e. } 3: 200
$$

(b) Area scale $3^{2}: 200^{2}$
i.e. $\quad 9: 40000$

Actual floor area $=\frac{40000}{9} \times 810 \mathrm{~cm}^{2}$

$$
=\frac{3600000}{10000} \mathrm{~m}^{2}
$$

$$
=360 \mathrm{~m}^{2}
$$

(c) 3 cm represent 2 m

$$
(3 \mathrm{~cm})^{3} \quad \text { represent } \quad(2 \mathrm{~m})^{3}
$$

$\therefore 162 \mathrm{~cm}^{3}$ represent $\frac{8 \mathrm{~m}^{3}}{27} \times 162=48 \mathrm{~m}^{3}$
3. Let $A Q=x \mathrm{~cm}$ and $A P=y \mathrm{~cm}$.
(a) $\frac{\text { Area of } \triangle A P Q}{\text { Area of } \triangle A B C}=\frac{\frac{1}{2}(x)(y) \sin A}{\frac{1}{2}(4 x)(2 y) \sin A}$

$$
=\frac{1}{8}
$$

(b) $\frac{\text { Area of } \triangle A B R}{\text { Area of } \triangle A B S}=\frac{\frac{1}{2}(2 x)(2 y) \sin A}{\frac{1}{2}(3 x)(2 y) \sin A}$

$$
=\frac{2}{3}
$$

(c) Draw a line parallel to $A C$ passing through B.

$$
\begin{aligned}
\frac{\text { Area of } \triangle B R S}{\text { Area of } \triangle A B C} & =\frac{\frac{1}{2}(x)(\text { height })}{\frac{1}{2}(4 x)(\text { height })} \\
& =\frac{1}{4}
\end{aligned}
$$

4.

$O \hat{M} B=O \hat{N} Q=90^{\circ}$
Using Pythagoras' Theorem,

$$
\begin{aligned}
O M & =\sqrt{10^{2}-8^{2}} \\
& =6 \mathrm{~cm} \\
O N & =\sqrt{10^{2}-8^{2}} \\
& =6 \mathrm{~cm} \\
\therefore O K & \left.=\sqrt{6^{2}+6^{2}}=8.49 \mathrm{~cm} \text { (to } 2 \text { d.p. }\right)
\end{aligned}
$$

5. $B \hat{D} C=180^{\circ}-141^{\circ}-25^{\circ}(\angle$ sum of a $\triangle)$

$$
=14^{\circ}
$$

$\therefore B \hat{A} C=14^{\circ}(\angle \mathrm{s}$ in same segment $)$

$$
\begin{aligned}
A \hat{B} Q & =180^{\circ}-141^{\circ} \\
& =39^{\circ}(\text { adj. } \angle \mathrm{s} \text { on a str. line })
\end{aligned}
$$

$$
\therefore A \hat{Q} D=39^{\circ}+14^{\circ}(\text { ext. } \angle=\text { sum of int. opp. } \angle \mathrm{s})
$$

$$
=53^{\circ}
$$

6. (a) $\frac{\text { Volume of larger cup }}{\text { Volume of smaller cup }}=\left(\frac{5}{3 \frac{1}{3}}\right)^{3}$

$$
=\frac{\text { Volume of larger cup }}{48 \mathrm{~cm}^{3}}
$$

$$
\begin{aligned}
\therefore \text { Volume of larger cup } & =48 \times\left(\frac{5}{3 \frac{1}{3}}\right)^{3} \\
& =162 \mathrm{~cm}^{3}
\end{aligned}
$$

(b) $\left(\frac{\text { Height of larger container }}{\text { Height of smaller container }}\right)^{3}=\frac{76.8}{32.4}$

$$
\begin{aligned}
\therefore \frac{\text { Height of larger container }}{\text { Height of smaller container }} & =\sqrt[3]{\frac{76.8}{32.4}} \\
& =\frac{4}{3}
\end{aligned}
$$

$\frac{\text { Surface area of larger container }}{\text { Surface area of smaller container }}=\left(\frac{4}{3}\right)^{2}$
$=\frac{168}{\text { Surface area of smaller container }}=\frac{16}{9}$
\therefore Area of smaller container $=168 \div \frac{16}{9}$

$$
=94 \frac{1}{2} \mathrm{~cm}^{2}
$$

7. (i) $\frac{\text { Surface area of smaller statue }}{\text { Surface area of larger statue }}=\left(\frac{\text { Height of smaller statue }}{\text { Height of larger statue }}\right)^{2}$

$$
\begin{aligned}
& =\left(\frac{20}{20 \times 100}\right)^{2} \\
& =\frac{1}{100}
\end{aligned}
$$

(ii) $\frac{\text { Weight of larger statue }}{\text { Weight of smaller statue }}$

$$
\begin{aligned}
& =\left(\frac{\text { Height of larger statue }}{\text { Height of smaller statue }}\right)^{3} \\
& \frac{\text { Weight of larger statue }}{355 \mathrm{~g}}=\left(\frac{10}{1}\right)^{3} \\
& \therefore \text { Weight of larger statue }
\end{aligned}=\frac{355 \times 10^{3}}{1000} .
$$

8. (i) $Q \hat{S} R=R \hat{P} Q=26^{\circ}(\angle \mathrm{s}$ in the same segment $)$
(ii) $T \hat{Q} P=T \hat{P} Q$

$$
\begin{aligned}
& =\frac{180^{\circ}-48^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =66^{\circ}
\end{aligned}
$$

