Complimentary Copy-Not For Sale New Syllabus

Mathematics

Teacher's
 Resource Book

50

Consultants and Authors: Dr Foong Pui Yee • Dr Yeap Ban Har
Authors: Brandon Oh • Chang Suo Hui • Lim Li Gek Pearlyn

CONTENTS

		Scheme of Work	Teaching Notes	Workbook Answers	Problem Solving, Maths Journal and Pupil Review	Activity Handbook
Chapter 1	Algebra	v	1			
	1 Simplifying and evaluating Algebraic Expressions		2	6		1-2
	2 Solving Word Problems		7	11	12	3-4
	Review 1			15		
Chapter 2	Angles in Geometric Figures	vi	16			
	1 Finding Unknown Angles		$\begin{aligned} & 17 \\ & 21 \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	27	5-18
	Review 2			29		
Chapter 3	Fractions	vii	30			
	1 Dividing a Fraction by a Whole Number		31	34		19
	2 Dividing a Whole Number by a Fraction		35	39		20
	3 Dividing a Fraction by a Fraction		40	44		
	4 Solving Word Problems		45	51	53	
	Review 3			56		
Chapter 4	Ratio	viii	57			
	1 Ratio and Fraction		58	62		21-22
	2 Finding Part and Whole		63	68		23
	3 Solving Word Problems		69	74	77	
	Review 4			79		
Chapter 5	Percentage	ix	81			
	1 Finding the Whole Given a Part and the Percentage		82	85		24
	2 Percentage Increase and Decrease		86	90		25-26
	3 Solving Word Problems		91	96	98	
	Review 5			100		
	Revision 1			101		

		Scheme of Work	Teaching Notes	Workbook Answers	Problem Solving, Maths Journal and Pupil Review	Activity Handbook
Chapter 6	Circles	X	104			
	1 Parts of a Circle		105	111		27-28
	2 Area of a Circle		112	116		29-33
	3 Area and Perimeter of Composite Figures		117	121	122	34
	Review 6			124		
Chapter 7	Speed	xii	125			
	1 Speed, Distance and Time		126	130		36
	2 Average Speed		131	133		
	3 Solving Word Problems		134	139	140	
	Review 7			142		
Chapter 8	Volume of Cubes and Cuboids	xiv	143			
	1 Volume of Cubes and Cuboids		144	151		$37-38$
	2 Solving Word Problems		152	159	160	
	Review 8			162		
Chapter 9	Pie Charts	xv	163			
	1 Reading Pie Charts		164	168		
	2 Solving Word Problems		169	174	175	39
	Review 9			178		
Chapter 10	Solid Figures	xvi	179			
	1 Solid Figures		180	184		
	2 Nets of Solid Figures		185	191	192	40-53
	Review 10			194		
	Revision 2			195		
	Review A to G			198		

Lesson	Number of Periods	Learning Objectives	Learning Experiences	Textbook Learning	Workbook Practice	Pupil-centred Activities	Concrete Materials
1	6	Simplifying and Evaluating Algebraic Expressions - Solve problems involving the simplification and evaluation of algebraic expressions.	- Use concrete objects (e.g. cubes) or draw diagrams to model simple algebraic expressions.	$\begin{gathered} \text { Textbook } 6 \\ \text { P1-6 } \end{gathered}$	Worksheet 1 Workbook 6A P1-6	-	-
2	6	Solving Word Problems - Solve word problems involving unknown quantities expressed in algebraic terms.	- Form and solve simple linear equations in word problems and make explicit link with model drawing.	$\begin{gathered} \text { Textbook } 6 \\ \text { P7-15 } \end{gathered}$	Worksheet 2 Workbook 6A P7-14	Textbook 6 P13	-
-	2	Problem Solving, Maths Journal and Pupil Review	-	-	Review 1 Workbook 6A P17-21	Textbook 6 P14-15 Workbook 6A P15-16	-

Leaming objectives

whole number.
Textbook 6
P39-45
Textbook 6
P46-52
Textbook 6
P53-65

Worksheet 1
Workbook 6A
P40-43
Worksheet 2
Workbook 6A
Worksheet 3
Workbook 6A
P48-51
Worksheet 4

Textbook 6
P64-65
$\underset{0}{\square}$

Textbook 6
P63
mini whiteboard,

$\frac{1}{2}$
$\frac{\pi}{3}$
$\frac{0}{\pi}$

Lesson	Number of Periods	Learning Objectives	Learning Experiences	Textbook Learning	Workbook Practice	Pupil-centred Activities	Concrete Materials
1	4	Dividing a Fraction by a Whole Number - Divide a proper fraction by a whole number without a calculator.	- Use fraction discs or digital manipulatives to illustrate the concepts and algorithms for division of a proper fraction by a whole number.	$\begin{gathered} \text { Textbook } 6 \\ \text { P33-38 } \end{gathered}$	Worksheet 1 Workbook 6A P40-43	$\begin{gathered} \text { Textbook } 6 \\ \text { P38 } \end{gathered}$	Fraction discs
2	4	Dividing a Whole Number by a Fraction - Divide a whole number by a proper fraction without a calculator.	- Use fraction discs or digital manipulatives to illustrate the concepts and algorithms for division of a whole number by a proper fraction.	Textbook 6 P39-45	Worksheet 2 Workbook 6A P44-47	$\begin{gathered} \text { Textbook } 6 \\ \text { P45 } \end{gathered}$	Fraction discs
3	4	Dividing a Fraction by a Fraction - Divide a proper fraction by a proper fraction without a calculator.	- Use fraction discs or digital manipulatives to illustrate the concepts and algorithms for division of a proper fraction by a proper fraction.	Textbook 6 P46-52	Worksheet 3 Workbook 6A P48-51	-	-
4	8	Solving Word Problems - Solve word problems involving the four operations.	- Use calculator to do the 4 operations with fractions (including mixed numbers). - Solve problems using the part-whole and comparison models. - Work in groups to solve multi-step word problems and non-routine problems.	Textbook 6 P53-65	Worksheet 4 Workbook 6A P52-60	$\begin{gathered} \text { Textbook } 6 \\ \text { P63 } \end{gathered}$	Fraction discs, mini whiteboard, calculator, markers
-	2	Problem Solving, Maths Journal and Pupil Review	-	-	Review 3 Workbook 6A P62-67	Textbook 6 P64-65 Workbook 6A P61	-

Workbook
Practice

Fraction discs

Fraction discs,

Lesson	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Periods } \end{gathered}$	Learning Objectives	Learning Experiences	Textbook Learning	Workbook Practice	Pupil-centred Activities	Concrete Materials
1	4	Finding the Whole Given a Part and the Percentage - Find the whole given a part and the percentage.	- Use a pictorial model to represent a percentage part of a quantity in a given situation and use the model to find the quantity.	$\begin{gathered} \text { Textbook } 6 \\ \text { P93-98 } \end{gathered}$	Worksheet 1 Workbook 6A P98-101	-	-
2	4	Percentage Increase and Decrease - Find percentage increase or decrease based on the original quantity.	- Give real-life examples of percentage change (increase or decrease) and explain how the percentage change is calculated. - Practise using calculator to find percentage change through games, e.g. in a group, students throw a die twice and calculate the change (increase/decrease) and then express the change as a percentage of the original value.	Textbook 6 P99 - 106	Worksheet 2 Workbook 6A $\text { P102 - } 105$	$\begin{gathered} \text { Textbook } 6 \\ \text { P106 } \end{gathered}$	10-sided die, pen, activity sheet, calculator
3	10	Solving Word Problems - Solve word problems involving percentage.	- Make connections between the concepts of 'percentage of percentage' and 'fraction of fraction'.	$\begin{aligned} & \text { Textbook } 6 \\ & \text { P107-117 } \end{aligned}$	Worksheet 3 Workbook 6A P106-114	-	-
-	2	Problem Solving, Maths Journal and Pupil Review	-	-	Review 5 Workbook 6A P116-123	Textbook 6 P116-117 Workbook 6A P115	-

Concrete Materials
Paper cups,
paper cut-
outs of cirles,
scissors,
strings, rulers,
coins, paper
plates, markers

Workbook Practice	Pupil-centred Activities
Worksheet 1	Textbook 6
Workbook 6B P1-8	P127

Textbook Learning
Textbook 6
P118-129

Learning Experiences
Describe circles using
terms such as 'centre',
'diameter', 'radius' and
'circumference'.
Work in pairs to measure
and recognise that

- the distance between
the centre and
\quad any point on the
circumference is
always the same.
- the bigger the circle,
the longer the
\quad diameter.
$-\quad$ the diameter of a
circle is twice its
radius.
Work in groups
to measure the
circumferences and
diameters of different
circles, use calculator to
work out the value of
$\pi\left(=\frac{\text { circumference }}{\text { diameter }}\right)$ and
observe that the value is
approximately 3.14 or
$\frac{22}{7}$.

Lesson | Number |
| :---: | :---: | :---: |
| of |
| Periods |\quad Learning Objectives

1-cm square
grid paper,
paper cut-outs
of circles,
semicircles and
quarter circles,
scissors, glue

Textbook 6
P138-144
Work in groups to
measure and discover
that the distance travelled
by a circle/wheel along
a straight line when it
makes one complete turn
without skipping is equal
to its circumference.
Estimate the area of a
circle using square grid.
Work in groups to cut a
circle into 24 pieces and
use the pieces to form a
rectangle to find the area
of the circle.
Make connections
between the area of a
circle of radius r and the
area of a square of length
r, e.g.

- Area of circle is less
than 4 squares $\left(4 r^{2}\right)$
- Area of circle is more
than 2 squares $\left(2 r^{2}\right)$
$-\quad$ Area of circle is about
$3 r^{2}$

Problem Solving, Maths
Journal and Pupil Review perimeter of figures made
up of a variety of squares,
rectangles, triangles,
semicircles and quarter
circles perimeter of figures made
up of a variety of squares,
rectangles, triangles,
semicircles and quarter
circles \odot
\sim

| Workbook |
| :---: | :---: | :--- |
| Practice | | Pupil-centred |
| :---: |
| Activities |\quad| Concrete
 Materials |
| :---: |
| Worksheet 1
 Workbook 6B
 P31-34 |
| Textbook 6 |
| P152 |\quad| Stopwatch, |
| :--- |
| measuring tape |

Textbook
Learning

Textbook 6
P145-152 calculated.
\square

Learning Experiences
speed ofve, motor car, train,
(e.g. horse, cheetah) other examples such as speed limit traffic signs, 100-m run, speedometer
in cars and fan speed.
Interpret and compare st!un łuәəән!

Talk about a journey are 3 related quantities
(distance, time and speed) and given any
two quantities, the third quantity can be

2	4	Average Speed - Define average speed. - Find average speed by dividing total distance by total time.	-	$\begin{gathered} \text { Textbook } 6 \\ \text { P153-156 } \end{gathered}$	Worksheet 2 Workbook 6B P35-38	-	-
3	10	Solving Word Problems - Solve up to 3-step word problems involving speed and average speed.	- Draw a diagram to show different scenarios of speed, distance and time (e.g. two vehicles starting from the same point but moving away from each other at constant speeds) and use it to solve problems, e.g. find the distance apart after 3 hours.	Textbook 6 P157-165	Worksheet 3 Workbook 6B P39-43	-	-
-	2	Problem Solving, Maths Journal and Pupil Review	-	-	Review 7 Workbook 6B P45-50	Textbook 6 P164-165 Workbook 6B P44	-

Lesson	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Periods } \end{gathered}$	Learning Objectives	Learning Experiences	Textbook Learning	Workbook Practice	Pupil-centred Activities	Concrete Materials
1	6	Volume of Cubes and Cuboids - Find one dimension of a cuboid given its volume and the other dimensions. - Find the length of one edge of a cube given its volume. - Find the height of a cuboid given its volume and base area. - Find the area of a face of a cuboid given its volume and one dimension. Use of the symbols: and $\sqrt[3]{ }$.	- Build cubes of different sizes using unit cubes (or connecting cubes) and commit to memory the volumes of the cubes. - Build a cuboid using unit cubes and determine its height given its volume (total number of unit cubes) and base area (product of two dimensions). - Use calculator to explore - the square roots of numbers and relate them to the lengths of squares given their areas. - the cube roots of numbers and relate them to the edge lengths of cubes given their volumes.	$\begin{gathered} \text { Textbook } 6 \\ \text { P166-179 } \end{gathered}$	Worksheet 1 Workbook 6B P51-58	Textbook 6 P177	1-cm cubes
2	6	Solving Word Problems - Solve word problems involving volume of a cube/cuboid.	-	$\begin{aligned} & \text { Textbook } 6 \\ & \text { P180-192 } \end{aligned}$	Worksheet 2 Workbook 6B P59-69	$\begin{gathered} \text { Textbook } 6 \\ \text { P189 } \end{gathered}$	-
-	2	Problem Solving, Maths Journal and Pupil Review	-	-	Review 8 Workbook 6B P71-80	Textbook 6 P191-192 Workbook 6B P70	-

Lesson	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Periods } \end{aligned}$	Learning Objectives	Learning Experiences	Textbook Learning	Workbook Practice	Pupil-centred Activities	Concrete Materials
1	4	Reading Pie Charts - Interpret data from a pie chart.	- Discuss examples of data presented in pie charts, and make connections between pie charts and other graphic representations of data. - Use the concept of proportionality to interpret data presented in pie charts in terms of percentages or fractions. - Construct a pie chart using a spreadsheet e.g. Excel	$\begin{aligned} & \text { Textbook } 6 \\ & \text { P193-199 } \end{aligned}$	Worksheet 1 Workbook 6B P81-84	$\begin{gathered} \text { Textbook } 6 \\ \text { P198 } \end{gathered}$	Software to construct pie chart
2	6	Solving Word Problems - Solve word problems involving pie charts.	- Use data to make informed decisions and predictions.	$\begin{aligned} & \text { Textbook } 6 \\ & \text { P200 - } 209 \end{aligned}$	Worksheet 2 Workbook 6B P85-92	$\begin{gathered} \text { Textbook } 6 \\ \text { P206 } \end{gathered}$	-
-	2	Problem Solving, Maths Journal and Pupil Review	-	-	Review 9 Workbook 6B P95-98	Textbook 6 P208-209 Workbook 6B P93-94	-

Lesson		Learning Objectives	Learning Experiences	Textbook Learning	Workbook Practice	Pupil-centred Activities	Concrete Materials
1	4	Solid Figures - Describe the characteristics of solid figures: cube, cuboid, cone, cylinder, prism and pyramid.	- Look for examples of prisms and pyramids in their environment and discuss the similarities and differences between them. - Draw 3D objects that are in the shape of prisms or pyramids.	$\begin{gathered} \text { Textbook } 6 \\ \text { P210-216 } \end{gathered}$	Worksheet 1 Workbook 6B P99-104	$\begin{aligned} & \text { Textbook } 6 \\ & \text { P213-214 } \end{aligned}$	-
2	6	Nets of Solid Figures - Identify and draw 2D representations of a cube, cuboid, cone, cylinder, prism and pyramid. - Identify the nets of 3D solids: cube, cuboid, cone, cylinder, prism and pyramid. - Identify the solid which can be formed by a given net.	- Visualise and draw the net of a cube, and justify that it is a net of the cube by cutting it out and folding it to form the cube. - Work in groups to make nets of 3D shapes using geoshapes (or polydrons).	$\begin{aligned} & \text { Textbook } 6 \\ & \text { P217-229 } \end{aligned}$	Worksheet 2 Workbook 6B P105-111	$\begin{aligned} & \text { Textbook } 6 \\ & \text { P219, } 224 \end{aligned}$	Paper, scissors, ruler Manipulatives
-	2	Problem Solving, Maths Journal and Pupil Review	-	-	Review 10 Workbook 6B P113-118	Textbook 6 P228-229 Workbook 6B P112	-

SYLLABUS MATCHING GRID CAMBRIDGE PRIMARY MATHEMATICS STAGE 6

Learning Objective

1. Number

Numbers and the number system

Know what each digit represents in whole numbers up to a million.
Know what each digit represents in one- and two-place decimal numbers.
Multiply and divide any whole number from 1 to 10000 by 10, 100 or 1000 and explain the effect.
Multiply and divide decimals by 10 or 100 (answers up to two decimal places for division).
Find factors of two-digit numbers.
Find some common multiples, e.g. for 4 and 5.
Round whole numbers to the nearest 10, 100 or 1000.
Round a number with two decimal places to the nearest tenth or to the nearest whole number.
Make and justify estimates and approximations of large numbers.
Use the >, < and = signs correctly.
Estimate where four-digit numbers lie on an empty $0-10000$ line.
Order numbers with up to two decimal places (including different numbers of places).
Recognise and extend number sequences.
Recognise and use decimals with up to three places in the context of measurement.
Recognise odd and even numbers and multiples of 5, 10, 25, 50 and 100 up to 1000.
Make general statements about sums, differences and multiples of odd and even numbers.
Recognise prime numbers up to 20 and find all prime numbers less than 100.
Recognise the historical origins of our number system and begin to understand how it developed.
Compare fractions with the same denominator and related denominators, e.g. $\frac{3}{4}$ with $\frac{7}{8}$.
Recognise equivalence between fractions, e.g. between $\frac{1}{100} \mathrm{~s}, \frac{1}{10} \mathrm{~s}$ and $\frac{1}{2} \mathrm{~s}$.
Recognise and use the equivalence between decimal and fraction forms.
Order mixed numbers and place between whole numbers on a number line.
Change an improper fraction to a mixed number, e.g. $\frac{17}{8}$ to $2 \frac{1}{8}$.
Reduce fractions to their simplest form, where this is $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ or a number of fifths or tenths.
Begin to convert a vulgar fraction to a decimal fraction using division.
Understand percentage as parts in every 100 and express $\frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{10}, \frac{1}{100}$ as percentages. Find simple percentages of shapes and whole numbers.
Solve simple problems involving ratio and direct proportion.

Chapter 1

Book 4 Chapter 8
Book 5 Chapter 2
Book 5 Chapter 8
Book 5 Chapter 1
Book 5 Chapter 1
Book 4 Chapter 1
Book 4 Chapter 8
Book 5 Chapter 1
Across the series
Book 4 Chapter 1
Book 4 Chapter 8
Across the series
Book 5 Chapter 8
Book 4 Chapter 2
Across the series
Book 5 Chapter 1
Book 4 Chapter 1
Book 4 Chapter 3
Book 5 Chapter 4
Book 4 Chapter 8
Book 4 Chapter 3
Book 5 Chapter 4
Book 4 Chapter 3
Chapter 3
Chapter 5
Chapter 5
Chapter 4

2. Calculation

Mental strategies

Know and apply tests of divisibility by $2,4,5,10,25$ and 100.
Use place value and number facts to add or subtract two-digit whole numbers and to add or subtract three-digit multiples of 10 and pairs of decimals, e.g. $560+270 ; 2.6+2.7 ; 0.78+0.23$.

Book 4 Chapter 2
Book 3 Chapter 2 and Book 4 Chapter 9
Add/subtract near multiples of one when adding numbers with one decimal place, e.g. $5.6+2.9 ; 13.5-2.1$.
Add/subtract a near multiple of 10,100 or 1000 , or a near whole unit of money, and adjust,
Book 4 Chapter 9
Book 3 Chapter 2
e.g. $3127+4998 ; 5678-1996$.

Use place value and multiplication facts to multiply/divide mentally, e.g. $0.8 \times 7 ; 4.8 \div 6$.
Multiply pairs of multiples of 10 , e.g. 30×40, or multiples of 10 and 100 , e.g. 600×40.
Double quickly any two-digit number, e.g. 78, 7.8, 0.78 and derive the corresponding halves.
Divide two-digit numbers by single-digit numbers, including leaving a remainder.

Book 4 Chapter 9
Book 5 Chapter 2
Book 5 Chapter 2
Book 4 Chapter 2

Add two- and three-digit numbers with the same or different numbers of digits/decimal places.

Add or subtract numbers with the same and different numbers of decimal places, including amounts of money.

Multiplication and division

Multiply pairs of multiples of 10 , e.g. 30×40, or multiples of 10 and 100 , e.g. 600×40.
Multiply near multiples of 10 by multiplying by the multiple of 10 and adjusting.
Multiply by halving one number and doubling the other, e.g. calculate 35×16 with 70×8.
Use number facts to generate new multiplication facts, e.g. the $17 \times$ table from $10 \times+7 \times$ tables.
Multiply two-, three- or four-digit numbers (including sums of money) by a single-digit number and two- or three-digit numbers by two-digit numbers.

Divide three-digit numbers by single-digit numbers, including those leaving a remainder and divide three-digit numbers by two-digit numbers (no remainder) including sums of money.
Give an answer to division as a mixed number, and a decimal (with divisors of $2,4,5,10$ or 100).
Relate finding fractions to division and use them as operators to find fractions including several tenths and hundredths of quantities.
Know and apply the arithmetic laws as they apply to multiplication (without necessarily using the terms commutative, associative or distributive).

Book 3 Chapter 2, Book 4 Chapter 9

Book 4 Chapter 9

Book 5 Chapter 2

Book 5 Chapter 2

Chapter 3
Chapter 3

Book 5 Chapter 2

3. Geometry

Shapes and geometric reasoning

Visualise and describe the properties of 3D shapes, e.g. faces, edges and vertices.
Identify and describe properties of quadrilaterals (including the parallelogram, rhombus and trapezium), and classify using parallel sides, equal sides, equal angles.

Recognise and make 2D representations of 3D shapes including nets.
Estimate, recognise and draw acute and obtuse angles and use a protractor to measure to the nearest degree.
Check that the sum of the angles in a triangle is 180°, for example, by measuring or paper folding; calculate angles in a triangle or around a point.

Chapter 8
Chapter 2

Chapter 10
Book 4 Chapter 5

Book 5 Chapter 13

Position and movement

Read and plot co-ordinates in all four quadrants.
Predict where a polygon will be after one reflection, where the sides of the shape are not parallel
Book 3 Chapter 12
Book 4 Chapter 6
or perpendicular to the mirror line, after one translation or after a rotation through 90° about one of its vertices.
4. Measure

Length, mass and capacity

Select and use standard units of measure. Read and write to two or three decimal places.
Convert between units of measurement (kg and g, I and $\mathrm{ml}, \mathrm{km}, \mathrm{m}, \mathrm{cm}$ and mm), using decimals to three places, e.g. recognising that 1.245 m is 1 m 24.5 cm .

Interpret readings on different scales, using a range of measuring instruments.
Draw and measure lines to the nearest centimetre and millimetre.

Book 5 Chapter 8
Book 5 Chapter 8

Book 5 Chapter 8
Book 5 Chapters 13 and 14

Time

Recognise and understand the units for measuring time (seconds, minutes, hours, days, weeks, months, years, decades and centuries); convert one unit of time into another.
Tell the time using digital and analogue clocks using the 24-hour clock.
Compare times on digital and analogue clocks, e.g. realise quarter to four is later than 3:40.
Read and use timetables using the 24 -hour clock.
Calculate time intervals using digital and analogue times

Book 4 Chapter 12

Book 4 Chapter 12
Book 4 Chapter 12
Book 4 Chapter 12
Book 4 Chapter 12

Area and perimeter

Measure and calculate the perimeter and area of rectilinear shapes.
Book 4 Chapter 10
Estimate the area of an irregular shape by counting squares.
Calculate perimeter and area of simple compound shapes that can be split into rectangles.
Book 3 Chapter 13
Book 3 Chapter 13 and Book 4 Chapter 10

5. Handling data

Organising, categorising and representing data

Solve a problem by representing, extracting and interpreting data in tables, graphs, charts and diagrams, e.g. line graphs for distance and time; a price 'ready-reckoner' for currency conversion; frequency tables and bar charts with grouped discrete data.

Explore how statistics are used in everyday life.

Book 4 Chapter 11 and Book 6 Chapter 9

Chapter 9

Probability
Use the language associated with probability to discuss events, to assess likelihood and risk, including those with equally likely outcomes.

Book 5 Chapter 15

6. Problem solving

Using techniques and skills in solving mathematical problems
Choose appropriate and efficient mental or written strategies to carry out a calculation involving
Across the series addition, subtraction, multiplication or division.
Understand everyday systems of measurement in length, weight, capacity, temperature and time and
Across the series use these to perform simple calculations.
Check addition with a different order when adding a long list of numbers; check when subtracting by using the inverse.
Recognise 2D and 3D shapes and their relationships, e.g. a cuboid has a rectangular cross-section. Estimate and approximate when calculating, e.g. use rounding, and check working.

Books 4-6

Using understanding and strategies in solving problems

Explain why they chose a particular method to perform a calculation and show working.
Deduce new information from existing information and realise the effect that one piece of information has on another.
Use logical reasoning to explore and solve number problems and mathematical puzzles.
Use ordered lists or tables to help solve problems systematically.
Identify relationships between numbers and make generalised statements using words, then symbols and letters, e.g. the second number is twice the first number plus $5(n, 2 n+5)$; all the numbers are multiples of 3 minus $1(3 n-1)$; the sum of angles in a triangle is 180°.
Make sense of and solve word problems, single and multi-step (all four operations), and represent them, e.g. with diagrams or on a number line; use brackets to show the series of calculations necessary.

Solve simple word problems involving ratio and direct proportion.
Solve simple word problems involving percentages, e.g. find discounted prices.
Make, test and refine hypotheses, explain and justify methods, reasoning, strategies, results or conclusions orally.

Across the series

Across the series

Across the series
Across the series
Book 5 Chapter 3 and Book 6 Chapter 1

Across the series

Chapter 4
Chapter 5
Across the series

INTRODUCTION

The Teacher's Resource Book has been designed to promote good teaching practices for teachers to effectively implement the Primary Mathematics Curriculum.

This series provides teachers with the flexibility to choose the elements that are right for their learners. The key focus in Lower Primary Mathematics comprise of the following:

1. pupil-centred learning
2. active participation
3. problem solving
4. critical thinking
5. real-life contextual exercises
6. mathematical communication and reasoning

Teachers must provide a conducive environment for learning Mathematics in the classroom that encourages creativity and enjoyment. When introducing a concept to pupils, teachers need to ensure that pupils are able to relate mathematical activities and problems to relevant and real-life situations. Teaching mathematical concepts in real-life contexts and providing hands-on experience assist pupils to understand the concepts. Therefore, teachers need to provide mathematical contexts that are relevant to the pupils. Pupils need to apply the concepts and skills in various areas of Mathematics to find solutions to problems involving real-life situations. This series engages the pupils to learn by the Concrete-Pictorial-Abstract (C-P-A) approach:
Exploring concepts using concrete materials, leading to the use of pictorial representations and then, the abstract. Using this approach, pupils are first introduced to a concept through real-life examples or hands-on activities. The exercises then progress with the help of pictorial representations. Once they have a good understanding of the concept, mathematical notation; symbols and computations are introduced to achieve mastery in the abstract.

The Teacher's Resource Book provides instructions on the use of resources to help them carry out the abovementioned objectives. If a concept is taught in a comprehensive manner with clear instructions supplemented with hands-on activities and practice, most pupils would be able to achieve the set assessment target. Each pupil has a set pattern and pace of grasping concepts, but the expectation is the plateau of mathematical competency for all. In this regard, the Teacher's Resource Book serves as a support to teachers using this series.

The five main strands of the Primary Mathematics Curriculum are:

The Teacher's Resource Book supports a meaningful and holistic approach to teaching the strands of Mathematics. The buildup of concepts throughout this series is progressive and comprehensive.

With the implementation of hands-on activities, the learning of a mathematical concept is complemented with experiences that make learning Mathematics enjoyable and give pupils the ownership of independent and group practices. Multiple strategies are implemented through activities in the form of games, model work, standard and non-standard materials and resources. The Teacher's Resource Book facilitates teachers to implement this aspect of the series proficiently. The Teacher's Resource Book provides a structure whereby teachers and coordinators can select, combine and improvise various pedagogical practices for the pupil-centric textbook and workbooks.

In this regard, the Teacher's Resource Book provides the following elements:

- Scheme of Work - A tabulated guide showing a breakdown of each lesson's learning objectives, learning experiences, page references of relevant resources, concrete materials required and suggested number of periods required to conduct the lesson, keeping in mind the level of difficulty of the content.
- Syllabus Matching Grid - A tabulated guide referring the chapters in this series to the learning objectives of the Cambridge Primary Mathematics curriculum.
- Exposition of Lessons - A guide for teachers to prepare and conduct lessons.
- Answers - Solutions to questions in the textbook and workbook are provided, along with detailed steps where required.
- Activities - Additional activities to assist teachers to support struggling learners and challenge advanced learners.
- Navigating through the Assessment Activities and Exercises - An essay explaining to teachers how to use the resources provided effectively when conducting the lessons. The resources include formative and progressive exercises, activities and assessments provided in the textbook and workbook.
- Activity Handbook - Activity templates and worksheets for pupils to use when carrying out activities and to supplement the lessons.

ALGEBRA

CHAPTER

Related Resources
NSPM Textbook 6 (P1 - 15)
NSPM Workbook 6A (P1 - 21)

Materials
Mini whiteboard, markers
Lesson
Lesson 1 Simplifying and Evaluating Algebraic Expressions
Lesson 2 Solving Word Problems
Problem Solving, Maths Journal and
Pupil Review

INTRODUCTION

This chapter introduces the concept of algebra. Pupils will learn to express numbers and quantities algebraically, i.e. use letters to represent unknown numbers. Subsequently, pupils can utilise letters and symbols to form algebraic expressions as well as algebraic equations.

SIMPLIFYING AND EVALUATING ALGEBRAIC EXPRESSIONS

LEARNING OBJECTIVE

1. Solve problems involving the simplification and evaluation of algebraic expressions.

RECAP
Recap with pupils that an expression consisting of a letter that represents an unknown number, is an algebraic expression. Point out to pupils that examples 1 to 4 show four different algebraic expressions which involve the four different operations each.
2. There are 9 apples in a basket.
y apples are rotten and are thrown away.
How many apples are left?
$9-y=9-y$
($9-y$) apples are leff.
3. There are p plates and twice as many bowls as plates

How many bowls are there?
$p \times 2=2 p$
There are $2 p$ bowls.
4. 7 children share q biscuits equally.

How many biscuits does each child get?
$a \div 7=\frac{9}{7}$
Each child gets $\frac{9}{7}$ biscuils.
in Focus

I have 3 times as many cookies as Kate.

How can we find the total number of cookies Kate and Junhao have altogether?

Textbook 6 P2

Get pupils to express the number of cookies each child has algebraically, and explore the idea of putting these expressions together to express the sum of cookies in one expression.

LET'S LEARN

Simplifying algebraic expressions

1. Kate has p cookies and Junhao has $3 p$ cookies. How many cookies do they have altogether?

$=4 p$
They have $4 p$ cookies altogether.
2. Simplify $2 q+4 q$.

$2 a+4 q=a+q+a+q+a+q+q$ $=6 q$
3. Simplify $3 r+r+5 r$.

$3 r+r+5 r=9 r$

3

LET'S LEARN

In Let's Learn 1, the use of concrete materials such as multilink cubes or algebraic tiles help pupils visualise and make sense of the context. Such visualisation can be extended to pictorial form using the bar model as shown in the example. Pupils will explore and understand the concept of the simplification of algebraic expressions involving addition.

For Let's Learn 2 to 5 , guide pupils to simplify algebraic expressions involving addition based on different contexts.
4. Simplify $2 u+3 u+2$

5. Simplify each of the following expressions.
(a) $w+w 2 w$
(b) $6 x+3 x 9 x$
(c) $y+4 y+10 y 15 y$
(d) $1+5 z+4 z \quad 9 z+1$
6. Bina has $3 w$ cupcakes. She gives away w cupcakes. How many cupcakes does she have left?

$3 w-w=2 w$
Bina has $2 w$ cupcakes left
7. Simplify $5 x-3 x$.

$5 x-3 x=2 x$

In Let's Learn 5, note that it must be pointed out that we can simplify $w+w=2 w$, but $2+w \neq 2 w$. Get pupils to explore and explain why, with the help of algebraic tiles or bar models.

Let's Learn 6 uses concrete materials such as multilink cubes or algebraic tiles to help pupils visualise and make sense of the context. Such visualisation can be extended to pictorial form using the bar model as shown in the example. Pupils will explore and understand the concept of the simplification of algebraic expressions involving subtraction. Note that it must be pointed out that we can simplify $3 w-w=2 w$, but $3-w \neq 2 w$. Get pupils to explore and explain why, with the help of algebraic tiles or bar models.

For Let's Learn 7 to 10, guide pupils to simplify algebraic expressions involving subtraction based on different contexts.

Other pointers for the pupils are:
$w-w=0$ and not $0 w$;
$2 w-w=w$, and not $1 w$.
Explain that $1 \times w=w$.

For Let's Learn 11 to 13 , guide pupils to simplify algebraic expressions, based on different contexts. Remind pupils to group variables of the same type together, i.e. letters or numbers, before simplifying them.

Textbook 6 P6

For Let's Learn 14, explain that the algebraic expression can be evaluated when the letter is substituted with a given number.

For Let's Learn 15 to 19, guide pupils to evaluate the algebraic expressions involving the various operations.

It is important to emphasise to pupils that they must present their working correctly. For example, pupils should not write:

$$
\begin{aligned}
3 c+15 & =3 \times 1 \\
& =3+15 \\
& =18 .
\end{aligned}
$$

This is a common error made by pupils.
18. Find the value of $\frac{10-e}{4}$ when $e=6$.

19. Find the value of each of the following expressions when $f=4$.
$\begin{array}{lll}\text { (a) } & t+5 & 9 \\ \text { (c) } & 9 f & 36\end{array}$
(b) $f-4 \quad 0$
(e) $3+5 f 23$
PRACTICE

1. Simplify.
(a) $a+a+a+a \quad 4 a$
(c) $6 c+4 c+2 c \quad 12 c$
(e) $12 e-3 e-8 e \quad e$
(f) $5 f+8 f-9 f \quad 4 f$
(i) $5 i+7-3 i+6 \quad 2 i+13 \quad$ (i) $15+10 j-12+5 j \quad 15 j+3$
2. Find the value of each of the following expressions when $p=5$.

(a) $p+5 \quad 10$	(b) $p-4 \quad 1$
(c) $3 p$	(d) $\frac{p}{5} \quad 1$
(e) $2 p-8 \quad 2$	(f) $5 p+3 \quad 28$
(g) $\frac{6 p}{5} \quad 6$	(h) $39-4 p \quad 19$
(i) $16+7 p 51$	(j) $\frac{8 p}{2} \quad 20$
(k) $\frac{p+3}{4} 2$	(l) $12-\frac{3 p}{5} 9$
Find the value of each of the following.	
(a) $4 q-3$ when $q=413$	(b) $8-2 r$ when $r=3 \quad 2$
(c) $\frac{5 s}{4}$ when $s=8$	10

Complete Workbook 6A. Worksheet 1 • Pages 1-6
7
CHAPTER
Textbook 6 P7

Independent seatwork

Allow pupils to discuss and work in pairs or groups. Then, go through the questions and solutions with the class. It is important that pupils grasp the relevant concepts before they are given independent work.

Assign pupils to complete Worksheet 1 (Workbook 6A P1-6).

1. (a) $2 p$
(b) $4 q$
(c) $4 r$
(d) 13 s
2. (a) $2 p$
(b) $2 q$
(c) $7 r$
(d) 0
3. (a) $10 m+8$
(b) $n+5$
(c) $20-3 p$
(d) $7 q-2$
(e) $14+r$
(f) $6 s+8$
(g) $1+10 x$
(h) $11 y+9$
4. (a) 10
(b) 13
(c) 122
(d) 0
(e) 10
(f) 21
5. (a) 15
(b) 7
(c) 8
(d) 4
(e) 0
(f) 17
(g) 1
(h) $4 \frac{1}{2}$
(i) 4

SOLVING WORD PROBLEMS

LEARNING OBJECTIVE

1. Solve word problems involving unknown quantities expressed in algebraic terms.

IN

BFOCUS

Get pupils to relate to solving problems in real-world contexts, using algebraic expressions and equations. Pupils may solve the problem with the bar modelling method or other methods; however, encourage pupils to try using algebra.

Textbook 6 P9
3. Tom bought p similar sketchbooks at $\$ 4$ each.
(a) Find the amount Tom spent in terms of p.
(b) Tom bought 9 sketchbooks and gave the cashier $\$ 50$. How much did he receive in change?
(a) Amount Tom spent $=\$ 4 \times p$ $=\$ 4 p$
(b) Amount Tom spent $=\$ 4 \times 9$
$=\$ 36$
Amount of change received $=\$ 50-\$ 36$
$=\$ 14$
Tom received \$ 14 in change
4. In a box, there are q red marbles and $(3 q+1)$ blue marbles. There are 12 red marbles. How many marbles are there in the box altogether?

Total number of marbles $=a+3 q+1$

5. Weiming has twice as much money as Ann and Farhan has $\$ 5$ more than Ann Ann has $\$ r$.
(a) Find the total amount of money the three pupils have in terms of r
(b) Ann has $\$ 25$. Find the average amount of money each pupil has.
(a) Total amount $=\$(r+2 r+r+5)$
$=\$(4 r+5)$
The three pupils have a total of $\$(4 r+5)$
OXFORD

In Let's Learn 1, pupils need to first understand the information in the context given and form the algebraic expression for the amount of money spent. Following which, they are required to calculate the total amount spent based on the value assigned to the unknown variable. In this example, pupils will go through the process of formulating the algebraic expression and evaluating it.

For Let's Learn 2, guide pupils to find the perimeter in terms of n. Ensure that they understand the need to multiply 7 by the given value of n and to include the ‘+2' after.