$\therefore X \hat{Q} S=180^{\circ}-66^{\circ}-42^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line $)$

$$
=72^{\circ}
$$

(iii) $T \hat{P} R=66^{\circ}-26^{\circ}$

$$
=40^{\circ}
$$

(iv) $P \hat{X} S=72^{\circ}+26^{\circ}$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)

$$
=98^{\circ}
$$

9. Let $P \hat{T} Q=\theta^{\circ}, T P=\sqrt{3} x$ and $O Q=x$.

$$
\text { Area of } \triangle P T Q ~=\frac{\frac{1}{2}(\sqrt{3} x)(\sqrt{3} x) \sin \theta^{\circ}}{\text { Area of } \triangle P O Q}=\frac{\frac{1}{2}(x)(x) \sin \left(180-\theta^{\circ}\right)}{}=3
$$

Revision Test D2

1. (a) Given $\frac{1}{3} x^{2} h=120 \mathrm{~cm}^{3}$,

$$
\frac{\text { Volume of larger cone }}{120}=\left(\frac{3 x}{x}\right)^{3}
$$

\therefore Volume of larger cone $=120 \times 27$

$$
=3240 \mathrm{~cm}^{3}
$$

(b) Volume of new cone $=\frac{1}{3}(2 x)^{2}(3 h)$

$$
\begin{aligned}
& =12 \times\left(\frac{1}{3} x^{2} h\right) \\
& =12 \times 120 \\
& =1440 \mathrm{~cm}^{3}
\end{aligned}
$$

2. $A P=6 \mathrm{~cm}=B P$

Using Pythagoras' Theorem,

$$
\begin{aligned}
O P & =\sqrt{25^{2}-18^{2}} \\
& =\sqrt{301} \\
& =17.35 \mathrm{~cm}(\text { to } 4 \text { s.f. })
\end{aligned}
$$

$$
O A=\sqrt{6^{2}+301}
$$

$$
=18.38 \mathrm{~cm} \text { (to } 2 \text { d.p. })
$$

3. $T \hat{O} Q=2\left(40^{\circ}\right)=80^{\circ}\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$
$\therefore O \widehat{T} Q=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ}($ base $\angle \mathrm{s}$ of isos. $\triangle)$
$\therefore P \widehat{T} Q=90^{\circ}-50^{\circ}$ (tangent \perp radius)
$=40^{\circ}$
$\therefore T \hat{P} Q=75^{\circ}-40^{\circ}$
$=35^{\circ}$ (ext. $\angle=$ sum of int. opp. \angle s)
4. $A \hat{B} D=29^{\circ}+38^{\circ}$

$$
=67^{\circ}(\text { ext. } \angle=\text { sum of int. opp. } \angle \mathrm{s})
$$

$B \hat{A} C=29^{\circ}(\angle \mathrm{s}$ in same segment $)$

$$
\begin{aligned}
\therefore C \hat{Q} D & =A \hat{Q} B \\
& =180^{\circ}-29^{\circ}-67^{\circ}(\angle \text { sum of a } \triangle) \\
& =84^{\circ}
\end{aligned}
$$

5. $A \hat{C} D=90^{\circ}$ (rt. \angle in semicircle)

$$
\begin{aligned}
\therefore A \hat{D} C & =180^{\circ}-90^{\circ}-14^{\circ}(\angle \text { sum of a } \triangle) \\
& =76^{\circ} \\
A \hat{B C} C & =180^{\circ}-76^{\circ}(\angle \mathrm{s} \text { in opp. segments. }) \\
& =104^{\circ} \\
\therefore B \hat{C} A & =\frac{180^{\circ}-104^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =38^{\circ} \\
38^{\circ} & =A \hat{P} B+14^{\circ}(\text { ext. } \angle=\text { sum of int. opp. } \angle \mathrm{s}) \\
\therefore A \hat{P} B & =38^{\circ}-14^{\circ} \\
& =24^{\circ}
\end{aligned}
$$

6. (a) $P A=Q B=4 \mathrm{~cm}$ (Given)
$\angle A P C=\angle B Q A=60^{\circ}$
$P C=Q A$

$$
=16-4
$$

$$
=12 \mathrm{~cm}
$$

$\therefore \triangle A P C$ is congruent to $\triangle B Q A$ (SAS).
(b) $\triangle C R B$

From part (a), $A C=B A$ and from part (b), $A C=C B$.
$\therefore \triangle A B C$ is an equilateral triangle.
7. Reflex $\angle A O B=360^{\circ}-128^{\circ}$

$$
=232^{\circ}
$$

$\therefore A \hat{Q} B=\frac{1}{2}\left(232^{\circ}\right)\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$

$$
=116^{\circ}
$$

$116^{\circ}+3 a^{\circ}+5 a^{\circ}=180^{\circ}(\angle \operatorname{sum}$ of a $\triangle)$
$a=\frac{180-116}{8}$
$=8$
$B \hat{O} Q=2\left(3 a^{\circ}\right)$
$=48^{\circ}\left(\angle\right.$ at centre $=2 \angle$ at $\left.\bigcirc^{\text {ce }}\right)$
$B \hat{Q} O=\frac{180^{\circ}-48^{\circ}}{2}$
$=66^{\circ}$ (base $\angle \mathrm{s}$ of isos. \triangle)
$B \hat{Q} P=90^{\circ}-66^{\circ}$
$=34^{\circ}$ (tangent \perp radius)
$\therefore 5\left(8^{\circ}\right)=34^{\circ}+b^{\circ} \Rightarrow b=16$ (ext. $\angle=$ sum of int. opp. $\angle \mathrm{s}$)
8. (a) $S \hat{Q} A=R \hat{A} Q$ (alt. $\angle \mathrm{s}, A R / / S Q$)
$S \hat{A} Q=R \hat{Q} A($ alt. $\angle \mathrm{s}, A R / / S Q)$
$A Q$ is a common side.
$\therefore \triangle A S Q \equiv \triangle Q R A$ (ASA) (shown)
(b) $\triangle A S Q$ is similar to $\triangle A B C$.
$\therefore \frac{A S}{A B}=\frac{S Q}{B C}$