For Let's Learn 3, remind pupils that the information given in part (b), provides the value of p to substitute into the algebraic expression formed.

For Let's Learn 4, get pupils to read the question carefully and to pick out the value to substitute q with.

For Let's Learn 5, recap with pupils that they have learnt in Grade 5 how to find the average.


```
7. Kate is }y\mathrm{ years old and her brother is }5\mathrm{ years older than she is.
    (a) Find Kate's age in 2 years' time in terms of }y\mathrm{ .
    (b) Find her brother's age in 2 years' time in terms of }y\mathrm{ .
    (c) In 2 years' time, the sum of their ages will be 31. How old is Kate now?
    (a) Kate's age now = y
        Kate's age in 2 years' time = y+2
        In 2 years' time, Kate will be ( }y+2\mathrm{ ) years old.
    (b) Her brother's age now = y+5
        Her brother's age in 2 years' time }\begin{array}{rl}{=}&{y+5+2}\\{=}&{y+7}
    In 2 years' time, Kate's brother will be ( }y+7)\mathrm{ years old
    (c) In2 years' time
```



```
    y=}\frac{31-2-7}{2
    =\frac{22}{2}
    Kate is }11\mathrm{ years old now.
```

Let's Learn 6 allows pupils to explore beyond forming algebraic expressions. They will be required to come up with an algebraic equation and subsequently solve it. To help pupils visualise, model drawing with the number of ducks represented by a bar labelled as x, facilitates the formation of a simple algebraic equation. The operations involved in solving for x can be understood more clearly and carried out with the help of the bar model.

For Let's Learn 7 and 8, guide pupils to form algebraic equations and solve them, based on different contexts. Encourage pupils to draw bar models to help them visualise and understand the questions before deciding on the operations needed to solve them.

Textbook 6 P12

Writing word problems based on algebraic equations given will allow pupils to exercise their creativity in addition to checking their understanding of the meaning of these equations. It is also important for pupils to correctly apply the relevant operations to solve the equations, with the use of bar models when necessary.

Textbook 6 P13

Allow pupils to discuss and work in pairs or groups. Then, go through the questions and solutions with (a) Find the height of Ahmad's younger brother in terms of h. ($h-20) \mathrm{cm}$ (b) Find the height of Ahmad's father in terms of $h .(h+35) \mathrm{cm}$
(c) Ahmad is 147 cm tall. Find their average height. 152 cm
2. In a tank, there are k angelfish and 4 times as many guppies as angelfish. There are also 3 more goldfish than guppies in the tank. There are 30 fish in the tank in total. How many goldfish are there? 15
3. There were m pupils in a class at first. After a week, 4 more pupils joined the class. 30
(a) Find the number of pupils in the class after a week in terms of $m . m-20$ (b) There were 40 pupils in the class after a week. How many pupils were there in the class at first? 30
4. Xinyi used 2 bottles of mango syrup and 9 litres of water to make a mango drink. There were n litres of mango syrup in each bottle and she then poured the mango drink equally into 20 glasses.
(a) What was the volume of mango drink in each glass? Give your answer in terms of $n . \quad \frac{2 n+9}{2 n} \ell$
(b) There were 2ℓ of mango syrup in each bottle. How much mango drink did Xinyi make in all? 13ℓ

```
C Complete Workbook 6A, Worksheet 2 - Pages 7-14
```

(2) MIND WORKOUT

There are two machines, Machine A and Machine B. Each minute Machine A produces 3 more toys than Machine B. In 5 minutes, Machine A produces n toys and Machine B produces half the number of toys produced by Ma

Textbook 6 P14

Independent seatwork

Assign pupils to complete Worksheet 2 (Workbook 6A P7-14)

1. $2 n+1=2 \times 50+1$

$$
\begin{aligned}
& =100+1 \\
& =101
\end{aligned}
$$

The number is 101.
2. (a) $x+x-40=2 x-40$

Ahmad and Weiming have $(2 x-40)$ marbles.
(b) $2 x-40=2 \times 55-40$

$$
\begin{aligned}
& =110-40 \\
& =70
\end{aligned}
$$

They have 70 marbles altogether.
3. (a) $p-120$

Raju had ($p-120$) foreign stamps at first.
(b) $p-120+2 p=165-120+2 \times 165$

$$
\begin{aligned}
& =165-120+330 \\
& =375
\end{aligned}
$$

He had 375 foreign stamps in the end.
4. (a) $\frac{q-24}{40}$

Each pupil received $\frac{q-24}{40}$ sweets.
(b) $\frac{q-24}{40}=\frac{144-24}{40}$

$$
\begin{aligned}
& =\frac{120}{40} \\
& =3
\end{aligned}
$$

Each pupil received 3 sweets.
5. (a) $w+2 w=3 w$

$$
\begin{aligned}
3 w & =177 \\
w & =177 \div 3 \\
& =59
\end{aligned}
$$

The bag costs $\$ 59$
(b) $2 w=59 \times 2$

$$
=188
$$

The watch costs $\$ 118$

6 (a) Farhan saves $\$(x+1)$ on Tuesday.
(b) $x+x+1=2 x+1$

Farhan saves $\$(2 x+1)$ altogether on Monday and Tuesday.
(c) $2 x+1=2 \times 3+1$

$$
=7
$$

Frahan saves $\$ 7$ altogether on Monday and Tuesday.
7. (a) $x+25$

Bala's mother is $(x+25)$ years old.
(b) $x+x+25=2 x+25$

The sum of their ages now is $(2 x+25)$ years.
(c) $x+25=12+25$ $=37$
His mother is 37 years old.
8. (a) $24+24+x+24+2 x=72+3 x$

The sum of the money shared was $\$(72+3 x)$.
(b) $x=30-24$

$$
=6
$$

$72+3 x=72+3 \times 6$
$=72+18$

$$
=90
$$

The sum of money shared was $\$ 90$.
9. (a) $y+y+500+y-210=3 y+290$

The total mass of the three parcels is $(3 y+290) \mathrm{g}$.
(b) $3 y+290=2000$
$3 y=2000-290$
$=1710$
$y=1710 \div 3$

$$
=570
$$

$y \div 500=1070$
$y-210=360$
The mass of the first parcel is 570 g , the mass of the second parcel is 1070 g and the mass of the third parcel is 360 g .

PROBLEM SOLVING, MATHS JOURNAL AND PUPILLREVIIW

Textbook 6 P14

MIND WORKOUT

The Mind Workout involves the concept of rate, with the use of letters to represent a particular number of toys. Pupils will need to understand the question well, and apply the concept of rate, in addition to forming an algebraic equation and solving it.

The figure below is made up of 8 squares and its perimeter is $36 p \mathrm{~cm}$.

(a) What is the perimeter of each square?
(b) Siti rearranges the 8 squares to form a figure with the greatest possible perimeter. What is the perimeter of the figure formed?
(a) $36 p \div 12=3 p$
$3 p \times 4=12 p$
The perimeter of each square is $12 p \mathrm{~cm}$.
(b) $18 \times 3 p=54 p$

The perimeter of the figure formed is $54 p \mathrm{~cm}$.

Mind Workout

For this question, guide pupils by asking them to count how many sides of the squares are included in the perimeter of the figure.

Workbook 6A P15

MATHS JOURNAL
Raju solved the algebraic equations and found that the answers are the same

Write three other algebraic equations that give the same answer as the one above.

MATHS JOURNAL

This Maths Journal provides good practice for pupils to reinforce their understanding of solving algebraic equations by getting them to write different algebraic equations that give the same answer when solved.

5■

 Maths JournalIs each of the following statements correct?
(a) $2 a+1$ is the same as $1+2 a$.

Yes
(b) $3 b+4$ is the same as $4 b+3$. No
(c) $c \times c$ is the same as $2 c$.

No
(d) $5 d+2$ is the same as $7 d$.

No
(e) $6 e \div 5$ is the same as $\frac{6 e}{5}$

Yes

Pupils can use this Maths Journal to ensure that they have grasped the concept of algebraic expressions under the different operations.

Before getting the pupils to do the self-check, review important concepts. The self-check can be done after pupils have completed Review 1 (Workbook 6A P17-21).

Textbook 6 P15

1. (a) $11 a+12$
(b) $8 b+10$
(c) $10 c+35$
(d) $6 d+3$
(e) $6 e+11$
(f) f
2. (a) $(3 x+4) \mathrm{cm}$
(b) $8 x \mathrm{~cm}$
(c) $(3 x+3) \mathrm{cm}$
(d) $(6 x+2) \mathrm{cm}$
3. (a) 9
(b) 6
(c) 5
(d) 10
(e) 1
(f) 2
(g) 3
(h) 2
4. (a) $2 \times m+5 \times m=7 m$ Mrs Lim spent $\$ 7 m$ altogether.
(b) $7 \times 4=\$ 28$

Mrs Lim spent $\$ 28$ altogether.
5. (a) $x+5+x+3=3 x+10$

The perimeter of the triangle is $(3 x+10) \mathrm{cm}$.
(b) $3 x+10=3 \times 45+10$

The perimeter of the triangle is 145 cm .
6. (a) $12+7 y$

Ann had $(12+7 y)$ stickers at first.
(b) $12+7 y=12+7 \times 9$

$$
\begin{aligned}
& =12+63 \\
& =75
\end{aligned}
$$

Ann had 75 stickers at first.
7. (a) $2 z+3$

There are $(2 z+3)$ green marbles.
(b) $2 z+3=19$

$$
\begin{aligned}
2 z & =19-3 \\
& =16 \\
z & =16 \div 2 \\
& =8
\end{aligned}
$$

There are 8 red marbles.

ANGLES IN GEOMETRIC FIGURES

Related Resources
NSPM Textbook 6 (P16-32)
NSPM Workbook 6A (P22 - 39)
Materials

Lesson
Lesson 1 Finding Unknown Angles
Problem Solving, Maths Journal and
Pupil Review

INTRODUCTION

In this lesson pupils will find unknown angles in geometric figures by applying their prior knowledge learnt in grades Four and Five of the following properties:

- angles on a straight line,
- angles at a point,
- vertically opposite angles,
- right-angled, isosceles and equilateral triangles,
- square, rectangle, parallelogram, rhombus and trapezium.

Pupils are expected to recognise special triangle(s) and quadrilateral(s) in a given geometric figure and use deductive reasoning to apply the relevant properties to find unknown angle(s).

LESSON

FINDING UNKNOWN ANGLES

LEARNING OBJECTIVE

1. Find unknown angles in geometric figures.

Revise properties of angles, triangles and 4-sided figures:
For Let's Learn 1, use the visualiser to show the three figures of (a) to (c). Ask:

- What angle property do you recognise in each of the figures?
- What can you say about the marked angles in each figure?
Allow time for pupils to discuss in pairs and to verbalise the angle property of each figure, before going through the given examples with them.

Textbook 6 P17
3. (a)

The sum of angles in a triangle is 180
$\angle a+\angle b+\angle c=180$
(b)

In a right-angled triangle, one of the angles is 90 $\angle d=90$
(c)

In an isosceles triangle, the angles opposite the two equal sides are equal. $\angle e=\angle f$
(d)

In an equilateral triangle, all the angles are equal to 60 $\angle p=\angle q=\angle r=60$

For Let's Learn 2, guide the pupils by asking:

- Can you recognise the pair of vertically opposite angles in this figure?
- How can we use this angle property to find unknown $\angle x$?
- How is $\angle x$ related to $\angle D O E$ and $\angle F O E$?

Allow time for pupils to work in pairs before going through the solution with them. Get pupils to use another angle property to find $\angle x$. Hint: Use the property of sum of angles on a straight line.

For Let's Learn 3, first ask pupils to recall the property of a triangle and names of some special triangles that they have already learnt and list them on the whiteboard. Then ask pupils to match the four triangles of (a) to (d) with their given names. Ask:

- What angle property do you recognise in each of the triangles?
- What can you say about the marked angles in each triangle?

Ensure that pupils are familiar with all the four types of triangles and their properties.

Textbook 6 P19

For Let's Learn 5 , first get pupils to recall the names of the special 4 -sided figures that they have already learnt and write these down on the whiteboard.
Then, get them to match the five quadrilaterals of (a) to (e) with their given names. Ask:

- What are the properties of each 4 -sided figure?
- What can you say about the property of the marked angles in each figure?

Textbook 6 P21

Answers Worksheet 1A (Workbook 6A P22-25)

1. (a) 20
(b) 135
(c) 44
(d) 24
(e) 55
(f) 30
(g) $\angle w=100^{\circ}, \angle x=40^{\circ}$
(h) $\angle y=55^{\circ}, \angle z=35^{\circ}$

Textbook 6 P22
2. In the figure, ABCD is a trapezium and ACD is an equilateral triangle. $\angle A B C=35$. Find $\angle A C B$.

Since $A C D$ is an equilateral triangle, $\angle A C D=60$

$\angle A C B=145-60$
 of parallel sides $=180$
$\angle B C D+\angle A B C=180^{\circ}$ $\angle B C D+\angle A B C=180^{\circ}$

3. $A B C$ is an isosceles triangle and $B C D E$ is a parallelogram $\angle C D E=38$ and $\angle A B C=41$. Find $\angle x$.

23
CHAPTER 2
OXFORD

IN FOCUS

Show the figure on the visualiser and guide pupils by asking:

- What is the unknown angle that Bala wants to find?
- How is the given information that ABCD is a square and BECF is a rhombus useful to help Bala find the answer?
- How can we use the given $\angle B E C=64^{\circ}$?

Allow time for pupils to think through the questions.

LET'S LEARN

For Let's Learn 1, continuing from 'In Focus', mark out the equal and parallel sides of the square $A B C D$ and rhombus BECF. Guide pupils to use the angle properties of a square and rhombus to find unknown angles. Ask:

- What type of triangles are BCE and BCF?
- How can we use $\angle B E C=64^{\circ}$ to find the size of each angle in the rhombus?
- Can you find the unknown $\angle D C F$ in the square if you know $\angle B C F$?
Get a pupil or a pair to show the class their method and to articulate the properties used. Ask the class if they used other alternative ways.

For Let's Learn 2, guide pupils by asking:

- What is the unknown angle?
- How is the unknown $\angle A C B$ related to $\angle A C D$ and $\angle B C D$? Can we find these angles first?
- How can we use the properties of equilateral triangle ACD and trapezium ABCD to find these angles?
- How do we make use of the given $\angle A B C=35^{\circ}$ in the process?

For Let's Learn 3, guide pupils by asking:

- What is the unknown angle?
- How is the unknown $\angle A C D$ related to $\angle A C B$ and $\angle B C D$? Can we find these angles first?
- How can we use the properties of isosceles triangle ACB and parallelogram BCDE to find these angles?
- How do we make use of the given $\angle A B C=41^{\circ}$ and $\angle C D E=38^{\circ}$ in the process?

4. $A B C D$ is a parallelogram. $A D F$ and $E C F$ are isosceles triangles and $\angle A D F=36$ Find $\angle A E B$.

$\angle B C F=\angle A F D=\angle A D F=36$
$\angle C E F=180-36-36$

So, $\angle A E B=\angle C E F=108$

Think of another method
to find the unknown angle.

For Let's Learn 4 to 7, get pupils to focus on the unknown angle and its relationship with any other angle(s) that can be found first. Then lead pupils to the given angle(s), angle property of given triangle(s) and/ or 4-sided figure(s) as well as other angle properties that can be used to work out the solution.

In Let's Learn 4, the first line shows the angles that are equal to the given $\angle A D F=36^{\circ}$. Get pupils to think about why this is so before they proceed to find the other angles using the hints provided.

Textbook 6 P24

5. $A B C D$ is a parallelogram, $A B E F$ is a rhombus and $\angle A B E=62$. Find $\angle x$ and $\angle y$.

$\angle B E A=(180-62) \div 2$
$=59$

Textbook 6 P25

Textbook 6 P26
7. $A B C D$ is a square, $A D E$ is an equilateral triangle and $B C F$ is an isosceles triangle. ECF is a straight line. Find $\angle x, \angle y$ and $\angle z$.

(a)

$$
\text { (a) } \quad \begin{aligned}
\angle \mathrm{EDA} & =60 \\
\angle \mathrm{ADC} & =90 \\
\angle \mathrm{EDC} & =\angle \mathrm{EDA}+\angle \mathrm{ADC} \\
& =60+90 \\
& =150 \\
\angle x & =(180-150) \div 2 \\
& =15
\end{aligned}
$$

(b)
$\angle D C A=(180-90)=$
$\begin{aligned} & =45 \\ \angle D C E & =\angle x=15\end{aligned}$
$\angle y=45-15$
$=30$
(c) $\angle \mathrm{BCA}=\angle \mathrm{DCA}=45$
$\angle B C F=180-30-45$

$\angle z=(180-105) \div 2$ $=37.5$

For Let's Learn 6, provide the following hints:
(a) If $A B C F$ is a trapezium and $A B / / F C$, how is the unknown $\angle B A D$ related to $\angle A D C$? Can we find $\angle A D C$ first?
(b) How is the unknown $\angle D F E$ related to $\angle A F D$ and $\angle A F E$? How can we use the property of equilateral triangle to find the angles?

For Let's Learn 7, get pupils to mark out the known angles of 60° and 90° (relating to the properties of a square, equilateral triangle and isosceles triangle).
Provide the following hints:
(a) What kind of triangle is $\angle x$ in?
(b) How is $\angle y$ related to $\angle D C A$ and $\angle D C E$? What is triangle DCA?
(c) What kind of triangle is $\angle z$ in? Do we know the size of $\angle B C F$?

27
CHAPTER 2
OXFORD

Textbook 6 P27

Textbook 6 P28

In this activity, pupils can also take turns to work as a Thinker-Doer pair. Allow both pupils to read the question first and decide who the Doer will be. As the Doer solves the problem the Thinker listens, carefully following the explanations, and asking questions to clarify the process the Doer is using.

For questions 1 to 4 , allow pupils to try the questions on their own. After they have done so, get them to exchange their work with a partner to check each other's answers.

Select some pupils to explain what they did to the class. Discuss other methods that other pupils might have used.
3. $A B C D$ is a trapezium. EFG and DEAH are straight lines. Find $\angle A E F$

$\angle A E F=110^{\circ}$
4. $A B C D$ is a trapezium, DEFG is a parallelogram and $A D G$ is an isosceles triangle GDC and ADE are straight lines. Find $\angle D G A$ and $\angle D E F$

$\angle \mathrm{DGA}=30^{\circ}$
$\angle \mathrm{DEF}=120^{\circ}$

OXFORD
ANGLES IN GEOMETRIC FIGURES
Textbook 6 P30

Question 5 tests pupils' understanding of angle properties as pupils might not be able to see that they have sufficient information to get the answer.
Give pupils a hint that they should not find the size of each individual unknown angle but instead make use of the properties of sum of angles in a triangle and angles between parallel lines.