$$
\frac{2}{6}=\frac{S Q}{15}
$$

$\therefore S Q=\frac{2 \times 15}{6}$

$$
=5 \mathrm{~cm}
$$

(c) $\triangle B C A$ and $\triangle R A Q$
(i) $\frac{\text { Area of } \triangle P C Q}{\text { Area of } \triangle B C A}=\left(\frac{4}{6}\right)^{2}$

$$
=\frac{4}{9}
$$

$\frac{\text { Area of } \triangle P C Q}{36}=\frac{4}{9}$

$$
\therefore \text { Area of } \begin{aligned}
\triangle P C Q & =\frac{36 \times 4}{9} \\
& =16 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) $\triangle B P Q=\frac{1}{2} \times B P \times$ height

$$
\begin{aligned}
& =\frac{1}{2} \times\left(\frac{1}{2} \times P C \times \text { height }\right) \\
& =\frac{1}{2}(16) \\
& =8 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii) $\frac{\text { Area of } \triangle A S Q}{\text { Area of } \triangle A B C}=\frac{\text { Area of } \triangle A S Q}{36}$

$$
\begin{aligned}
& =\left(\frac{2}{6}\right)^{2} \\
& =\frac{1}{9}
\end{aligned}
$$

\therefore Area of $\triangle A S Q=4 \mathrm{~cm}^{2}$
\therefore Area of quadrilateral $A S Q R=2 \times 4$

$$
=8 \mathrm{~cm}^{2}
$$

End-of-Year Examination Specimen Paper A

Part I

1. Since $\cos A<0$ and $0^{\circ}<A<180^{\circ}, A$ is an obtuse angle.
(i) $\sin A=-\frac{\sqrt{13^{2}-5^{2}}}{13}$

$$
=-\frac{12}{13}
$$

(ii) $\tan A=-\frac{12}{5}$
2. $x+4<10<5 x-1$
$\therefore 2 \frac{1}{5}<x<6$

3. (a) $5 x^{2}-7 x=1$
$5 x^{2}-7 x-1=0$
$a=5, b=-7, c=-1$
$x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(5)(-1)}}{2(5)}$
$x=\frac{7-\sqrt{69}}{10} \quad$ or $\quad x=\frac{7+\sqrt{69}}{10}$
$=-0.1306$

$$
=1.530
$$

$x=-0.131$
or

$$
x=1.53 \text { (to } 3 \text { s.f.) }
$$

(b) $2 x^{\frac{3}{4}}=54$

$$
\begin{aligned}
x^{\frac{3}{4}} & =27 \\
x & =27^{\frac{4}{3}} \\
& =(\sqrt[3]{27})^{4}
\end{aligned}
$$

$$
\therefore x=81
$$

(c) $\frac{x-3}{2}-\frac{x+5}{3}=1$

$$
\begin{aligned}
3(x-3)-2(x+5) & =(2)(3) \\
3 x-9-2 x-10 & =6
\end{aligned}
$$

$$
\therefore x=25
$$

$$
\begin{aligned}
& x+4<10 \\
& \text { and } \\
& 10<5 x-1 \\
& x<6 \\
& \text { and } \\
& 11<5 x \\
& x>\frac{11}{5} \\
& x>2 \frac{1}{5}
\end{aligned}
$$

4. 3 years 9 months $=3.75$ years

Let the interest rate be r.

$$
\begin{aligned}
6000+[3.75 \times(6000 \times r)] & =7237.50 \\
22500 r & =1237.50 \\
r & =\frac{1237.50}{22500} \\
& =0.055 \\
& =5.5 \%
\end{aligned}
$$

5. Let s and b denote the small and big cups respectively.
(i) $\frac{A_{s}}{A_{b}}=\left(\frac{c_{s}}{c_{b}}\right)^{2}$

$$
\begin{aligned}
\left(\frac{c_{s}}{c_{b}}\right)^{2} & =\frac{16}{25} \\
\frac{c_{s}}{c_{b}} & =\sqrt{\frac{16}{25}} \\
& =\frac{4}{5}
\end{aligned}
$$

The ratio is $4: 5$
(ii) $\frac{V_{s}}{V_{b}}=\left(\frac{c_{s}}{c_{b}}\right)^{3}$

$$
\begin{aligned}
\frac{120.5}{V_{b}} & =\left(\frac{4}{5}\right)^{3} \\
V_{b} & =\frac{125}{64} \times 120.5 \\
& =235 \mathrm{~cm}^{3}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

\therefore The volume of the larger (big) cup is $235 \mathrm{~cm}^{3}$.
6. (i) $\tan \angle P R Q=\frac{70}{90}$

$$
\angle P R Q=37.9^{\circ} \text { (to } 1 \text { d.p.) }
$$

Bearing of Q from R is 037.9°.
(ii) Using Cosine Rule,
$P S^{2}=90^{2}+25^{2}-2(90)(25) \cos 37.87^{\circ}$

$$
P S=71.9 \mathrm{~m} \text { (to } 3 \mathrm{~s} . \mathrm{f} .)
$$

(iii) Using Sine Rule,

$$
\begin{aligned}
\frac{\sin \angle R P S}{25} & =\frac{\sin 37.87^{\circ}}{71.92} \\
\sin \angle R P S & =\frac{25 \sin 37.87^{\circ}}{71.92} \\
\angle R P S & \left.=12.32^{\circ} \text { (to } 2 \text { d.p. }\right)
\end{aligned}
$$

Area of $\triangle P Q S=\frac{1}{2}(70)(90)$

$$
\begin{aligned}
& -\frac{1}{2}(71.92)(90) \sin 12.32^{\circ} \\
= & 2460 \mathrm{~m}^{2}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(iv) $\tan \angle T S P=\frac{15}{71.92}$

$$
\angle T S P=11.8^{\circ} \text { (to } 1 \text { d.p.) }
$$

7. (i) Radius $=\frac{12}{2}=6 \mathrm{~cm}$

$\cos \left(\frac{\pi}{5}\right)=\frac{x}{6}$

$$
\begin{aligned}
x & =6 \times \cos \left(\frac{\pi}{5}\right) \\
& =4.854
\end{aligned}
$$

$\therefore Q R=2 \times 4.854$

$$
=9.708
$$

$$
=9.71 \mathrm{~cm} \text { (to } 3 \text { s.f. })
$$

(ii) $Q \hat{O} R=\pi-2\left(\frac{\pi}{5}\right)(\angle \operatorname{sum}$ of a $\triangle)$

$$
=\frac{3 \pi}{5} \text { radians }
$$

(iii) Length of $\operatorname{arc} R Q=6 \times \frac{3 \pi}{5}$

$$
=\frac{18 \pi}{5} \mathrm{~cm}
$$

Length of $\operatorname{arc} R T Q=\frac{2 \pi \times\left(\frac{9.708}{2}\right)}{2}$

$$
=4.854 \pi \mathrm{~cm}
$$

\therefore Perimeter of shaded region $=\left(\frac{18 \pi}{5}+4.854 \pi\right) \mathrm{cm}$

$$
\begin{aligned}
& =26.55 \mathrm{~cm} \\
& =26.6 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(iv) Area of sector $O R Q=\frac{1}{2}(6)^{2}\left(\frac{3 \pi}{5}\right)$

$$
=\left(\frac{54 \pi}{5}\right) \mathrm{cm}^{2}
$$

Area of $\triangle O R Q=\frac{1}{2}(6)(6) \sin \left(\frac{3 \pi}{5}\right)$

$$
=17.119 \mathrm{~cm}^{2}
$$

Area of semicircle $(R T Q)=\frac{\pi\left(\frac{9.708}{2}\right)^{2}}{2}$

$$
=11.780 \pi \mathrm{~cm}^{2}
$$

\therefore Area of shaded region
$=11.780 \pi-\left(\frac{54 \pi}{5}-17.119\right)$
$=20.2 \mathrm{~cm}^{2}$ (to 3 s.f.)
8. (a) $4 x^{2}+x=4\left(3.6 \times 10^{-2}\right)^{2}+\left(3.6 \times 10^{-2}\right)$

$$
\begin{aligned}
& =0.041184 \text { (to } 3 \text { s.f.) } \\
& =4.1 \times 10^{-2}
\end{aligned}
$$

(b) $\sqrt{x+1}=\sqrt{\left(3.6 \times 10^{-2}\right)+1}$

$$
=1.02 \times 10^{0} \text { (to } 3 \text { s.f.) }
$$

9. (a) (i) $A \hat{C} B=180^{\circ}-85^{\circ}-40^{\circ}$

$$
=55^{\circ}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{A B}{\sin 55^{\circ}} & =\frac{C B}{\sin 40^{\circ}} \\
A B & =\frac{8}{\sin 40^{\circ}} \times \sin 55^{\circ} \\
& =10.2 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $C \hat{B} D=180^{\circ}-85^{\circ}($ adj. $\angle \mathrm{s}$ on a str. line)

$$
\begin{aligned}
& =95^{\circ} \\
C \hat{D} B & =180^{\circ}-95^{\circ}-30^{\circ}(\angle \operatorname{sum} \text { of a } \triangle) \\
& =55^{\circ}
\end{aligned}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{B D}{\sin 30^{\circ}} & =\frac{C B}{\sin 55^{\circ}} \\
B D & =\frac{8}{\sin 55^{\circ}} \times \sin 30^{\circ} \\
& =4.883 \text { (to } 4 \text { s.f.) } \\
& =4.88 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Using Sine Rule,

$$
\begin{aligned}
\frac{A C}{\sin 85^{\circ}} & =\frac{C B}{\sin 40^{\circ}} \\
\frac{A C}{\sin 85^{\circ}} & =\frac{8}{\sin 40^{\circ}} \\
A C & =\frac{8}{\sin 40^{\circ}} \times \sin 85^{\circ} \\
& =12.39 \mathrm{~m} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

Let the shortest distance be d.

$$
\begin{aligned}
\sin 40^{\circ} & =\frac{d}{A C}=\frac{d}{12.39} \\
d & =\sin 40^{\circ} \times 12.39 \\
& =7.96 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The shortest distance is 7.96 m .
(b) Let the height of the pole be $h \mathrm{~m}$.

$$
\begin{aligned}
A B+B D & =10.19+4.883 \\
& =15.07 \mathrm{~m} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$$
\tan 63^{\circ}=\frac{h}{15.07}
$$

$$
\begin{aligned}
h & =\tan 63^{\circ} \times 15.07 \\
& =29.6(\text { to } 3 \text { s.f. })
\end{aligned}
$$

\therefore The height of the pole is 29.6 m .