Independent seatwork

Assign pupils to complete Worksheet 1B (Workbook 6A P26-30)

1. (a) $\angle \mathrm{DAF}=\angle \mathrm{ADF}$

$$
\begin{aligned}
& =90^{\circ}-65^{\circ} \\
& =25^{\circ}
\end{aligned}
$$

(b) $\angle A E D=\angle A F D$

$$
\begin{aligned}
& =180^{\circ}-25^{\circ}-25^{\circ} \\
& =130^{\circ}
\end{aligned}
$$

2. (a) $\angle D C B=\angle D A B$

$$
\begin{aligned}
& =180^{\circ}-32^{\circ}-28^{\circ} \\
& =120^{\circ} \\
\angle D C F & =180^{\circ}-120^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

(b) $\angle \mathrm{CDE}=180^{\circ}-60^{\circ}$

$$
=120^{\circ}
$$

3. (a) $\angle r=180^{\circ}-75^{\circ}-65^{\circ}$

$$
=40^{\circ}
$$

(b) $\angle E C F=40^{\circ}$

$$
\begin{aligned}
\angle s & =\left(180^{\circ}-40^{\circ}\right) \div 2 \\
& =70^{\circ}
\end{aligned}
$$

4. $\angle \mathrm{FDE}=\angle \mathrm{ADC}$

$$
=180^{\circ}-123^{\circ}
$$

$$
=57^{\circ}
$$

$$
\angle D E F=180^{\circ}-90^{\circ}-57^{\circ}
$$

$$
=33^{\circ}
$$

5. $\angle E C F=\angle A C B$

$$
=\left(180^{\circ}-110^{\circ}\right) \div 2
$$

$$
=35^{\circ}
$$

$\angle E C D=\angle D C B$

$$
\angle E C D=\angle D C B
$$

$=180^{\circ}-64^{\circ}$

$$
=180^{\circ}-64^{\circ}
$$

$=116^{\circ}$
$\angle \mathrm{FCG}=116^{\circ}-35^{\circ}$

$$
=116^{\circ}-35^{\circ}
$$

$$
=81^{\circ}
$$

6. $\angle B C D=\angle B A D$

$$
=70^{\circ}
$$

$$
\angle D C F=180^{\circ}-70^{\circ}-40^{\circ}
$$

$\angle D C F=180^{\circ}-70^{\circ}-40^{\circ}$

$$
=70^{\circ}
$$

$\angle C F E=180^{\circ}-70^{\circ}$

$$
=110^{\circ}
$$

*7. (a) $\angle p=180^{\circ}-90^{\circ}-30^{\circ}$

$$
=60^{\circ}
$$

(b) $\angle \mathrm{FCJ}=180^{\circ}-80^{\circ}-60^{\circ}$

$$
=40^{\circ}
$$

$$
\angle A C B=180^{\circ}-40^{\circ}
$$

$$
=140^{\circ}
$$

$$
\angle B A C=\left(180^{\circ}-140^{\circ}\right) \div 2
$$

$$
=20^{\circ}
$$

$$
\begin{aligned}
\angle q & =180^{\circ}-60^{\circ}-20^{\circ} \\
& =100^{\circ}
\end{aligned}
$$

*8. $\angle a+\angle b=\angle c+\angle d=\angle e+\angle f=180^{\circ}-100^{\circ}$

$$
=80^{\circ}
$$

$\angle a+\angle b+\angle c+\angle d+\angle e+\angle f=3 \times 80^{\circ}$

$$
=240^{\circ}
$$

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIEW

MIND WORKOUT

The Mind Workout challenges students to apply the properties of sum of angles in a triangle and angles between parallel lines.
Pupils need to see that it is not necessary to find individual unknown angles but instead draw links such as:

- $\angle a+\angle b=180^{\circ}-65^{\circ}$
- $\angle c+\angle d=180^{\circ}$
- $\angle e+\angle f=180^{\circ}-70^{\circ}$

A rectangular piece of paper ABCD is folded at E to get the figure as shown. Find $\angle A E F$

$\angle \mathrm{DEC}=\angle \mathrm{FEC}$
$\begin{aligned} & =72^{\circ} \\ \angle A E F & =180^{\circ}-72^{\circ}-72^{\circ} \\ & =36^{\circ}\end{aligned}$
$=36^{\circ}$

Workbook 6A P31

MATHS JOURNAL

In the figure below, AH is parallel to BG, EF is parallel to HG and $\mathrm{EF}=\mathrm{FG}=\mathrm{GH}=\mathrm{HE}$

Is each of the following sentences true or false? Explain your answers.
$A B G H$ is a parallelogram. False
EFGH is a rhombus. True
EFG and EHG are isosceles triangles. True
$\angle \mathrm{DCF}+\angle \mathrm{CFE}=180$ False
$\angle C B D+\angle B D E=180$ True
$\angle \mathrm{FEG}=\angle \mathrm{EGH}$ True

I know how to..

find unknown angles in geometric figures involving squares, rectangles, parallelograms, rhombuses, trapeziums and triangles.

MATHS JOURNAL

This task enables pupils to review the properties of triangles and 4-sided figures. They should recognise the angles and sides of a shape that describe the property of the figures.

Before the pupils do the self-check,
review the various properties and how they can be applied to find unknown angles with examples.

The self-check can be done after pupils have completed Review 2 (Workbook 6A P32 - 39).

1. (a) 105
(b) 55
(c) 92
(d) 20
(e) 69
(f) 21
2. $\angle B A C=\angle A B C$

$$
\begin{aligned}
& =180^{\circ}-155^{\circ} \\
& =25^{\circ} \\
\angle A D C & =180^{\circ}-130^{\circ} \\
& =50^{\circ} \\
\angle x & =180^{\circ}-50^{\circ}-25^{\circ} \\
& =105^{\circ}
\end{aligned}
$$

3. $\angle D B C=\left(180^{\circ}-82\right) \div 2$
$=49^{\circ}$
$\angle A B D=90^{\circ}-49^{\circ}$

$$
=41^{\circ}
$$

$$
\angle B A E=180^{\circ}-41^{\circ}
$$

$$
=139^{\circ}
$$

4. $\angle \mathrm{ADE}=180^{\circ}-90^{\circ}-66^{\circ}$

$$
\begin{aligned}
& =24^{\circ} \\
\angle E D C & =90^{\circ}-24^{\circ} \\
& =66^{\circ} \\
\angle E C D & =90^{\circ}-43^{\circ} \\
& =47^{\circ} \\
\angle C E D & =180^{\circ}-66^{\circ}-47^{\circ} \\
& =67^{\circ}
\end{aligned}
$$

5. $\angle \mathrm{DAB}=180^{\circ}-60^{\circ}$

$$
=120^{\circ}
$$

$$
\angle D A E=120^{\circ}-75^{\circ}
$$

$$
=45^{\circ}
$$

$$
\angle A E D=180^{\circ}-45^{\circ}-60^{\circ}
$$

$$
=75^{\circ}
$$

$$
\angle A E B=180^{\circ}-75^{\circ}-45^{\circ}
$$

$$
=60^{\circ}
$$

$$
\angle B E C=180^{\circ}-60^{\circ}-75^{\circ}
$$

$$
=45^{\circ}
$$

6. (a) $\angle D E B=180^{\circ}-80^{\circ}$

$$
=100^{\circ}
$$

$$
\angle C D E=180^{\circ}-100^{\circ}
$$

$$
=80^{\circ}
$$

(b) $\angle \mathrm{DAE}=180^{\circ}-80^{\circ}-60^{\circ}$
$=40^{\circ}$
$\angle E A F=60^{\circ}-40^{\circ}$

$$
=20^{\circ}
$$

7. $\angle A B C=180^{\circ}-36^{\circ}-36^{\circ}$

$$
=108^{\circ}
$$

$\angle A D C=108^{\circ}+20^{\circ}$

$$
=128^{\circ}
$$

$$
\angle D C A=\left(180^{\circ}-128^{\circ}\right) \div 2
$$

$$
=26^{\circ}
$$

$$
\angle y=36^{\circ}-26^{\circ}
$$

$$
=10^{\circ}
$$

8. (a) $\angle D A E=60^{\circ}$

$$
\begin{aligned}
\angle \mathrm{GAE} & =180^{\circ}-45^{\circ}-60^{\circ} \\
& =75^{\circ}
\end{aligned}
$$

$$
\angle A E F=180^{\circ}-75^{\circ}
$$

$$
=105^{\circ}
$$

(b) $\angle \mathrm{CDE}=90^{\circ}+60^{\circ}$

$$
=150^{\circ}
$$

$\angle C E D=\left(180^{\circ}-150^{\circ}\right) \div 2$
$=15^{\circ}$
$\angle \mathrm{AHC}=\angle \mathrm{DHE}$
$=180^{\circ}-60^{\circ}-15^{\circ}$
$=105^{\circ}$

FRACTIONS

Related Resources
NSPM Textbook 6 (P33-65)
NSPM Workbook 6A (P40-67)
Materials
Fraction discs, mini whiteboard, markers, calculator

Lesson
Lesson 1 Dividing a Fraction by a Whole Number
Lesson 2 Dividing a Whole Number by a Fraction
Lesson 3 Dividing a Fraction by a Fraction
Lesson 4 Solving Word Problems
Problem Solving, Maths Journal and
Pupil Review

INTRODUCTION

In Grade Five, pupils have learnt to multiply a fraction by another fraction, a mixed number and a whole number. They were also introduced to the association of fractions with division. In this chapter, pupils will learn about the various types of division of fractions. They will revisit the concept of multiplication of fractions and apply this knowledge to the division of a fraction by a whole number and a fraction, as well as the division of a whole number by a fraction.

LESSON 1

DIVIDING A FRACTION BY A WHOLENUMBER

LEARNING OBJECTIVE

1. Divide a proper fraction by a whole number without a calculator.

RECAP

Help pupils link their prior knowledge about multiplying two fractions by revisiting the two methods of multiplying fractions and simplifying the result.

Textbook 6 P34

Get pupils to identify with the concept of half. Ask how many slices of pizza each girl would receive if:

- 4 pizzas are divided equally between the 2 girls
- 2 pizzas are divided equally between the 2 girls
- 1 pizza is divided equally between the 2 girls

Textbook 6 P35

LET'S LEARN

From the picture in Let's Learn 1, pupils should be able to see how many parts each girl receives out of the whole pizza, i.e. 1 out of 4 . Alternatively, the context can also be represented using bar modelling.
Make it clear to pupils that when looking at fractions, we need to quantify in terms of the whole (in this case the whole pizza), and not just the part that is divided.

Let's Learn 2 shows how the bar modelling method can be used. Get pupils to see that since each of the 3 children receives an equal amount, 3 parts make up half the pizza. Thus, guide them to see that 'a third from the half
of the pizza' can be represented by $\frac{1}{2} \div 3$, which can be further simplified to $\frac{1}{3}$ of $\frac{1}{2}=\frac{1}{3} \times \frac{1}{2}=\frac{1}{2} \times \frac{1}{3}$.
Get pupils to draw the link that they can solve this using their prior knowledge of multiplication of two fractions.

Point out that the procedure of division of fractions involves 'change and invert':
$\frac{1}{2} \div \frac{3}{1}=\frac{1}{2} \times \frac{1}{3}$.

Each child receives $\frac{1}{6}$ of the pizza.
3. Find the value of each of the following. Explain.
(a) $\frac{1}{3} \div 3 \frac{1}{9}$
(b) $\frac{1}{2} \div 5 \frac{1}{10}$
(c) $\frac{1}{4} \div 3 \frac{1}{12}$
(d) $\frac{1}{5} \div 2 \frac{1}{10}$
4. Nora and Weiming shared $\frac{2}{3}$ of a chocolate bar equally. What fraction of the chocolate bar did each child receive?

$$
\begin{array}{l|l}
\text { Method } 1 & \text { Use fraction discs to show } \frac{2}{3} \\
\frac{2}{3} \div 2=\frac{1}{3} & \frac{2}{3} \div 2=2 \text { thirds } \div 2 \\
& =1 \text { third }
\end{array}
$$

Each child received $\frac{1}{3}$ of the chocolate bar.
Method 2

$$
\begin{aligned}
\frac{2}{3} \div 2 & =\frac{1}{2} \text { of } \frac{2}{3} \\
& =\frac{1}{2} \times \frac{2}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

Each child received $\frac{1}{3}$ of the chocolate bar.
OXFORD

Textbook 6 P36
5. Find the value of $\frac{9}{10} \div 3$

9 tenths $\div 3=3$ tenths
9 tenths $\div 3=3$ tenths
9 tenths $\div 3=3$ tenths
6. Find the value of $\frac{3}{4} \div 2$.
7. Find the value of each of the following. Explain.
(a) $\frac{5}{8} \div 5 \frac{1}{8}$
(b) $\frac{11}{12} \div 11 \frac{1}{12}$
(c) $\frac{8}{11} \div 4 \frac{2}{11}$
(d) $\frac{6}{9} \div 3 \quad \frac{2}{9}$
(e) $\frac{4}{5} \div 8 \frac{1}{10}$
(f) $\frac{3}{4} \div 9 \quad \frac{1}{12}$

Textbook 6 P37

Let's Learn 4 and 5 deal with non-unit fractions.
Highlight to pupils that their final answer should always be in the simplest form.

In Let's Learn 6, no simplification is involved. Get pupils to see that method 1 involves the division of the numerator. Ask:

- Do we get a whole number if we divide 3 by 2 ?
- How should we change the fraction such that the numerator is divisible by 2 ?

Let's Learn 7 allows pupils to get more practice, without working statements provided as hints. Pupils should be able to show their working.

Textbook 6 P38

Answers Worksheet 1 (Workbook 6A P40-43)

1. (a) $\frac{1}{8}$
(b) $\frac{1}{15}$
2. $\frac{1}{8}$
3. $\frac{3}{10}$
4. (a) $\frac{1}{14}$
(b) $\frac{3}{7}$
(c) $\frac{2}{11}$
5. $\frac{5}{56} \mathrm{~m}$
(d) $\frac{1}{9}$
(e) $\frac{1}{24}$
(f) $\frac{1}{25}$
6. $\frac{2}{45} \ell$
(g) $\frac{1}{54}$
(h) $\frac{3}{16}$ P40-43)
7. $\frac{5}{11}$
8. $\frac{3}{50} \mathrm{~kg}$

The use of fraction discs can help pupils to visualise the division of fractions. In pairs, each pupil can try one of the two methods and check that they arrive at the same answers.

Give pupils some time to work on the practice questions. Allow them to use their preferred method to obtain the answers.

Independent seatwork

Assign pupils to complete Worksheet 1 (Workbook 6A

LESSON 2 NUMBER BYA FRACTION

LEARNING OBJECTIVE

1. Divide a whole number by a proper fraction wihout a calculator.

DIVIDING A WHOLE NUMBER BY A FRACTION

Ensure that pupils are able to recall how to multiply a fraction and a whole number and obtain a final answer in the simplest form.

Y RECAP

Multiplying a fraction and a whole number

1. What is $\frac{5}{2}$ of 10 ? Method 1

$$
\text { Method } 2
$$

$\frac{5}{2} \times 10=\frac{5 \times 10}{2}$
$1 \frac{5}{2} \times 10^{5}=25$
$=\frac{50}{2}$
$=25$
2. Find the value of $\frac{5}{6} \times 33$. Express your answer as a mixed number in its simplest form.

Textbook 6 P39

Most pupils are familiar with partitive division (e.g 'how many pies are there in each box?') compared to quotative (e.g. 'how many boxes needed?'). Check for pupils' understanding and rectify any misconceptions.

LET'S LEARN

The picture shows clearly that with each half in a box, 2 boxes are needed.
2. A carpenter cuts a plank of wood into shorter pieces. Each piece was $\frac{1}{4}$ of the plank of wood. How many shorter pieces does the carpenter have?

The carpenter has 4 shorter pieces
3. Raju cuts 2 waffles and puts them onto some plates. He puts $\frac{1}{3}$ of a waffle on each plate. How many plates does he use?

He used 6 plates.

Textbook 6 P41

Let's Learn 2 demonstrates the use of bar models to solve the problem. Pupils may find this useful as it enables them to count the number of units.

Let's Learn 3 introduces a dividend which is more than 1 whole. After pupils have grasped the concept that there are 6 thirds in 2 wholes, highlight to them that the 'change and invert' method can be used to get the answer.
4. Meiling pours 3ℓ of orange juice into some cups. There is $\frac{1}{5} \ell$ of orange juice in
each cup. How many cups of orange juice does Meiling pour? each cup. How many cups of orange juice does Meiling pour?

She pours 15 cups of orange juice.
5. Find the value of each of the following

(a) $1 \div \frac{1}{3} 3$	(b) $1 \div \frac{1}{10} \quad 10$
(c) $2 \div \frac{1}{8} 16$	(d) $3 \div \frac{1}{12} 36$
(e) $5 \div \frac{1}{6} 30$	(f) $8 \div \frac{1}{9} 72$

Textbook 6 P42

To find the value of $2 \div \frac{2}{3}$, we multiplied 2 by 3 and divided the answer by 2 .
So, $2 \div \frac{2}{3}$ is the same as $2 \times \frac{3}{2}$.

$$
\begin{aligned}
2 \div \frac{2}{3} & =x^{1} \times \frac{3}{x_{1}} \\
& =3
\end{aligned}
$$

7. What is $3 \div \frac{3}{5}$?

For Let's Learn 4, ensure that pupils do not get confused by the units. $\frac{1}{5} l$ is the same as saying $\frac{1}{5}$ of $1 l$.

Thus, 5 fifths make up 1 whole.
For Let's Learn 5, get pupils to practise drawing models and/or using the 'change and invert' method to get the answers.

Use Let's Learn 6 to encourage pupils to observe the similarities between what they learnt in the previous lesson, of division of fraction with whole number, and what they are learning in this lesson.

For Let's Learn 7, get pupils to conclude the basic rule for division involving fractions, i.e. 'change and invert'.
8. What is $4 \div \frac{3}{4}$? Express your answer as a mixed number in its simplest form.

9. Find the value of $2 \div \frac{6}{7}$. Express your answer as a mixed number in its simplest form.

$2 \div \frac{6}{7}=2 \times \frac{7}{6}$
$=\frac{14}{6}$
$=2 \frac{1}{3}$

10. Find the value of each of the following. Express each answer as a mixed number in its simplest form where necessary.
(a) $5 \div \frac{5}{6} 6$
(b) $8 \div \frac{4}{7} \quad 14$
(c) $2 \div \frac{4}{5} 2 \frac{1}{2}$
(d) $12 \div \frac{9}{10} 13 \frac{1}{3}$

OXFORD

Textbook 6 P44

For Let's Learn 8 and 9, the answers obtained are not whole numbers. Get pupils to observe the bar models, and interpret how the remaining unit(s), which cannot form a whole number, will be divided.

ACTIVITY
TIME
In pairs, one pupil can work on using fraction discs while another can use bar models. Get pupils to also practise using 'change and invert'.

Give pupils some time to work on the practice questions. Allow them to use their preferred method to obtain the answers.