10. Let $y=\frac{x}{7-x}$.

$$
\begin{aligned}
y(7-x) & =x \\
7 y-x y & =x \\
x+x y & =7 y \\
x(1+y) & =7 y \\
x & =\frac{7 y}{1+y} \\
\mathrm{f}^{-1}(x) & =\frac{7 x}{1+x}, x \neq-1 \\
\mathrm{f}^{-1}\left(-\frac{1}{2}\right) & =\frac{7\left(-\frac{1}{2}\right)}{1+\left(-\frac{1}{2}\right)} \\
& =-7
\end{aligned}
$$

Part II

Section A

1. Distance (km)

From the graph,
(i) Farhan stopped for a rest at 1330 and he was 30 km away from Allentown.
(ii) They passed each other at 1300 and were 40 km away from Allentown.
(iii) For Rui Feng,

$$
\begin{aligned}
\text { Average Speed } & =\frac{\text { Total distance }}{\text { Total time }} \\
& =\frac{60+60}{4} \\
& =30 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

For Farhan,

$$
\begin{aligned}
\text { Average Speed } & =\frac{\text { Total distance }}{\text { Total time }} \\
& =\frac{60}{3} \\
& =20 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

2. (i) Smallest value of $y-2 x=-5-2(6)$

$$
=-17
$$

(ii) Greatest value of $x^{2}-y^{2}=(6)^{2}-(0)^{2}$

$$
=36
$$

(iii) Greatest value of $y^{2}-x=(-5)^{2}-\left(1 \frac{1}{2}\right)$

$$
\begin{aligned}
& =25-1 \frac{1}{2} \\
& =23 \frac{1}{2}
\end{aligned}
$$

(iv) Smallest value of $\frac{y}{x}=\frac{(-5)}{2\left(1 \frac{1}{2}\right)}$

$$
=-1 \frac{2}{3}
$$

3. (i) Volume of original cone $=\frac{1}{3} \pi(6)^{2}(20)$

$$
=240 \pi \mathrm{~cm}^{3}
$$

(ii) Curved surface area of small cone
: Curved surface area of original cone
$=1^{2}: 4^{2}$
$=1: 16$
(iii) $\frac{\text { Volume of small cone }}{\text { Volume of original cone }}=\left(\frac{1}{4}\right)^{3}$

$$
=\frac{1}{64}
$$

\therefore Volume of remaining Volume of original solid : cone

$$
=63: 64
$$

(iv) Volume of remaining solid $=\frac{63}{64} \times 240 \pi$

$$
=236.25 \pi \mathrm{~cm}^{3}
$$

4. (i) $\angle X Y W=\angle B Y A$ (common angle)
$\angle W X Y=\angle A B Y(A B \perp Y X, W X \perp Y X)$
$\therefore \triangle Y A B$ is similar to $\triangle Y W X$ (AA).
(ii) Since $\triangle Y A B$ is similar to $\triangle Y W X$,

$$
\frac{Y B}{Y B+B X}=\frac{A B}{W X}
$$

$$
\frac{5}{5+B X}=\frac{5}{12}
$$

$$
12=5+B X
$$

$$
\therefore B X=7 \mathrm{~cm}
$$

Similarly, $\triangle Y Z X$ is similar to $\triangle B A X$.

$$
\begin{aligned}
\frac{A B}{Z Y} & =\frac{B X}{Y X} \\
\frac{5}{Z Y} & =\frac{7}{12} \\
\therefore Z Y & =\frac{12 \times 5}{7} \\
& =8 \frac{4}{7} \mathrm{~cm}
\end{aligned}
$$

(iii) Since $\triangle Y Z X$ is similar to $\triangle B A X$,

$$
\frac{A B}{Z Y}=\frac{X A}{X Z}=\frac{X B}{X Y}=\frac{7}{12}
$$

$\therefore X A: X Z=7: 12$
Since $X Z=X A+A Z$,
$X A: A Z=7: 5$.

Section B

5. (i) Using Pythagoras' Theorem,

$$
\text { Length of } \begin{aligned}
A B & =\sqrt{9^{2}-1^{2}} \\
& =\sqrt{80} \\
& =8.94 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) $\tan P \hat{Q} B=\frac{\sqrt{80}}{1}$

$$
\left.P \hat{Q} B=83.6^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

6. (i) $a=-\frac{7}{2}$ and $b=-2$.
(ii) $y=-\frac{7}{2}+(x+2)^{2}$

When $y=0$,

$$
\begin{aligned}
-\frac{7}{2}+(x+2)^{2} & =0 \\
(x+2)^{2} & =\frac{7}{2}
\end{aligned}
$$

$$
\begin{array}{rlrlrl}
x+2 & =-\sqrt{\frac{7}{2}} & & \text { or } & x+2 & =\sqrt{\frac{7}{2}} \\
& =-3.870 & & & =-0.1291 \\
\therefore x & =-3.87 & \text { or } & x & =-0.129 \text { (to } 3 \text { s.f.) }
\end{array}
$$

(iii) Equation of line of symmetry: $x=-2$ (x-coordinate of min. pt.)

7.

x	-3	-2	-1	0	1	2	3	4	5
y	-14	5	18	25	26	21	10	-7	-30

(i) From the graph, the greatest value of y is 26.5 .
(ii) From the graph, the solutions are -2.3 and 3.6.
(iii) From the graph, the range of values of x is $-1.7 \leqslant x \leqslant 3$.
(iv) Gradient $($ at $x=3)=\frac{\text { vertical change }}{\text { horizontal change }}$

$$
\begin{aligned}
& =-\frac{28}{2} \\
& =-14
\end{aligned}
$$

End-of-Year Examination Specimen Paper B

Part I

1. (a) Gradient $=\frac{7-3}{3-1}$

$$
=2
$$

(b) Equation is $y=2 x+c$.

Since the line $A B$ passes through the point $(1,3)$,
$3=2(1)+c \Rightarrow c=1$
\therefore Equation is $y=2 x+1$.
2. $(3 k-2) x+5 y=17$

$$
5 y=-(3 k-2) x+17
$$

\therefore Gradient $=\frac{2-3 k}{5}$
$7 y+(2 k-7)=19$

$$
7 y=-(2 k-7)+19
$$

\therefore Gradient $=\frac{7-2 k}{7}$
$\therefore \frac{2-3 k}{5}=\frac{7-2 k}{7}$
$14-21 k=35-10 k$
$11 k=-21$

$$
\begin{aligned}
k & =-\frac{21}{11} \\
& =-1 \frac{10}{11}
\end{aligned}
$$

3. (i) $7(3 x+11) \geqslant 5(2 x-3)+13(x+5)$

$$
\begin{aligned}
21 x+77 & \geqslant 10 x-15+13 x+65 \\
27 & \geqslant 2 x \\
x & \leqslant 13 \frac{1}{2}
\end{aligned}
$$

(ii) (a) $13 \frac{1}{2}$
(b) 13^{2}
(c) 13
4. (a) Let s and l denote the smaller and larger pyramid respectively.

$$
\begin{aligned}
\frac{\text { Weight }_{s}}{\text { Weight }_{l}} & =\frac{\text { Volume }_{s}}{\text { Volume }_{l}}=\left(\frac{\text { Height }_{s}}{\text { Height }_{l}}\right)^{3} \\
\frac{270}{1250} & =\left(\frac{\text { Height }_{s}}{\text { Height }_{l}}\right)^{3} \\
\frac{\text { Height }_{s}}{\text { Height }_{l}} & =\sqrt[3]{\frac{27}{125}} \\
& =\frac{3}{5}
\end{aligned}
$$

\therefore The ratio of their heights is $3: 5$.
(b) $\frac{\text { Cost }_{s}}{\text { Cost }_{l}}=\frac{\text { Surface area }_{s}}{\text { Surface area }}=\left(\frac{\text { Height }_{s}}{\text { Height }_{l}}\right)^{2}$

$$
\begin{aligned}
\frac{2.40}{\text { Cost }_{l}} & =\left(\frac{3}{5}\right)^{2} \\
& =\frac{9}{25}
\end{aligned}
$$

$$
\therefore \operatorname{Cost}_{l}=2.40 \times \frac{25}{9}
$$

$$
=\$ 6.67 \text { (to the nearest cent) }
$$

5. (a)
6. Let $y=\frac{4}{7} x-9$.

$$
\begin{aligned}
\frac{4}{7} x & =y+9 \\
x & =\frac{7}{4}(y+9) \\
\mathrm{f}^{-1}(x) & =\frac{7}{4}(x+9)
\end{aligned}
$$

7. (a) (i) Angle of elevation $=\tan ^{-1}\left(\frac{6}{6}\right)$

$$
=45^{\circ}
$$

(ii) $S Q=\sqrt{8^{2}+6^{2}}$

$$
=10 \mathrm{~cm}
$$

\therefore Angle of elevation $=\tan ^{-1}\left(\frac{6}{10}\right)$ $=31.0^{\circ}$ (to 1 d.p.)

$$
\begin{aligned}
& 27^{5-8 x}=81^{2 x-4} \\
& \left(3^{3}\right)^{5-8 x}=\left(3^{4}\right)^{2 x-4} \\
& \therefore 3(5-8 x)=4(2 x-4) \\
& 15-24 x=8 x-16 \\
& 31=32 x \\
& x=\frac{31}{32} \\
& \text { (b) } \quad\left(\frac{1}{8}\right)^{2-7 x}=32^{x-5} \\
& \left(2^{-3}\right)^{2-7 x}=\left(2^{5}\right)^{x-5} \\
& \therefore-3(2-7 x)=5(x-5) \\
& -6+21 x=5 x-25 \\
& 16 x=-19 \\
& x=-\frac{19}{16} \\
& =-1 \frac{3}{16}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P A=2.5 \times 40=100 \mathrm{~km} \\
& P B=2.5 \times 50=125 \mathrm{~km}
\end{aligned}
$$

$$
A \widehat{P} B=180^{\circ}-50^{\circ}-45^{\circ}(\text { adj. } \angle \mathrm{s} \text { on a str. line })
$$

$$
=85^{\circ}
$$

Using Cosine Rule,

$$
\begin{aligned}
A B & =\sqrt{100^{2}+125^{2}-2(100)(125) \cos 85^{\circ}} \\
& =153 \mathrm{~km} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

8.