Independent seatwork

Assign pupils to complete Worksheet 2 (Workbook 6A P44-47)

1. (a) $4 \frac{1}{2}$
(b) $1 \frac{1}{3}$
(c) 9
(d) $5 \frac{1}{3}$
2. (a) 5
(b) 8
(c) 15
(d) 24
(e) 5
(f) 8
3. (a) $7 \frac{1}{2}$
(b) $2 \frac{2}{3}$
(c) $10 \frac{1}{2}$
(d) $4 \frac{2}{3}$
(e) $14 \frac{2}{3}$
(f) $7 \frac{7}{9}$
4. 3
5. 15
6. 8

LESSON 3
 DIVIDING A FRACTION BY A fRACTION

LEARNING OBJECTIVE

1. Divide a proper fraction by a proper fraction without a calculator.

Textbook 6 P47
4. Find the value of $\frac{6}{7} \div \frac{3}{7}$.

$\frac{6}{7} \div \frac{3}{7}=2$
5. A baker puts $\frac{3}{5} \mathrm{~kg}$ of flour into some bags such that there is $\frac{2}{5} \mathrm{~kg}$ of flour in each bag. How many bags of flour does she get?

For Let's Learn 4, point out to pupils that so far, they have come across the division of fractions with the same denominators. Pupils should observe that the answers can be easily obtained through the division of the numerator values.

Let's Learn 5 demonstrates the use of the 'change and invert' method. Highlight to pupils that they can cancel out ' 5 ' and to leave the answer as a mixed number.
6. What is $\frac{8}{11} \div \frac{3}{11}$? Express your answer as a mixed number in its simplest form.

7. Find the value of $\frac{7}{9} \div \frac{5}{9}$. Express your answer as a mixed number in its simplest form.

$$
\begin{aligned}
\frac{7}{9} \div \frac{5}{9} & =\frac{7}{9} \times \frac{9}{5} \\
& =\frac{7}{5} \\
& =1 \frac{2}{5}
\end{aligned}
$$

$$
\text { Dividing by } \frac{5}{9} \text { is the same }
$$

$$
\text { as multiplying by } \frac{9}{5} \text {. }
$$

8. Find the value of each of the following. Express each answer in its simplest form.
(a) $\frac{3}{5} \div \frac{1}{5} 3$
(b) $\frac{9}{10} \div \frac{3}{10} 3$
(c) $\frac{5}{8} \div \frac{3}{8}, \frac{2}{3}$
(d) $\frac{7}{12} \div \frac{5}{12} 1 \frac{2}{5}$

49

Textbook 6 P49
9. What is $\frac{1}{2} \div \frac{1}{4}$?

Method 1

10. Find the value of $\frac{3}{4} \div \frac{3}{8}$

Method 1
$\frac{3}{4} \div \frac{3}{8}=\frac{6}{8} \div \frac{3}{8}$

Method 2
$\frac{3}{4} \div \frac{3}{8}=\frac{3}{4} \times \frac{8}{3}$

$$
=2
$$

$=2$
Which method do Which method do
you prefer? Explain.

For Let's Learn 6 to 8, get pupils to use the 'change and invert' method and ensure that they are able to convert the improper fractions into mixed numbers to obtain the final answer.

For Let's Learn 9 and 10, pupils are exposed to two methods. Method 1 involves converting the fraction(s) to have the same denominator while method 2 directly uses 'change and invert'. Ensure that pupils understand both methods before they choose which they prefer.

Textbook 6 P51

Remind pupils that it is important to understand the various contexts under which the different methods apply, and they should not rely too heavily on the rule of 'change and invert'.

For Let's Learn 15, prompt pupils by asking:

- Can any of the numbers be cancelled out?
- Can we further simplify the answer?

PRACTICE

Get pupils to work on the practice questions. Remind them that any of their preferred methods can be used.

Independent seatwork

Assign pupils to complete Worksheet 3 (Workbook 6A P48-51).

1. (a) 2
(b) 3
(c) 2
(d) $2 \frac{1}{3}$
(e) $1 \frac{1}{4}$
(f) $\frac{1}{3}$
2. (a) $\frac{11}{18}$
(b) $\frac{5}{12}$
(c) $\frac{5}{12}$
(d) $3 \frac{1}{16}$
(e) $\frac{8}{9}$
(f) $\frac{12}{13}$
3. $1 \frac{3}{8}$
4. $1 \frac{1}{6} \mathrm{~cm}$
5. 10

4

 \section*{SOLVING WORD
 \section*{SOLVING WORD PROBLEMS} PROBLEMS}
LEARNING OBJECTIVE

1. Solve word problems involving the four operations.

Highlight to pupils that this problem requires further calculations, instead of simply dividing the fraction.

Kate and her brother were training for their fitness test. Kate ran $1 \frac{3}{5} \mathrm{~km}$ while her brother ran $2 \frac{11}{20} \mathrm{~km}$. One lap of the running track is $\frac{2}{5} \mathrm{~km}$ long.
Who ran more laps? How many more?

Kate ran 4 laps.

$2 \frac{11}{20} \div \frac{2}{5}$	$=\frac{51}{20} \div \frac{2}{5}$
	$=\frac{51}{20} \times \frac{5}{2}$
	$=\frac{51}{8}$
	$=6 \frac{3}{8}$

Kate's brother ran $6 \frac{3}{8}$ laps.

OXFORD fRACTIONS

Textbook 6 P54
3. Meiling cut $\frac{9}{10} \mathrm{~kg}$ of butter into 12 slices of equal mass. She then used someslices of butter to bake cupcakes. Meiling used $\frac{3}{20} \mathrm{~kg}$ of butter to bake the cupcakes. How many slices of butter did she have left?

Mass of each slice of butter $=\frac{9}{10} \div 12=\frac{3}{40} \mathrm{~kg}$
Number of slices of butter used $=\frac{3}{20} \div \frac{3}{40}=2$
Number of slices of butter left $=12-2=10$
She had 10 slices of butter left. Are there other methods to solve this question?

4. $\frac{5}{8}$ of the audience at a musical are females. $\frac{3}{10}$ of the females are girls and

E
$\frac{1}{3}$ of the males are boys. There are 21 more girls than boys. How many people are there in the audience?

Let's Learn 2 involves the division of a fraction by a fraction. Remind pupils to be careful when using the calculator and/or cancelling out common factors.

In Let's Learn 3, encourage pupils to think of an alternative method and get them to present it to the class.

For Let's Learn 4, guide pupils to visualise the information provided using bar models. They should be able to see that the fractions given can be easily reflected in the model in order to solve the problem.

Textbook 6 P56

Mrs Ali baked some muffins. $\frac{3}{5}$ of the muffins were chocolate and the rest
were vanilla. After she sold $\frac{2}{9}$ of the chocolate muffins and $\frac{1}{2}$ of the vanilla
muffins, 230 muffins were left. How many chocolate muffins did Mrs Ali bake? Method 1

10 units $=230$

Mrs Ali baked 207 chocolate muffins

57

For the second method, remind pupils that the phrase " $\frac{3}{10}$ of the females are girls" means that $\frac{3}{10} \times \frac{5}{8}$ of the entire audience are girls.

The same can be done to work out how many boys there are.

For Let's Learn 5, go through with pupils how the model was drawn. Get them to fill in the blanks after they understand the model.

For method 2, highlight to pupils that the total number of muffins is represented by 1 whole.

Textbook 6 P57

Textbook 6 P58
7. Siti and Weiming had a total of $\$ 295$. After Siti spent $\frac{4}{7}$ of her money and Weiming received $\$ 15$, they had an equal amount of money left. How much more money did Siti have than Weiming at first?

$$
\text { Siti had } 1-\frac{4}{7}=\frac{3}{7} \text { of her money left. }
$$

Amount of money Siti had at first $=\$ 31 \times 7$

$$
=\$ 217
$$

Amount of money Weiming had at first $=\$ 31 \times 3-\$ 15$

Difference in amount of money at first =\$217-\$78
Siti had \$ 139 more than Weiming at first.

$$
\begin{aligned}
& 10 \text { units }=\$ 295+\$ 15 \\
& =\$ 310 \\
& 1 \text { unit }=\$ 310 \div 10 \\
& =\$ 31
\end{aligned}
$$

For Let's Learn 6, go through with pupils how the model was drawn. After which, they should be able to fill in the blanks on their own and get the answers.

For Let's Learn 7, pupils need to observe that after an additional $\$ 15$, Weiming would have $\frac{3}{7}$ of Siti's original amount. Ask:

- How many units out of the original 7 would Siti have left?
- If this is equivalent to what Weiming has after adding $\$ 15$, what can we say is the total amount of 10 units?

Textbook 6 P60
*9. In Raju's coin box, there are only 20 -cent and 50 -cent coins. There are $\frac{1}{4}$ more 20 -cent coins than 50 -cent coins. Raju has a total of $\$ 54$ in his coin box. How many 20 -cent coins are there in his coin box?

Value of 20 -cent coins in one group $=20 ¢ \times 5$
\qquad
From the model, we can see that for every five 20 -cent coins, there are four 50 -cent coins.
$\begin{aligned} \text { Value of } 50 \text {-cent coins in one group } & =50 ¢ \\ & =\$ 2\end{aligned}$
$\begin{aligned} \text { Value of } 20 \text {-cent and } 50 \text {-cent coins in one group } & =\$ 1+\$ 2 \\ & =\$ 3\end{aligned}$
Number of groups of coins $=54 \div 3$
$=18$
Number of 20-cent coins $=18 \times 5$
$=90$
The number of 20 -cent coins in his coin box is 90 .

For Let's Learn 8, the model is very useful to visualise the given information. Guide pupils and ask:

- After the ribbons are used, if we represent the green ribbon by 1 unit, how many units would the pink ribbon be represented by?
- How many thirds of the original length of pink ribbon does this correspond to?
- If the original length of the green ribbon was half that of the pink ribbon, how many units does $3 \frac{1}{4} \mathrm{~m}$ equate to?

In Let's Learn 9, pupils have to consider five 20-cent coints and four 50-cent coints as a 'group'. Point out to pupils that the total value in each group will be the same, and hence we will be able to find the number of groups that make up \$54.
Get pupils to understand that value of coins and number of coins are two different variables.
*10. Farhan, Tom and Xinyi shared a gift for their friend. Farhan paid $\frac{1}{4}$ of the cost of the gift. Tom paid $\$ 11$ and $\frac{1}{6}$ of the cost of the gift. Xinyi paid $\$ 25$ and $\frac{1}{3}$ of the cost of the gift. How much did the gift cost?
$1-\frac{1}{4}-\frac{1}{6}-\frac{1}{3}=1-\frac{3}{12}-\frac{2}{12}-\frac{4}{12}$ $=\frac{3}{12}$
$=\frac{1}{4}$
$\frac{1}{4}$ of the cost of the gift $=\$ 11+\$ 25$

$$
=\$ 36
$$

Cost of the gift $=\$ 36 \times 4$
$=\$ 144$

The gift cost \$ 144

In Let's Learn 10, point out to pupils that Tom paid $\$ 11+\frac{1}{6}$ of the gift and similarly, Xinyi paid $\$ 25+\frac{1}{3}$ of the gift.
Hence, the remainder of the cost after subtracting the given fractions is equal to $\$ 11+\$ 25$.

Textbook 6 P62

In groups of 4, pupils can try different methods to solve the problem. Check that each method will give the same final answer.

Textbook 6 P63

Allow pupils to work in pairs or individually on the practice questions.

Independent seatwork

Assign pupils to complete Worksheet 4 (Workbook 6A P52-60)

Textbook 6 P64

Answers Worksheet 4 (Workbook 6A P52 - 60)

1. $1-\frac{1}{8}-\frac{2}{5}-\frac{1}{4}=\frac{9}{40}$
$\frac{9}{40}$ of the sum of money $=\$ 126$
$\frac{40}{40}$ of the sum of money $=\$ 126 \div 9 \times 40$
= \$560

Mrs Ali had $\$ 560$ at first.
2. $\frac{9}{17}$ of the distance $=2 \frac{7}{10} \mathrm{~km}$
$\frac{17}{17}$ of the distance $=2 \frac{7}{10} \div 9 \times 17$

$$
=5 \frac{1}{10} \mathrm{~km}
$$

Mr Lim drove a total of $5 \frac{1}{10} \mathrm{~km}$.
3. (a) $\frac{3}{4} \div \frac{3}{5}=1 \frac{1}{4}$

The length of $A B$ is $1 \frac{1}{4} \mathrm{~m}$.
(b) $\frac{1}{2} \times \frac{3}{5} \times 1 \frac{1}{4}=\frac{3}{8}$

The area of the shaded triangle is $\frac{3}{8} \mathrm{~m}^{2}$.
4. $\frac{7}{10} \div \frac{1}{9}=6 \frac{3}{10}$

The greatest number of such smaller pieces of wood he will get is 6 .
5. $\frac{3}{4} \div \frac{1}{8}=6$

There are 6 groups in the class.
6. $\frac{1}{3}$ of the tank $\rightarrow 4$
$\frac{2}{3}$ of the tank $\rightarrow 4 \times 2=8$
He needs to pour 8 more pails of water into the tank.
7. $\frac{2}{9}=\frac{14}{63}$
$\frac{7}{10}=\frac{14}{20}$
$249 \div 83=3$
$3 \times 63=189$
There were 189 adults.
8. Fraction of visitors that were women $=\frac{3}{5} \times \frac{5}{9}$

$$
=\frac{1}{3}
$$

Fraction of visitors that were boys $=\frac{5}{12} \times \frac{4}{9}$

$$
=\frac{5}{27}
$$

$\frac{1}{3}-\frac{5}{27}=\frac{4}{27}$
$\frac{34}{27}$ of the visitors $=300$
$\frac{27}{27}$ of the visitors $=300 \div 4 \times 27$

$$
=2025
$$

There were 2025 visitors on that day.
9. $\frac{2}{7}=\frac{16}{56}$
$\frac{1}{8}=\frac{7}{56}$
9 units $=\$ 13.50$
1 unit = \$1.50
112 units $=\$ 1.50 \times 112$

$$
=\$ 168
$$

They had $\$ 168$ altogether at first.
10. $\frac{7}{10}-\frac{3}{10}=\frac{4}{10}$
$\frac{4}{10}$ of cost $=\$ 13.80$
$\frac{3}{10}$ of cost $=\$ 13.80 \div 4 \times 3$

$$
=\$ 10.35
$$

$\$ 10.35-\$ 5.85=\$ 4.50$
Sam paid \$4.50.
11. $\frac{1}{4} \times \frac{5}{7}=\frac{5}{28}$

The number of butter cookies left was $\frac{5}{28}$ of the number of cookies she baked.
$\frac{3}{4} \times \frac{2}{7}=\frac{6}{28}$
$\frac{6}{28}-\frac{5}{28}=\frac{1}{28}$
$\frac{1}{28}$ of the original number of cookies $=9$
Number of cookies baked $=9 \times 28$

$$
=252
$$

Meiling baked 252 cookies.
*12. For every 3 chickens, there is 1 sheep. In each group, there are 6 chicken legs and 4 sheep legs.
There are 2 more chicken legs than sheep legs in each group.
$96 \div 2=48$
There are 48 sheep at the farm.

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIEW

Textbook 6 P64

MIND WORKOUT

Get pupils to draw bar models and hint to them to work backwards.

Fill in the blanks. Use the figure shown below to help you.

(a) $3 \div \frac{\square}{\square}=18$
(b) $3 \div \frac{1}{2}=6$
(c) $3 \div \frac{3}{2}=2$Maths Journal
Date:
In the space given, draw two models to show that $\frac{7}{2} \times \frac{1}{3}$ is the same as $\frac{7}{2}$

Sares
Fractions

Workbook 6A P61

MATHS JOURNAL

Write a word problem involving at least two out of the four operations involving fractions.

Example

Show how you solve your word problem and explain what your answer means.

I know how to...

SELF-CHECK
divide a proper fraction by a whole number.
divide a whole number by a proper fraction
divide a proper fraction by a proper fraction
solve word problems involving the four operations of fractions.

MATHS JOURNAL

Remind pupils to make use of a variety of fractions and that if values are involved, they must make sense. For instance, if the question is about a quantity of an item, the answer needs to be a whole number. Pupils can exchange their word problems with their partner and solve each other's.

Workbook 6A P61

Maths Journal

This journal task reinforces the concept of the division of a fraction to ensure that pupils have a clear understanding.

Review the important concepts

before going through the self-check.

The self-check can be done after pupils have completed Review 3 (Workbook 6A P62-67)

1. (a) $\frac{1}{6}$
(b) $\frac{1}{16}$
(c) $3 \frac{1}{3}$
(d) $6 \frac{2}{5}$
(e) $\frac{2}{3}$
(f) $\frac{2}{3}$
(g) $1 \frac{7}{9}$
(h) $\frac{27}{32}$
2. 12
3. 10 days
4. $3 \frac{1}{5}$
5. $\frac{4}{9}=\frac{12}{27}$
$\frac{2}{11}=\frac{12}{22}$
$27+22=49$
$343 \div 49=7$
$7 \times 27=189$
There are 189 girls in the hall.
6. Raju spent $\frac{2}{5}$ of his money and Ann spent $\frac{3}{5}$ of her money.
$\frac{2}{5}=\frac{6}{15}$
$\frac{3}{5}=\frac{6}{10}$
$15+10=25$
$\$ 450 \div 25 \times 10=\$ 180$
Ann had $\$ 180$ at first.
7. $\frac{7}{8} \times \frac{1}{2}=\frac{7}{16}$

The number of local coins he has left is $\frac{7}{16}$ of the original number of coins.
$71-6=65$
$\frac{7}{16}-\frac{1}{8}=\frac{5}{16}$
$65 \div 5 \times 16=208$
He had 208 coins at first.
8. $\frac{5}{12}$ of amount of water $\rightarrow 30 \div 2=15$ $\frac{5}{12}$ of the amount of water in the container can be used to make 15 cups of tea.
$\frac{7}{12}$ of the amount of water in the container was used to make tea.
$15 \div 5 \times 7=21$
He made 21 cups of tea.

RATIO

CHAPTER

 4Related Resources
NSPM Textbook 6 (P66-92)
NSPM Workbook 6A (P68-97)
Materials
Pens, pencils, paper, recipes

Lesson
Lesson 1 Ratio and Fraction
Lesson 2 Finding Part and Whole
Lesson 3 Solving Word Problems
Problem Solving, Maths Journal and
Pupil Review

INTRODUCTION

The concept of ratio has been introduced in Grade Five. This chapter establishes the relationship between ratio and fraction, allowing pupils to draw links to what they are familiar with. Pupils will also learn how to relate the ratio of two quantities to direct proportion and to solve problems involving direct proportion and ratio.

LESSON 1

RATIO AND ERAGIION

LEARNING OBJECTIVE

1. Relate ratio and fraction.

Textbook 6 P66

Use the chapter opener to discuss how the lengths of the two pieces of tape can be compared. Pupils could use estimation or measurement to find out the lengths of the two pieces of tape. Ask:

- How many units long is the red tape and blue tape respectively?
- What is the ratio of the length of the red tape to the length of the blue tape?
- What fraction of the length of the blue tape is the length of the red tape?