$\cos 30^{\circ}=\frac{a}{B N}$

$$
\begin{aligned}
& \frac{\sqrt{3}}{2}=\frac{a}{B N} \\
& B N=\frac{2 a}{\sqrt{3}}
\end{aligned}
$$

$$
V N=\sqrt{(2 a)^{2}-\left(\frac{2 a}{\sqrt{3}}\right)^{2}}
$$

$$
=\sqrt{\frac{8 a}{3}}
$$

$$
=\frac{\sqrt{4} \sqrt{2} a}{\sqrt{3}}
$$

$$
=\frac{2 \sqrt{2} a}{\sqrt{3}}
$$

9. Distance $=(4.3 \times 365 \times 24 \times 60 \times 60 \times 300000) \mathrm{m}$

$$
\begin{aligned}
& =4.0681 \times 10^{13} \mathrm{~m} \text { (to } 5 \text { s.f.) } \\
& =4.068 \times 10^{10} \mathrm{~km}
\end{aligned}
$$

10. $B \hat{O} T=180^{\circ}-90^{\circ}-15^{\circ}(\angle$ sum of a \triangle, tangent \perp radius $)$

$$
\begin{aligned}
& =75^{\circ} \\
O \hat{B} P & =\frac{180^{\circ}-75^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isos. } \triangle) \\
& =52.5^{\circ}
\end{aligned}
$$

$$
\therefore P \hat{B} T=90^{\circ}-52.5^{\circ} \text { (tangent } \perp \text { radius) }
$$

$$
=37.5^{\circ}
$$

11. (a) (i) Length of $\operatorname{arc} P R Q=12\left(\frac{4 \pi}{9}\right)$

$$
=5 \frac{1}{3} \pi \mathrm{~cm}
$$

(ii) Area of $P O Q R=\frac{1}{2}(12)^{2}\left(\frac{4 \pi}{9}\right)$

$$
=32 \pi \mathrm{~cm}^{2}
$$

(b) $P Q=\sqrt{12^{2}+12^{2}-2(12)(12) \cos \left(\frac{4 \pi}{9}\right)}$

$$
=15.43 \mathrm{~cm} \text { (to } 2 \text { d.p.) }
$$

(c) Area of segment $=32 \pi-\frac{1}{2}(12)(12) \sin \left(\frac{4 \pi}{9}\right)$.

$$
=29.6 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

12. (i) By Sine Rule,

$$
\begin{aligned}
\frac{\sin C \hat{D} B}{13} & =\frac{\sin 76^{\circ}}{15} \\
C \hat{D} B & =\sin ^{-1}\left(\frac{13 \sin 76^{\circ}}{15}\right)(\angle \operatorname{sum} \text { of a } \triangle) \\
& \left.=57.2^{\circ} \text { (to } 1 \text { d.p. }\right)
\end{aligned}
$$

(ii) $B \hat{C} D=180^{\circ}-76^{\circ}-57.24^{\circ}$

$$
=46.76^{\circ}
$$

By Sine Rule,

$$
\begin{aligned}
\frac{B D}{\sin 46.76^{\circ}} & =\frac{15}{\sin 76^{\circ}} \\
B D & =\frac{15 \times \sin 46.76^{\circ}}{\sin 76^{\circ}} \\
& =11.3 \mathrm{~cm}(\text { to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) $A \hat{B} C=\cos ^{-1}\left(\frac{10^{2}+13^{2}-19.5^{2}}{2(10)(13)}\right)$

$$
\left.=115.3^{\circ} \text { (to } 1 \text { d.p. }\right)
$$

(iv) Area of $\triangle A B C=\frac{1}{2}(10)(3) \sin 115.33^{\circ}$

$$
=58.8 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

Part II

Section A

1. Length of 88000 oxygen atoms
$=88000 \times 2 \times\left(48 \times 10^{-12}\right) \mathrm{m}$
$=8.448 \times 10^{-6}$
$=8448 \times 10^{-9}$
$=8450 \mathrm{~nm}$ (to 3 s.f.)
2. (a) $\frac{V_{A}}{V_{B}}=\left(\frac{h_{A}}{h_{B}}\right)^{3}=\frac{51200}{10000}$

$$
\begin{aligned}
\frac{h_{A}}{h_{B}}=\sqrt[3]{\frac{512}{100}}=1.7235 \\
\begin{aligned}
& \frac{\text { Surface area }_{A}}{\text { Surface area }_{B}}=\left(\frac{h_{A}}{h_{B}}\right)^{2}=\left(\sqrt[3]{\frac{512}{100}}\right)^{2} \\
&=(1.7235)^{2} \\
&=2.970 \\
& \frac{9000}{\text { Surface area }} \text { a }
\end{aligned}=2.970
\end{aligned}
$$

\therefore Surface $\operatorname{area}_{B}=\frac{9000}{2.970}$

$$
=3030 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(b) $P \hat{Q} R=180^{\circ}-39^{\circ}-23^{\circ}(\angle$ sum of a $\triangle)$

$$
=118^{\circ}
$$

$\therefore \triangle P Q R$ and $\triangle Z Y X$ are similar.

$$
\begin{aligned}
& \frac{P Q}{Z Y}=\frac{Q R}{Y X}=\frac{P R}{Z X} \\
& \frac{8.4}{4}=\frac{P R}{8.63}=\frac{Q R}{6} \\
& \begin{aligned}
\therefore Q R & =\frac{6 \times 8.4}{4} \\
& =12.6 \mathrm{~cm} \\
\therefore P R & =\frac{8.4 \times 8.63}{4} \\
& =18.1 \mathrm{~cm}(\text { to } 3 \text { s.f. })
\end{aligned}
\end{aligned}
$$

3. (i) $P T=Q U$

$$
\begin{aligned}
\sin 55^{\circ} & =\frac{Q U}{6} \\
Q U & =6 \times \sin 55^{\circ} \\
& =4.91 \mathrm{~cm}(\text { to } 3 \text { s.f. }) \\
\therefore P T & =4.91 \mathrm{~cm}
\end{aligned}
$$

(ii) $\cos 55^{\circ}=\frac{U R}{6}$

$$
\begin{aligned}
\therefore U R & =6 \times \cos 55^{\circ} \\
& =3.44 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) $P \hat{S} T=\tan ^{-1}\left(\frac{4.9149}{3}\right)$

$$
=58.6^{\circ}(\text { to } 1 \text { d.p. })
$$

(iv) $\cos 58.6^{\circ}=\frac{3}{P S}$

$$
\begin{aligned}
P S & =\frac{3}{\cos 58.6^{\circ}} \\
& =5.76 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

4. (a) $A B=\sqrt{6^{2}+8^{2}}$

$$
=10 \mathrm{~cm}
$$

\therefore Radius $=5 \mathrm{~cm}$
Area $=\pi(5)^{2}$

$$
=25 \pi \mathrm{~cm}^{2}
$$

(b) $O \hat{A} C=\frac{1}{2}\left(70^{\circ}\right)$

$$
\begin{aligned}
& =35^{\circ}\left(\angle \text { at centre }=2 \angle \text { at } \bigcirc^{\text {ce }}\right) \\
A \hat{C} B & =180^{\circ}-90^{\circ}-35^{\circ} \\
& =55^{\circ}(\angle \text { sum of a } \triangle)
\end{aligned}
$$

Section B

5. (i) Time taken travelling at $x \mathrm{~km} / \mathrm{h}=\frac{280}{x} \mathrm{~h}$

Time taken travelling at $(x-8) \mathrm{km} / \mathrm{h}=\frac{280}{x-8} \mathrm{~h}$

$$
\begin{aligned}
\frac{280}{x-8}-\frac{280}{x} & =\frac{20}{60} \\
280 x-280(x-8) & =\frac{1}{3} x(x-8) \\
3(2240) & =x^{2}-8 x \\
x^{2}-8 x-6720 & =0
\end{aligned}
$$

(ii) $a=1, b=-8, c=-6720$

$$
\begin{aligned}
x & =\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)-(6720)}}{2(1)} \\
x & =\frac{8-\sqrt{26944}}{2} \quad \text { or } \quad x=\frac{8+\sqrt{26944}}{2} \\
& =-78.07 \text { (rejected) } \quad=86.07 \text { (to 2d.p.) }
\end{aligned}
$$

When $x=86.07$, time taken $=\frac{280}{86.07}$

$$
=3 \mathrm{~h} 15 \mathrm{~min}
$$

6. (i) In 1 hour, the big pipe can fill $\frac{1}{x}$ of the pool.
(ii) In 1 hour, the small pipe can fill $\frac{1}{x+2 \frac{1}{2}}$ of the pool.
(iii) In 1 hour, both pipes can fill $\frac{1}{5 \frac{3}{4}}$ of the pool.

$$
\begin{aligned}
\therefore \frac{1}{x}+\frac{1}{x+2 \frac{1}{2}} & =\frac{1}{5 \frac{3}{4}} \\
\frac{1}{x}+\frac{1}{x+2 \frac{1}{2}} & =\frac{4}{23} \\
23\left[\left(x+2 \frac{1}{2}\right)+x\right] & =4 x\left(x+2 \frac{1}{2}\right) \\
23\left(2 x+2 \frac{1}{2}\right) & =4 x^{2}+10 x \\
46 x+57.5 & =4 x^{2}+10 x \\
4 x^{2}-36 x-57.5 & =0 \\
8 x^{2}-72 x-115 & =0 \text { (shown) }
\end{aligned}
$$

(iv) $8 x^{2}-72 x-115=0$

$$
\left.\begin{array}{rl}
a & =8, b=-72, c=-115 \\
x & =\frac{72 \pm \sqrt{(-72)-4(8)(-115)}}{2(8)} \\
x & =\frac{72-\sqrt{8864}}{16} \quad \text { or } \quad x \\
& =-1.38 \text { (to } 2 \text { d.p.) }
\end{array} \quad=\frac{72+\sqrt{8864}}{16}\right)
$$

(v) $x=-1.38$ is rejected since time >0. The small pipe takes $(10.38+2.5) \mathrm{h}=12 \mathrm{~h} 53 \mathrm{~min}$ (to the nearest minute).
7. (a) $h=2(1)+\frac{5}{1}-6$

$$
=1
$$

(b)

(c) From the graph, min. value of $y=0.3$
(d) From the graph, gradient $=\frac{\text { vertical change }}{\text { horizontal change }}$

$$
\begin{aligned}
& =\frac{3.4}{2} \\
& =1.7
\end{aligned}
$$

(e) (i) $2 x+\frac{5}{x}=8.5$

$$
\begin{aligned}
& 2 x+\frac{5}{x}-6=8.5-6 \\
& 2 x+\frac{5}{x}-6=2.5 \\
& \therefore \text { Draw } y=2.5 .
\end{aligned}
$$

From the graph, $x=0.7$ or $x=3.5$.

NOTES

NOTES

[^0]: right-angled triangle.