LET'S LEARN

1. The ratio of the length of the red ribbon to the length of the blue ribbon is $2: 5$,

of the red ribbon.
For every 2 units of red ribbon, there are 5 units of blue ribbon

2.

The ratio of the number of pencils to the number of erasers is $4: 2=2: 1$ For every 2 pencils, there is 1 eraser.

The number of pencils is 2 times the number of erasers
The ratio of the number of pencils to the total number of items in the pencil
case is $4: 6=2: 3$
The number of pencils is $\frac{2}{3}$ the total number of items in the pencil case.

LET'S LEARN

Let's Learn 1 highlights that ratio and fraction are related. Get pupils to see that expressing one length in terms of the other in a ratio is interchangeable with a fraction and vice versa.

Let's Learn 2 tests pupils' basic understanding of simplifying a ratio and converting this information to a fraction. Pay special attention that pupils may mix up the numerator and denominator when expressing the answer in a fraction. Show pupils that they can identify which quantity should be the denominator based on the sentence structure, whereby the item that comes after the fraction in the sentence will be the denominator.
3. At a zoo, there are 9 giant pandas and 3 polar bears.

Express each of the following in its simplest form
(a) The ratio of the number of giant pandas to the number of polar bears at the zoo is $3: 1$
(b) The number of polar bears is $\frac{1}{3}$ the number of giant pandas
(c) For every polar bear, there are 3 giant pandas.
(d) The ratio of the number of polar bears to the total number of giant pandas and polar bears is $1: 4$.
(e) The number of giant pandas is $\frac{3}{4}$ the total number of giant pandas and polar bears.
4. Compare the amount of water in Beakers A, B and C
(a) The ratio of the amount of water in Beaker A to the amount of water in Beaker B is 5 : 8
(b) The ratio of the amount of water in Beaker A Beaker B Beaker C Beaker B to the amount of water in Beaker C is $4: 1$
(c) The ratio of the amount of water in Beaker A to the amount of water in Beaker B to the amount of water in Beaker C is $5: 8: 2$
(d) The amount of water in Beaker B is 4 times the amount of water in Beaker C.
(e) The amount of water in Beaker C is $\frac{1}{4}$ the amount of water in Beaker B
(f) The amount of water in Beaker A is $\frac{1}{3}$ the total amount of water in the three beakers.
69
CHAPTER 4
Textbook 6 P69
5. Nora is 12 years old and her cousin is 4 years old (a) The ratio of Nora's age to her cousin's age is $3: 1$.
(b) Nora's cousin is $\frac{1}{3}$ as old as Nora
(c) Nora is 3 times as old as her cousin.
(d) The ratio of Nora's age to their total age is $3: 4$.
6. The duration of a television documentary is $\frac{1}{4}$ the duration of a movie.

(a) The ratio of the duration of the documentary to the duration of the movie is $1: 4$.
(b) The ratio of the duration of the documentary to the total duration of the documentary and the movie is $1: 5$
(c) The duration of the movie is $\frac{4}{5}$ the total duration of the documentary and the movie.
7. Mrs Tan's salary is $\frac{5}{6}$ as much as Mr Tan's salary.

(a) What is the ratio of Mrs Tan's salary to Mr Tan's salary?
(b) What is the ratio of Mrs Tan's salary to their total salary?
(c) Express Mrs Tan's salary as a fraction of their total salary

For Let's Learn 3, go through with pupils how they can make use of the bar model to represent the information and subsequently find the answers to the questions.

For Let's Learn 4, pupils will have to carefully examine the amount of water in each beaker and proceed to compare them in ratio form. Remind pupils to read carefully the fractions that parts (e) and (f) ask for, especially since there are more than two quantities in this example.

For Let's Learn 5, remind pupils that they should always leave their answers in the simplest form.

For Let's Learn 6 and 7, reinforce that drawing bar models will be helpful to visualise the given information and enable pupils to get the answers easily.

Textbook 6 P70

Textbook 6 P71

For Let's Learn 8, get pupils to draw out the rectangle to allow them to visualise how many units the perimeter would be.

In groups of 4, get pupils to count the number of pens and the number of pencils that they have in total and write the numbers down.
Each pupil can take charge of each part and the other pupils can check their work.
If there is time, pupils can repeat the activity using other stationery items.

Textbook 6 P72
Work with pupils on the practice questions.
3. In a class, the number of pupils who wear glasses is $\frac{1}{7}$ of the number of pupils who do not wear glasses.

> Pupils who wear glasses
\square

Pupils who do not wear glasses | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(a) What is the ratio of the number of pupils who wear glasses to the number of pupils who do not wear glasses?
(b) The number of pupils who do not wear glasses is 7 times the number of pupils who wear glasses.
(c) What is the ratio of the number of pupils who wear glasses to the tota number of pupils?
(d) Express the number of pupils who wear glasses as a fraction of the total number of pupils in the class.
(e) Express the number of pupils who do not wear glasses as a fraction of the total number of pupils in the class,

Independent seatwork
Assign pupils to complete Worksheet 1 (Workbook 6A P68-73)

Answers Worksheet 1 (Workbook 6A P68-73)

1. (a) $7: 2$
(b) $\frac{2}{7}$
(c) $2: 9$
(d) $\frac{2}{9}$
(e) $\frac{7}{9}$
2. (a) $9: 10$
(b) $\frac{9}{10}$
(c) $\frac{10}{9}$
(d) $\frac{10}{19}$
3. (a) $3: 4$
(b) 2
(c) $3: 2: 4$
(d) $4: 9$
(e) $\frac{2}{9}$
4. (a) 70 min
(b) $3: 4$ or $30: 40$
(c) $\frac{3}{4}$ or $\frac{30}{40}$
(d) $\frac{4}{3}$ or $\frac{40}{30}$
5. (a) $8: 9$
(b) $9: 17$
(c) $\frac{8}{9}$
(d) $\frac{8}{17}$
6. (a) $\frac{8}{3}$
(b) $3: 8$
(c) $3: 11$
(d) $\frac{8}{11}$
7. (a) $\frac{1}{2}$
(b) $\frac{2}{3}$
(c) $\frac{3}{8}$

LESSON 2

FINDING PART AND WHOLE

LEARNING OBJECTIVE

1. Find the ratio of two quantities in direct proportion and use it to solve direct proportion problems.

RECAP

Recap equivalent ratios and writing ratios in the simplest form. Get pupils to explain their answers. For example, in 1 (a), pupils could mention that they multiply 2 by 2 to get 4 , so they must also multiply 9 by 2 to get 18 .

Prompt pupils by asking: what is the ratio of the number of cups of white sugar

- to the number of cups of water?
- to the number of cups of lemon juice?

Get pupils to draw out a model to represent $1: \frac{1}{2}$
without having a fraction.

LET'S LEARN

1. A recipe for lemonade is shown.

Ingredients for lemonade (serves 10)

- 1 cup white sugar
- 5 cups water
- $\frac{1}{2}$ cup lemon juice
a) Xinyi uses 4 cups of white sugar. How many cups of water does she need?

The ratio of the number of cups of white sugar to the number of cups of water is $1: 5$.

Use equivalent ratios to find the number of cups of water needed.
$1: 5=2: 10=3: 15=4: 20$

water.

In Let's Learn 1(a), pupils should be able to observe a pattern from the table.

Get pupils to see that the number of cups of water increases as the number of cups of white sugar increases. The $1: 5$ ratio is kept constant.

In Let's Learn 1(b), pupils can make use of equivalent ratios or the bar modelling method to obtain the answer.

Textbook 6 P77
(b) How many cups of white sugar does Bala need when he uses 9 cups of lemon juice?

Method 1

$2: 1=18: 9$
He needs 18 cups of white sugar.

Method 2

1 unit $=9$
$\begin{aligned} 2 \text { units } & =9 \times 2 \\ & =18\end{aligned}$
He needs 18 cups of white sugar

For Let's Learn 2, the same two methods can be used as in Let's Learn 1.

Point out to pupils that it is also possible to find the number of cups of lemon juice needed by taking $\frac{1}{2} \times 4$ to obtain 2 as the number of cups of lemon juice needed is $\frac{1}{2}$ the number of cups of white sugar.

From parts (a) and (b), pupils should see that it does not matter which variable is known.

Get pupils to understand that using the same ratio, they can find the unknown quantity of one variable when given the quantity of the other.
3. Ahmad wants to use the same recipe to make 20 servings of lemonade. How many cups of each ingredient does he need?

Ingredients for lemonade (serves 10)
- 1 cup white sugar
- 5 cups water
- $\frac{1}{2}$ cup lemon juice

The recipe is for 10 servings. To make 20 servings, multiply the number of cups by $20 \div 10=2$.

- cup white sugar

1

Number of cups of white sugar needed $=2 \times 1$

Number of cups of water needed $=2 \times 5$
$=10$
Number of cups of lemon juice needed $=2 \times \frac{1}{2}$
4. The ingredients for baking 8 macarons are

- 3 egg whites
- $\frac{1}{4}$ cup white sugar
- $\frac{1}{2}$ cup confectioner's sugar
- 1 cup fine ground almonds

How much of each ingredient is needed to bake 40 macarons?
In Let's Learn 3, the recipe needs to be modified to serve 20 people. Prompt pupils by asking how they can get 20 from 10. Guide them to subsequently change the quantities of the ingredients.

Similarly, in Let's Learn 4, pupils should think of how 40 can be obtained from 8.

$$
40 \div 8=5
$$

Number of egg whites needed $=5 \times 3=15$

For Let's Learn 5, guide pupils to see that the perimeter (in units) can be obtained by adding up all the sides.

For Let's Learn 6, drawing a model can help pupils visualise better.
2. To make her own bubble solution, Siti uses 2 tablespoons of laundry detergent for every cup of warm water.
(a) How many tablespoons of laundry detergent does Siti need when she uses 6 cups of warm water? 12
(b) How many cups of warm water does Siti need when she uses 6 tablespoons of laundry detergent? 3
3. The following ingredients are needed to make 8 servings of tuna pasta.

3 cups macaroni	1 can tuna
1 can condensed cream of chicken soup	$\frac{1}{2}$ cup French fried onions

Mrs Lim wants to make 24 servings of tuna pasta. How much of each ingredient does she need? 9 cups macaroni, 3 cans tuna, 3 cans condensed cream of chicken soup, $1 \frac{1}{2}$ cups French fried onions
4. In a primary school, the ratio of the number of girls to the number of boys is $6: 7$. There are 1820 pupils altogether. How many boys are there in the school? 980

Complete Workbook 6A. Worksheet 2• Pages 74-77

81
CHAPTER 4 OXFORD

Assign pupils to complete Worksheet 2 (Workbook 6A P74-77)

Work with pupils on the practice questions.

Independent seatwork

Textbook 6 P81
1.

Number of cups of chicken broth	1	2	3	4	5
Number of cups of tomato paste	2	4	6	8	10

2.

Number of eggs	3	6	9	12	15
Number of teaspoons of baking soda	1	2	3	4	5

3.

Number of local stamps	8	16	24	32	40	48	56
Number of foreign stamps	3	6	9	12	15	18	21

4. 5 chocolate bars

5 cups condensed milk
10 cups cream
5. 3

Bina can make 3 such necklaces.
6. (a) $125 \div 5 \times 3=75$

There are 75 hens at the farm.
(b) $125 \div 5 \times 8=200$

There are 200 hens and ducks altogether.
7. 2 units $=26$

1 unit $=26 \div 2$

$$
=13
$$

16 units $=13 \times 16$

$$
=208
$$

Their total height is 208 cm .
8. At first

Number of marbles in cup : Number of marbles in box

9	$:$	3
3	$:$	1

Number of marbles left in cup $=9-3$

$$
=6
$$

In order for the ratio to remain the same, there should be 2 marbles in the box.
$3-2=1$
He should remove 1 marble from the box.

LESSON 3

SOLVING WORD PROBLEMS

LEARNING OBJECTIVE

1. Solve word problems that involve changing ratios.

Textbook 6 P82

Textbook 6 P83

For Let's Learn 3, guide pupils to see that the same method used in Let's Learn 1 and 2 cannot be applied. Start by going through the bar modelling method to help pupils visualise the information given. Ask:

- Since only apples were sold, what remains constant?
- If the number of pears stays the same, how can we represent the before and after models of 'pears' such that they have an equal number of units?

Let's Learn 2 requires pupils to change both ratios in order to combine them. Ask:

- Which of the three names appears in both ratios?
- How do we make this quantity the same number of units in both ratios?

Textbook 6 P83

Textbook 6 P85

Guide pupils to observe that both methods allow them to find the difference in the number of units of apples, which will equal the number of apples sold.

In Let's Learn 4, pupils may mistakenly think that the number of marbles Farhan had remained constant as this was represented by 3 units in both ratios. Guide pupils to read the information properly in order to observe that Farhan's number of marbles was the one that changed.

Get pupils to substitute their answers into the question to check that they are correct, i.e. obtain the same ratios before and after as given in the question.

Textbook 6 P87
6. The ratio of the amount of money Kate had to the amount of money Sam had was $5: 4$. After both of them spent $\$ 5$, the ratio became $10: 7$. How much money did Sam have at first?

For Let's Learn 6, the total amount of money changes, but the difference between what Kate and Sam had remains constant. Use concrete numbers to help pupils understand the concept before going through the example. For instance, ask:

- If your partner has $\$ 5$ and you have $\$ 4$, what is the difference?
- If both of you spend $\$ 2$ each, how much would each of you be left with?
- What is the difference now?

Get pupils to see that in the example, the number of units 'lost' from both Kate and Sam will have to be the
For Let's Learn 5, pupils may have difficulty understanding the concept that the total amount of juice remains the same. If they are unable to visualise this using the model, prompt them by asking:

- If you poured some water from your bottle to your partner's, what is the total amount of water both of you have before and after?
- Does the total amount remain the same?

Guide pupils to see that in this case, they will have to manipulate the total number of units, instead of one factor as they did in the previous examples.
same, which is equal to what they each spent.

Textbook 6 P88

Textbook 6 P89

Textbook 6 P90

Let's Learn 7 further broadens pupils' understanding of ratios as two quantities change. Prompt pupils that when the number of chocolate and vanilla cookies are the same, the ratio is $1: 1$. By comparing the models, it is not possible to see how many units of cookies were sold. Guide pupils to see that it is only possible to deduce the value of each unit through the difference in the number of chocolate and vanilla cookies sold.

For Let's Learn 8, pupils may be confused over how to compare the number of boys. Prompt pupils that two models can be drawn for the boys after the new members join; one in comparison to the girls, i.e. 3 times as much, and one based on 10 boys joining. Get pupils to see that these two models are equivalent and they can then solve the problem based on the difference in units identified.

Let pupils work in pairs or individually on the practice questions.

Independent seatwork

Assign pupils to complete Worksheet 3 (Workbook 6A P78-86)

Answers Worksheet 3 (Workbook 6A P78-86)

1. 3 units $=15$

$$
1 \text { unit }=15 \div 3
$$

$$
=5
$$

4 units $=5 \times 4$

$$
=20
$$

There were 20 chickens and sheep at the farm in the end.
2. (a) Flamingos: Pelicans

Pelicans: Owls

5	$:$	2
50	$:$	20

Flamingos: Pelicans : Owls

$$
50: 20 \quad: 1
$$

The ratio of the number of flamingos to the number of pelicans to the number of owls at the attraction is $50: 20: 1$.
(b) $\begin{aligned} 1 \text { unit } & =3 \\ 50 \text { units } & =50 \times 3 \\ & =150\end{aligned}$

There are 150 flamingos at the attraction.
3. (a) Ahmad: Siti Ahmad: Meiling

6 : 5
9 : 4
$54: 45$
54 : 24

Ahmad : Siti : Meiling
54 : 45: 24

Number of units $=54+45+24$
$=123$ units
123 units $=\$ 123$
1 unit $=\$ 1$
45 units $=45 \times \$ 1$

$$
=\$ 45
$$

Siti has $\$ 45$.
4. After

English
Chinese

(a) 1 unit $=50$

8 units $=50 \times 8=400$
There were 400 English books in the library.
(b) 14 units $=50 \times 14=700$

The total number of English and Chinese books in the library in the end was 700.
5. Initial ratio

6A: 6B
$4: 5$
32:40
Ratio in the end
6A: 6B
7:8
35:40
$35-32=3$
3 units $=\$ 6$
40 units $=\$ 6 \div 3 \times 40$
= \$80
Primary 6B collected $\$ 80$.
6.

$$
\begin{aligned}
1 \text { unit } & =\$ 3 \\
22 \text { units } & =\$ 3 \times 22 \\
& =\$ 66
\end{aligned}
$$

Nora and Tom had \$66 altogether.
7. Initial ratio

Number of pens: Number of pencils

$$
\begin{array}{ccc}
7 & : & 5 \\
14 & : & 10
\end{array}
$$

$14-11=3$
$10-7=3$
3 units $=21$
7 units $=21 \div 3 \times 7$
$=49$
49 pencils were left.
8. Now

$$
\begin{aligned}
1 \text { unit } & =8 \\
5 \text { units } & =8 \times 5 \\
& =40
\end{aligned}
$$

Miss Chen's father is 40 years old now.
9. Initial ratio

Priya : Xinyi
40 : 28
10 : 7
1 unit $=40 \div 10$
$=4$
Priya gave Xinyi \$4.
10. Before

Men

Women

After
Men

$$
\begin{aligned}
3 \text { units } & =75-48 \\
& =27 \\
13 \text { units } & =27 \div 3 \times 13 \\
& =117
\end{aligned}
$$

$117+48+75=240$
There are 240 men and women in the hall now.
11. Initial ratio

Number of blue balls: Number of red balls
$4 \quad: \quad 1$
Ratio in the end
Number of blue balls: Number of red balls

	3	$:$	1
6	$:$	2	
2 units	$=8$		
4 units	$=8 \times 2$		
	$=16$		

There were 16 blue balls at first.
12. Before

5 units $=305-70$

$$
=235
$$

1 unit $=235 \div 5$

$$
=47
$$

Total number of flowers at first
$=47 \times 9+112$
$=535$
The florist had 535 stalks of flowers at first.
13. For every 6 adult tickets sold, 5 child tickets were sold.
Cost of tickets in one group $=\$ 10 \times 6+\$ 6 \times 5$

$$
=\$ 90
$$

Number of groups of tickets sold $=8100 \div 90$

$$
=90
$$

Number of adult tickets sold $=90 \times 6$

$$
=540
$$

540 adult tickets were sold.

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIEW

MIND WORKOUT

If pupils have difficulties with the problem, facilitate by providing the following guidance:

- Refer to Let's Learn 8 and identify any similarities and differences.
- Draw a model of the initial 3:2 ratio.
- Add a value of 3 to the boys.
- For the girls, out of 2 units, how can we represent 6 girls leaving? (Get pupils to see that they need to 'subtract' a value of 3 from each unit)
- How can we make the units of the boys the same as the girls?
- Comparing the models for before and after, how many units does the extra 4×3 correspond to?

Highlight to pupils that the ratio of the number of 50 -cent coins to the number of 20 -cent coins is not the same as the ratio of the value of 50 -cent coins to the value of 20-cent coins.
Guide pupils to view the number of coins in terms of 'groups' where the difference in the total value of all the groups will equal to $\$ 3$.

MATHS JOURNAL

Plan a party for 10 people.
Search on the Internet for a cookie recipe and a drink recipe. Given that all 10 people eat and drink the same amount, write down the recipe and the amount of each ingredient you will need. Explain how you work out each amount.

MATHS JOURNAL

Allow pupils some time to find the recipes and state how many people their recipes serve. Discuss how they would find the quantities needed if there were 10 people attending their party. Consider giving an example and demonstrating how the answer can be obtained if pupils need further guidance.

Before pupils proceed to do the self-check, review the important concepts by asking for examples learnt for each objective.

The self-check can be done after pupils have completed Review 4 (Workbook P88-97) as consolidation for the chapter.

1. (a) $2: 1$
(b) $\frac{3}{4}$
(c) 2
(d) $\frac{2}{3}$
2. (a) $2: 3$ or $10: 15$
(b) $\frac{2}{3}$ or $\frac{10}{15}$
3. (a) $2: 1$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $3: 1: 2$
4. (a)

Amount saved (\$)	10	20	30	40	50
Amount received (\$)	2	4	6	8	10

(b) $\$ 120 \div 10 \times 2=\$ 24$

He received $\$ 24$.
5.

Number of apples	2	4	6	8	10
Number of carrots	4	8	12	16	20

6. $1 \frac{2}{3}$ cups cocoa powder. $3 \frac{3}{4}$ cups white sugar, $\frac{5}{8}$ cups boiling water, 15 cups milk, $2 \frac{1}{2}$ cups cream
7. $\frac{5}{14}$
8. $36 \div 9=4$
$4 \times 17=68$
There are 68 pupils in Class 6A and 6B altogether.
9. Initial ratio

Number of apples : Number of pears 14 : 10
4 units $=240$
1 unit $=240 \div 4$

$$
=60
$$

14 units $=60 \times 14$

$$
=840
$$

He had 840 apples at first.
11. Before

After
Mangoes

Plums

1 unit $=15$
6 units $=15 \times 6$

$$
=90
$$

There were 90 plums.
12. Before

Bina

Siti

After

Siti

1 unit $=2$
6 units $=2 \times 6$

$$
=12
$$

Bina had 12 stickers at first.
9. $\$ 156 \div 12=\$ 13$
$\$ 13 \times 2=\$ 26$
Farhan has $\$ 26$ more than Junhao.
13. Now

Mother's age : Raju's age
2 : 1
10 : 5
In 10 years' time
Mother's age : Raju's age
12 : 7
Difference in number of units $=2$
2 units = 10
1 unit $=5$
5 units $=5 \times 5$

$$
=25
$$

Raju is 25 years old now.
14. Before

Boys \square
Girls

After

1 unit $=36-25$

$$
=11
$$

4 units $=11 \times 4$
$=44$
There were 44 girls at the party at first.

PERCENTAGE

CHAPTER

Related Resources
NSPM Textbook (P93-117)
NSPM Workbook 6A (P98-123)

Materials

10-sided die, pen, activity sheet, calculator
Lesson
Lesson 1 Finding the Whole Given a Part and the Percentage
Lesson 2 Percentage Increase and Decrease
Lesson 3 Solving Word Problems
Problem Solving, Maths Journal and
Pupil Review

INTRODUCTION

Pupils have learnt what "percent" means in Grade Five. This chapter will expose pupils to more comprehensive uses of percentage and allow them to better appreciate how percentage can express one quantity in the form of another. Pupils thus encounter more real-life applications of percentage, especially involving percentage increase and decrease.

LESSON

FINDING THE WHOLE GIVEN A PART AND THEPRRGENTACF

LEARNING OBJECTIVE

1. Find the whole given a part and the percentage.

Textbook 6 P93

RECAP

Revisit the definition of percentage (\% means out of 100), expressing percentage as a fraction and finding a percentage of a whole.

e the chapter opener to discuss examples of percentage in real-life contexts. Get pupils to express 10% as a fraction so that the problem becomes familiar to them.

LET'S LEARN

Highlight to pupils that in the presentation of their working, they should not write $10 \%=31$ as this would be mathematically incorrect. They would need to specify 10% of a specific quantity. Alternatively, pupils can write $10 \% \rightarrow 31$. The arrow refers to "represents".

Textbook 6 P94

2. 50% of a number is 6 . What is the number?

- Method 1

$$
\begin{array}{rl|rl}
50 \% \text { of the number } & =6 & 50 & \rightarrow 6 \\
1 \% \text { of the number } & =6 \div 50 & 1 \% & \rightarrow 6 \div 50 \\
& =0.12 & & =0.12 \\
100 \% \text { of the number } & =0.12 \times 100 & 100 \% & \rightarrow 0.12 \times 100
\end{array}
$$

The number is 12 .
Method 2

Textbook 6 P95
3. 12% of the amount of water in a container is 96 ml . How much water is there in the container?

4. Meiling read 14% of a book in the morning and another 35% of the same book at night. She read 140 pages at night. Find the total number of pages in the book.
35% of the book $=140$ pages
$\left.\begin{array}{rl}1 \% \text { of the book } & =140 \div 35 \\ & =4 \text { pages } \\ & \begin{array}{rll}100 \% \text { of the book } & =4 \times & \times 100 \\ & =400 & \text { pages }\end{array}\end{array} . \begin{array}{rl} & 4\end{array}\right)$

The book has a total of 400 pages.

Let's Learn 3 and 4 are quite straightforward. Pupils should be able to solve them using the same method. In Let's Learn 4, get pupils to recognise that the information that Meiling read 14% of the book in the morning is redundant.

Textbook 6 P96

In a concert hall, 252 seats are occupied. 84% of the seats in the concert hall are occupied. How many seats are there in the concert hall altogether?

Let's Learn 5 is also similar to the previous two examples.

For Let's Learn 6, pupils will have to obtain the percentage of boys first.

1. Draw a model to show how you find each answer.
(a) 20% of a number is 7 . What is the number? 35
(b) 25% of a number is 50 . What is the number? 200
(c) 4% of a number is 3 . What is the number? 75
(d) 13% of a number is 65 . What is the number? 500
2. Mr Ali spent $\$ 1800$ on food last month. This was 30% of his monthly salary. Find Mr Ali's monthly salary. \$6000
3. At a football match, 25% of the spectators wore red T -shirts and 3750 spectators did not wear red T-shirts. How many spectators were there altogether? 5000
4. 45% of the pupils in a school are girls. There are 810 girls in the school. How many pupils are there in the school altogether? 1800

Complete Workbook 6A. Worksheet 1 • Pages 98-101

OXFORD PERCENTAGE 98

Textbook 6 P98

Answers Worksheet 1 (Workbook 6A P98-101)

1. (a) $\frac{6}{50} \times 100=12$
(b) $\frac{7}{5} \times 100=\$ 140$
(c) $\frac{56}{7} \times 100=800 \mathrm{ml}$
(d) $\frac{24}{80} \times 100=30$
2. $\frac{63}{90} \times 100=70$
3. $\frac{60}{40} \times 100=150 \mathrm{~km}$
4. $\frac{1360}{85} \times 100=\$ 1600$
5. $\frac{14.40}{18} \times \$ 100=\$ 80$
6. $\frac{27}{75} \times 25=9$
7. $\frac{42}{70} \times 100=60$
8. $\frac{2448}{68} \times 100=\$ 3600$

Let's Learn 7 exposes pupils to another percentage that can be easily converted to a fraction. Get pupils to note that being familiar with percentages such as $25 \%, 50 \%$ and 75% and their respective fractions will be helpful in solving problems.

Work with pupils on the practice questions.

Independent seatwork

Assign pupils to complete Worksheet 1 (Workbook 6A P98-101)

LESSON 2
 PERCENTAGE INCREASE AND DECREASE

LEARNING OBJECTIVE

1. Find percentage increase or decrease based on the original quantity.

2. Weiming arranges 10 chairs in a row. He removes 3 chairs from the row. What is the percentage decrease in the number of chairs?

3. At a primary school, the school bus fare was increased from $\$ 80$ a month to $\$ 100$ a month. What was the percentage increase in the bus fare?

Increase $=\$ 100-\$ 80$
$=\$ 20$
Percentage increase $=\frac{20}{80} \times 100 \%$
$=25 \%$
The percentage increase in the bus fare was 25%.

Why do we use $\$ 80$ as the original quantit and not $\$ 100$? Explain.

OXFORD PERCENTAGE 100

Textbook 6 P100
4. The mass of a box of marbles was 400 g . After removing some marbles from the box, the mass became 320 g . Find the percentage decrease in the mass f the box of marbles

Decrease $=400-320$
Percentage decrease $=\frac{80}{400} \times 100 \%$

$$
=20 \%
$$

The percentage decrease in the mass of the box of marbles was 20%.
5. Ann scored 90 points in a game. She played the same game again and scored 72 points. Find the percentage decrease in the number of points Ann scored.

Decrease $=90-72$
$=18$
Percentage decrease $=\frac{18}{90} \times 100 \%$
= 20%
The percentage decrease was 20%.

Let's Learn 2 introduces percentage decrease. Similar to Let's Learn 1, highlight to pupils to remember the formula and that the denominator should always be the original quantity.

For Let's Learn 3, ask:

- What is the increase in the bus fare?
- What is the original bus fare?

Let's Learn 4 and 5 are similar to Let's Learn 3, but deal with a percentage decrease. Remind pupils to identify the original quantity correctly.
6. Bala saved $\$ 30$ in May. In June, he saved $\$ 15$ more than he did in May. What was the percentage increase in the amount Bala saved in June?

Percentage increase $=\frac{15}{30} \times 100 \%$

The percentage increase was 50%.
7. The price of a plate of chicken rice increased by $50 ¢$. The percentage increase in the price of a plate of chicken rice was 20%. How much did each plate of chicken rice cost at first?

20% of the price $=50 \mathrm{c}$
100% of the price $=50 \uparrow \times 5$
$=\$ 2.50$
Each plate of chicken rice cost \$ 2.50 at first

OXFORD PERCENTAGE 102

Textbook 6 P102
8. In 2015,40 pupils went for a swimming programme. In 2016, the number of pupils who went for the programme decreased by 15%. Find the number of pupils who went for the swimming programme in 2016.

15% of number of pupils $=\frac{15}{100} \times 40$
$=6$
Number of pupils who went in 2016 $=40-6$

$$
=34
$$

34 pupils went for the swimming programme in 2016.
9. In January, the price of a computer was $\$ 1650$. Its price decreased to $\$ 1559$ in February. Find the percentage decrease in the price of the computer, giving your answer correct to the nearest 1%.

Decrease $=\$ 1650-\$ 1559$
= \$ 91
Percentage decrease $=\frac{91}{1650} \times 100 \%$

$$
=6 \% \text { (to the nearest } 1 \% \text {) }
$$

The percentage decrease in the price of the computer was 6%.

Let's Learn 6 is straightforward whereby pupils do not have to make preliminary calculations. Remind them to use the original quantity as the denominator.

Let's Learn 7 requires pupils to work backwards when provided with the price and percentage increase.
Highlight to pupils that since 20% is $\frac{1}{5}$ of 100%, we will need to multiply 50 cents by 5 to get the answer.

For Let's Learn 8, get pupils to analyse the model and see that 15% less of 40 can be calculated.
Point out to them that an alternative method of finding 85% of 40 will give you the correct answer as well.

Let's Learn 9 involves rounding off the answer.
Explain to pupils that it is the same as rounding off to the nearest whole number.

Textbook 6 P103

Textbook 6 P104
11. The price of oil per barrel decreased by 22.5% from June to October. Each barrel of oil cost $\$ 46.50$ in October. What was the price of each barrel of oil in barrel of

$100 \%-22.5 \%=77.5 \%$
77.5% of price in June $=\$ 46.50$
1% of price in June $=\$ 46.50 \div 77.5$
$=\$ 0.60$
100% of price in June $=\$ 0.60 \times 100$
$=\$ 60$
The price of each barrel of oil in June was \$ 60
The price of each barrel of oil in October was
77.5% of the price in Jun . the price in Jun

For Let's Learn 10, explain to pupils that rounding off to the nearest 0.1% is the same as rounding off to 1 decimal place.

For Let's Learn 11, remind pupils to ensure that they place the decimal point correctly when using the calculator.

Textbook 6 P105

Demonstrate how the game is played. If needed, print an activity sheet for pupils to record their answers so that the answers can be checked later.

PRACTICE

Work with pupils on the practice questions.

Independent seatwork

Assign pupils to complete Worksheet 2 (Workbook 6A P102-105)

Answers Worksheet 2 (Workbook 6A P102-105)

1. $\frac{2}{8} \times 100 \%=25 \%$
2. $\frac{500}{4000} \times 100 \%=12.5 \%$
3. $\frac{6}{25} \times 100 \%=24 \%$
4. $\frac{40}{200} \times 100 \%=20 \%$
5. $\frac{56}{112} \times 100=50$
6. $\frac{18}{90} \times 100=\$ 20$
7. $\frac{300}{1800} \times 100 \% \approx 16.7 \%$
8. (a) 330 ml
(b) $\frac{330}{2500} \times 100 \% \approx 13 \%$

SOLVING WORD PROBLEMS

LEARNING OBJECTIVE

1. Solve word problems involving percentage.

Textbook 6 P108
2. Nora's weekly allowance is $\$ 12$. Last week, she spent 60% of her allowance on food, $\frac{1}{3}$ of the remaining amount on stationery and saved the rest. How much did Nora save last week?

Percentage of allowance remaining $=100 \%-60 \%$
$\begin{aligned} \text { Amount of allowance remaining } & =\frac{40}{100} \times \$ 12 \\ & =\$ 4.80\end{aligned}$
Amount saved $=\frac{2}{3} \times \$ 4.80$

Nora saved \$ 3.20 last week.
3. Sam had some marbles. 20% of the marbles were blue and the rest were green. He bought an equal number of blue marbles. What percentage of his marbles now are blue?

$\begin{aligned} \text { Percentage of blue marbles now } & =\frac{2}{6} \times 100 \% \\ & =33 \frac{1}{3} \%\end{aligned}$
$33 \frac{1}{3} \%$ of his marbles now are blue.

For pupils who have difficulties with the concept of percentage, using fractions would likely be more familiar to them.

For Let's Learn 2, remind pupils to note that they need to find $\frac{2}{3}$ of the remainder, i.e. of 40%, and not of the entire allowance.

For Let's Learn 3, highlight to pupils that drawing a model would be helpful for visualisation. The number of green marbles would be 4 times that of the original number of blue marbles, since 80% is 4 times that of 20\%.
4. Raju has some stamps. 70% of his stamps are local stamps and the rest are foreign stamps. Raju has 36 more local stamps than foreign stamps. How many stamps does Raju have in all?

Difference in percentage $=70 \%-30 \%$ $=40 \%$
40% of stamps $=36$
100% of stamps $=\frac{36}{40} \times 100 \%$

$$
=90
$$

Raju has 90 stamps in all.
Method 2

4 units $=36$
1 unit $=36 \div 4$
$\begin{aligned} & =9\end{aligned}$
10 units $=9 \times 10$
$=90$

For Let's Learn 4, pupils will need to draw the link that the difference in percentage of stamps is equal to the difference in number. The number of stamps in total when represented by 100% can then be obtained easily.

OXFORD
Textbook 6 Pl 10
5. Mr Wong had some watches for sale. He sold 24 watches on Sunday and $\frac{1}{7}$ of the remaining watches on Monday. Then, he had 60% of the watches he had at first. How many watches did Mr Wong have at first?
$\frac{6}{7}$ of the remaining $\rightarrow 60 \%$ of the original number
$\frac{7}{7}$ of the remaining $\rightarrow{ }^{70} \%$ of the original number
$100 \%-70 \%={ }^{30} \%$
$30 \% \rightarrow 24$
$10 \% \rightarrow 24 \div 3=8$
$100 \% \rightarrow^{8} \times{ }^{10}=80$
Mr Wong had ${ }^{80}$ watches at first.
6. There are some books on a bookshelf. 15% of the books are science fiction books, 165 are mystery books and the rest are non-fiction books. There are 59 fewer science fiction books than non-fiction books. How many books are there altogether?

$100 \%-15 \%-15 \%=70 \%$
70% of total number of books $=165+59$

For Let's Learn 5, a model is not provided. Get pupils to draw a model to help them visualise if needed.

For Let's Learn 6, point out to pupils that the percentage of science fiction books given are based on the total number of all the books. Hence, 70% of the books is equal to $165+59$.
7. A fruit seller sold 230 pears on Tuesday. This was 15% more than the number of pears he sold on Monday.
(a) How many pears did he sell on Monday?
(b) On Wednesday, he sold 50% fewer pears than he did on Monday. Find the total number of pears he sold over the three days.
(a)
 Which quantity is represented by 100%, the number sold on
Monday or the number sold on Tuesday? Explain. wiestay Pxpla
 1% of number of pears sold on Monday $=\frac{230}{115}$ Number of pears sold on Monday $=\frac{230}{115} \times 100=200$

$\begin{aligned} \text { Number of pears sold on Wednesday } & =200 \times \frac{1}{2} \\ & =100\end{aligned}$
Total number of pears sold $=200+230+100$ $=530$

He sold a total of 530 pears over the three days.

Textbook 6 P1 12
8. A concert was held on Saturday and Sunday. On Saturday, there were 40 more adults than children in the audience. On Sunday, the number of adults increased by 10% and the number of children decreased by 10%. 24 people attended he concet on Sunday. children attended the concert on Sunday?

Saturday

lunta
Decrease in number of children $=\frac{10}{100} \times 10$ units
$=1$ unit

20 units $=724-44$
$=680$

$=306$

For Let's Learn 7, get pupils to deduce which quantity is represented by 100%. Give them a hint that based on the formula for percentage increase, the original quantity would be the quantity that did not change.

For Let's Learn 8, highlight to pupils that the two groups of adults and children have to be taken as 100% each when accounting for their increase or decrease by 10%. 10 units would thus be convenient, as 10% would correspond to one unit. Ensure that pupils are aware that 100% of the adults on Saturday includes the 40 more adults than children, and hence when increasing this amount by 10%, they would have to add 1 unit +4 .

Let's Learn 9 involves a changing of bases. Drawing a before-after model would help pupils to see that 60\% of the new base is equal to 70% of the original base. Alternatively, pupils could be guided to use ratios to solve the problem. The original ratio of the number of girls to the number of boys $=3: 7$ and the subsequent ratio of the number of girls to the number of boys $=2: 3$. As the number of boys remain constant, the ratios could be re-written as $9: 21$ and $14: 21$ respectively.

For Let's Learn 10, remind pupils that 25% is equal to $\frac{1}{4}$.
Hence, if the original number of units for macarons is 4 , it increases by 1 unit after more are baked.
. Mrs Lee baked a total of 120 chocolate cupcakes and vanilla cupcakes. Affer selling an equal number of cupcakes of each flavour, she had 90% of the chocolate cupcakes and 80% of the vanilla cupcakes left. How many cupcakes did Mrs Lee sell altogether? 12
5. There were 30000 pens and markers at a factory. After 100 pens were thrown away, more markers were produced such that the number of markers increased by 7%. In the end, there were 30250 pens and markers at the factory. How many markers were there at first?
6. An event was held at the Night Safari on Friday and Saturday. On Friday, there were 50 more boys than girls. On Saturday, the number of boys increased by 20% and the number of girls increased by 10%. There were 2820 boys and girls at the Night Safari on Saturday. How many girls were there on Friday? 1200

* 7. There were 80 pink and blue beads in a box. 40% of the beads were pink. Some blue beads were removed from the box such that the percentage of pink beads became 64%. How many blue beads were removed?

7. MIND WORKOUT
8. MIND WORKOUT
Weiming had a square plece of paper with an area of $81 \mathrm{~cm}^{2}$. He cut the paper such that it became a smaler square plece of paper with an area of $49 \mathrm{~cm}^{2}$.
Find the percentage decrease in the length of the paper, giving your answer to the nearest whole number.

> What are some methods you can use to find the answer? Discuss with your parterer.

Independent seatwork
Assign pupils to complete Worksheet 3 (Workbook 6A P106-114)

Textbook 6 P1 16

Answers Worksheet 3 (Workbook 6A P106-114)

1. $\frac{75}{100} \times 36=27$

Nora had 27 cupcakes left.
2. $100 \%-30 \%-25 \%=45 \%$
$45 \% \rightarrow 540$
$100 \% \rightarrow \frac{540}{45} \times 100=1200$
The total number of people at the funfair is 1200 .
3. $\frac{80}{100} \times \$ 16=\$ 12.80$
$\frac{75}{100} \times \$ 12.80=\$ 9.60$
The book cost $\$ 9.60$.
4. $\frac{60}{100} \times 25=15$
$\frac{80}{100} \times 15=12$
12 squares are coloured green.
5. Percentage of journey covered on third day
$=\frac{1}{4} \times 70 \%$
= 17.5%
$\frac{9}{17.5} \times 100 \approx 51$
The total distance travelled is 51 km .
6. $100 \%-28 \%=72 \%$
$72 \%-28 \%=44 \%$
$44 \% \rightarrow 88$
$100 \% \rightarrow \frac{88}{44} \times 100=200$
There are 200 shirts in the box altogether.
7. $\frac{2700}{112.5} \times 100=\$ 2400$

Miss Chen's salary last year was $\$ 2400$.
8. $50 \% \rightarrow 3824$
$100 \% \rightarrow 3824 \times 2=7648$
There were 7648 members in the fitness club in 2015.
9. $20-4=16$
$18-16=2$
2 angelfish were added into the tank.
50% of the number of angelfish $=2$
100% of the number of angelfish $=2 \times 2$

$$
=4
$$

$20-4=16$
There were 16 clownfish in the tank at first.
10. Number of apples $=\frac{60}{100} \times 120$

$$
=72
$$

Number of oranges at first $=120-72$

$$
=48
$$

Number of oranges left $=\frac{72}{80} \times 20$

$$
=18
$$

Number of oranges sold $=48-18$

$$
=30
$$

30 oranges were sold.
11. Amount she paid for second dress $=\frac{76-20}{2}=\$ 28$

Amount she paid for first dress $=\$ 28+\$ 20$

$$
=\$ 48
$$

Original price of first dress $=\frac{48}{80} \times 100$

$$
=\$ 60
$$

The original price of the first dress was $\$ 60$.
12. Before

After

19 units $=84-8$

$$
=76
$$

1 unit $=76 \div 19$
$=4$
10 units $=4 \times 10$

$$
=40
$$

There were 40 yellow marbles in the box at first.

PROBLEM SOLVING, MATHS JOURNAL AND PUPILLREVIIW

3. 56% of the pupils in a school were boys. There were 132 more boys than girls. F.. How many pupils were there in the school altogether? 1100 4. Mrs Lee baked a total of 120 chocolate cupcakes and vanilla cupcakes. After selling an equal number of cupcakes of each flavour, she had 90% of the chocolate cupcakes and 80% of the vanilla cupcakes left. How many cupcakes did Mrs Lee sell altogether? 12			
There were 30000 pens and makrers at facatory. Ater 100 pens were theoway more makeses were produced such thot the number of makkers away, more markers were produced such that the number of markersincreased by 7%. In the end, there were 30250 pens and markers at the factory. How many markers were there at first? 5000			
nevent was held at the Nght sotari in fitidy and Soturday, on firday, there 			
7. There were 80 pink and blue beads in a box. 40% of the beads were pink Some blue beads were removed from the box such that the percentage ofpink beads became 64%. How many blue beads were removed? 30			
(b) mind workout Weiming had os suure piece of paper with an orea of 81 lm ? He ut the paper \qquad			
oxpory prechrage 116			
Textbook 6 P1 16			

MIND WORKOUT

Pupils will need to obtain the length of each square first, and subsequently find the decrease.

Highlight to pupils that it is wrong to find the decrease in the area first and then square root this value. This method cannot be used as when a paper is cut into a smaller square, the decrease in area is not a square. Demonstrate this using a piece of paper if pupils are unclear.

Mind Workout

Pupils who have grasped the conversion of percentages such as $25 \%, 50 \%$ and 75% into fractions may proceed to see that 40% can be expressed as $\frac{2}{5}$, where Siti would have 2 units and Bala, 5 units.

Workbook 6A P1 15

MATHS JOURNAL

Get pupils to discuss how to calculate the percentage of free cans, i.e. percentage increase. They should see that the percentage given is wrong. Get them to deduce how the erroneous percentage (33\%) was calculated. Remind pupils of the common mistake of using the wrong base in the calculation.

Before pupils proceed to do the self-check, review the important concepts by asking for examples learnt for each objective.

The self-check can be done after pupils have completed Review 5 (Workbook 6A P116-123).

1. (a) $\frac{6}{25} \times 100=24$
(b) $\frac{24}{40} \times 100=60 \mathrm{~kg}$
2. $\frac{28}{80} \times 20=7$
3. $\frac{14}{70} \times 100=20$
4. $100 \%-30 \%-20 \%=50 \%$
$50 \% \rightarrow \$ 50.40$
$10 \% \rightarrow \$ 50.40 \div 5=\$ 10.08$
$20 \% \rightarrow \$ 10.08 \times 2=\$ 20.16$
Bina spent $\$ 20.16$ on the dress.
5. $\frac{2}{10} \times 100 \%=20 \%$
6. $\frac{36}{90} \times 100=40$
7. (a) Total distance $=3200+1800$

$$
\begin{aligned}
& =5000 \mathrm{~m} \\
\frac{3200}{5000} \times 100 \% & =64 \%
\end{aligned}
$$

The distance he jogged on Saturday is 64% of the total distance jogged on both days.
(b) $3200-1800=1400$
$\frac{1400}{3200} \times 100 \%=43.75 \%$
The percentage decrease is 43.75%.
8. $\frac{80}{100} \times \$ 50=\$ 40$
$\frac{70}{100} \times \$ 40=\$ 28$
Meiling saved $\$ 28$.
9. 70% of the remainder $\rightarrow 14$
100% of the remainder $\rightarrow \frac{14}{7} \times 10=20$
$\frac{2}{5}$ of the cream puffs $\rightarrow 20$
$\frac{5}{5}$ of the cream puffs $\rightarrow \frac{20}{2} \times 5=50$
She made 50 cream puffs.
10. Amount she paid for second book $=\frac{15.30-6.30}{2}$

$$
=\$ 4.50
$$

Amount she paid for first book $=\$ 4.50+\$ 6.30$

$$
=\$ 10.80
$$

Original price of first book $=\frac{10.80}{90} \times 100$
= \$12

The original price of the first book was $\$ 12$.
11. Number of blue pens $=\frac{60}{100} \times 50$

$$
=30
$$

Number of red pens at first $=50-30$

$$
=20
$$

Number of red pens left $=\frac{1}{2} \times 30$

$$
=15
$$

Number of red pens removed $=20-15$

$$
=5
$$

5 red pens were removed from the box.
12. $100 \%-35 \%=65 \%$
$65 \%-35 \%=30 \%$
$30 \% \rightarrow 18$
$10 \% \rightarrow 18 \div 3=6$
$100 \% \rightarrow 6 \times 10=60$
There are 60 chocolate balls in the box altogether.
13. Number of boys in the school $=144 \times 5$

$$
=720
$$

45% of the pupils in the school $=720$
100% of the pupils in the school $=\frac{720}{45} \times 100$

$$
=1600
$$

There are 1600 pupils in the school.

16 units $=\$ 197-\$ 45$

$$
=\$ 152
$$

1 unit $=\$ 152 \div 16$

$$
=\$ 9.50
$$

Amount Bala had $=\$ 9.50 \times 6+\$ 45$

$$
=\$ 102
$$

Bala had \$102.

1. 3
2. 1
3. 4
4. 4
5. 2
6. 3
7. 4
8. 3
9. 3
10. 3
11. 4
12. 4
13. 2
14. 1
15. 3

Section B
16. 11
17. 110
18. 4
19. $\frac{6}{5}$
20. 128
21. $4 p+4$
22. $4 q+6$
23. $\frac{1}{18}$
24. $\frac{1}{2}$
25. $1: 4$
26. $350-225=125 \mathrm{~g}$
$\frac{125}{25} \times 100=500 \mathrm{~g}$
$\frac{1}{2} \times 500=250 \mathrm{~g}$
$350-250=100 \mathrm{~g}$
The mass of the empty bottle is 100 g .
27. $7 p+18 p+p+11=26 p+11$

$$
\begin{aligned}
& =26 \times 9+11 \\
& =245 \mathrm{~g}
\end{aligned}
$$

Nora had 245 g of butter at first.
28. $\angle B C D=\angle B A D$

$$
=140^{\circ}
$$

$\angle B D C=\left(180^{\circ}-140^{\circ}\right) \div 2$

$$
=20^{\circ}
$$

$\angle y=90^{\circ}-20$

$$
=70^{\circ}
$$

29. $\frac{3}{5}=\frac{6}{10}$
$\frac{2}{7}=\frac{6}{21}$
$21-10=11$
11 units $=605 \mathrm{ml}$
1 unit $=605 \div 11$

$$
=55
$$

31 units $=55 \times 31$

$$
=1705 \mathrm{ml}
$$

$$
=1.705 \ell
$$

30. Primary 5

Number of boys : Number of girls

3	$:$	4
6	$:$	8

Primary 6
Number of boys : Number of girls $5 \quad: \quad 9$
In both levels
$\begin{array}{ccc}\text { Number of boys } & : & \text { Number of girls } \\ 11 & : & 17\end{array}$
The ratio of the total number of boys to the total number of girls in the two levels is $11: 17$.

Section C

1. $70 \% \rightarrow \$ 16.10$
$100 \% \rightarrow \frac{16.10}{70} \times 100=\$ 23$
Its price before the discount was $\$ 23$.
2. $\frac{414}{18} \times 5=115$

The length of the rectangle is 115 cm .
3. $1 \frac{1}{2}-\frac{3}{4}=\frac{3}{4}$
$\frac{3}{4} \div 2=\frac{3}{8}$
Each child received $\frac{3}{8}$ of a pie.
4. Bina gave $\frac{7 q-2}{2}$ apples to her friends.
5. $\$ 1400-\$ 1190=\$ 210$
$\frac{210}{1400} \times 100 \%=15 \%$
The percentage discount given was 15%.
6. $48 \div 3=16$
$\frac{3}{4} \times 16=12$
$16 \times 2=32$
$32-12=20$
The difference is 20 .
7. 2 novels and 3 colouring books $\rightarrow \$ 108$

6 novels and 9 colouring books $\rightarrow \$ 108 \times 3=\$ 324$
3 novels and 2 colouring books $\rightarrow \$ 117$
6 novels and 4 colouring books $\rightarrow \$ 117 \times 2=\$ 234$
5 colouring books $\rightarrow \$ 324-\$ 234=\$ 90$
1 colouring book $\rightarrow \$ 90 \div 5=\$ 18$
1 novel $\rightarrow(\$ 108-\$ 18 \times 3) \div 2=\$ 27$
$\frac{18}{27}=\frac{2}{3}$
The cost of a colouring book is $\frac{2}{3}$ of the cost of a novel.
8. Initial ratio

Number of red marbles: Number of blue marbles
7 : 9

Ratio in the end
Number of red marbles: Number of blue marbles

2	$:$	3
6	$:$	9

1 unit $=5$
9 units $=5 \times 9$

$$
=45
$$

There were 45 blue marbles in the box.
9. $\frac{40}{60} \times 100 \%=66 \frac{1}{3} \%$
$100 \%-66 \frac{1}{3} \%=33 \frac{1}{3} \%$
$33 \frac{1}{3} \% \rightarrow \$ 2.50$
$100 \% \rightarrow\left(\$ 2.50 \div 33 \frac{1}{3}\right) \times 100=\$ 7.50$
Meiling had $\$ 7.50$ at first.
10. (a) The cost of the armchair was $\$(339-5 x)$.
(b) $339-5 x=339-5 \times 8$

$$
\begin{aligned}
& =339-40 \\
& =299
\end{aligned}
$$

$299 \times 5=1495$
5 armchairs cost $\$ 1495$.
11. (a) $50 y+4 y \times 15=50 y+60 y$

$$
=110 y
$$

The total capacity of 5 beakers and 15 bottles is 110 yml .
(b) Capacity of beaker $=10 \times 60$

$$
=600 \mathrm{ml}
$$

Capacity of bottle $=4 \times 60$

$$
=240 \mathrm{ml}
$$

Number of bottles he can fill $=600 \div 240$

$$
=2 \frac{1}{2}
$$

The most number of bottles he can fill is 2 .

12. After giving away

Chocolate

Banana
Before
Chocolate
Banana

1 unit $=60 \div 15$

$$
=4
$$

2 units $=4 \times 2$

$$
=8
$$

$8+12=20$
She had 20 banana muffins in the end.
13. Before

Xinyi

Kate

Kate
After

1 unit = 27
11 units $=27 \times 11$

$$
=297
$$

The three girls had 297 stickers altogether.
14. Number of people who attended on each day
$=360 \div 3 \times 8$
$=960$
Number of children who attended on Saturday
$=960 \div 5 \times 2$
$=384$
384 children attended the performance on Saturday.
16. Pens

Erasers

$20 \% \rightarrow 3$
$100 \% \rightarrow \frac{3}{20} \times 100=15$

15 erasers cost as much as 12 pens.
$12 \times \$ 0.30=\$ 3.60$
3 erasers cost \$3.60.
$\$ 3.60 \div 3=\$ 1.20$
$\$ 1.20+\$ 0.30=\$ 1.50$
$\$ 1.50 \times 12+\$ 1.20 \times 3=\$ 21.60$
Raju spent $\$ 21.60$ altogether.
17. For every 20 -cent coins, there were three 50 -cent coins.
Value of coins in each group $=\$ 0.20+\$ 1.50$

$$
=\$ 1.70
$$

Number of groups $=\$ 10.20 \div \$ 1.70$

$$
=6
$$

$6 \times 2=12$
There were 12 more 50 -cent coins than 20 -cent coins.
18. (a) $\angle E C D=90^{\circ}-60^{\circ}$

$$
=30^{\circ}
$$

Since $A B C D$ is a square and $B C E$ is an equilateral triangle,

$$
C E=C D
$$

$$
\begin{aligned}
\angle C D E & =\left(180^{\circ}-30^{\circ}\right) \div 2 \\
& =75^{\circ}
\end{aligned}
$$

(b) $\angle D E C=\angle A E B=75^{\circ}$
$\angle A E D=360^{\circ}-75^{\circ}-60^{\circ}-75^{\circ}$
$=150^{\circ}$
15. (a) $\angle \mathrm{FCD}=180^{\circ}-100^{\circ}$

$$
=80^{\circ}
$$

$$
\angle F C B=180^{\circ}-80^{\circ}
$$

$$
=100^{\circ}
$$

$$
\angle F B C=\left(180^{\circ}-100^{\circ}\right) \div 2
$$

$$
=40^{\circ}
$$

$$
\angle D E F=180^{\circ}-100^{\circ}-40^{\circ}
$$

$$
=40^{\circ}
$$

(b) $\angle B F C=40^{\circ}$

$$
\begin{aligned}
\angle \mathrm{AFB} & =180^{\circ}-40^{\circ} \\
& =140^{\circ} \\
\angle \mathrm{BAF} & =\left(180^{\circ}-140^{\circ}\right) \div 2 \\
& =20^{\circ}
\end{aligned}
$$

CIRCLES

CHAPTER

Related Resources
NSPM Textbook 6 (P118-144)
NSPM Workbook 6B (P1 - 30)
Materials
Paper cups, coins, paper plates, markers, paper cut-outs of circles, semicircle and quarter circles, scissors, strings, rulers, $1-\mathrm{cm}$ square grid paper, glue

Lesson
Lesson 1 Parts of a Circle
Lesson 2 Area of a Circle
Lesson 3 Area and Perimeter of Composite Figures
Problem Solving, Maths Journal and Pupil Review

INTRODUCTION

Pupils have previously learnt the shapes of circle, semicircle and quarter circle. In Grade Three, they were taught to find the area and perimeter of squares and rectangles and in Grade Five, the area of triangles. In this chapter, they will learn more about the parts of a circle such as circumference, diameter and radius, and to find its area. Pupils will also learn how to find the area and perimeter of semicircles and quarter circles as well as composite figures, which are made up of these shapes and other familiar shapes.

LESSON 1

 PARTS OF A CIRCLE
LEARNING OBJECTIVES

1. Describe the different parts of a circle: centre, circumference, diameter, radius.
2. Find the circumference of a circle and the perimeter of a semicircle and a quarter circle.

Textbook 6 P1 18

Textbook 6 P1 19

Draw another line from the centre O to the circumference of the circle.

OE is a radius of the circle.
Any line drawn from the centre to the circumference of the circle is a radius of the circle.
OE and OB are radii of the circle.

Compare the lengths of the diameters AB and CD to the lengths of the radii OE and OB. What do you notice?

In any circle, the diameter is twice the length of the radius. Diameter $=2 \times$ Radius
Radius $=$ Diameter $\div 2$
Guide pupils to identify and name a radius of the circle cut-out. Let them know that radius is the singular form while radii is the plural form. Get them to draw more radii and to compare their lengths with the lengths of the diameters measured previously. Ask:

- Is the distance from the centre to any part of the circumference always the same? Are all radii equal in length?
- How many radii can be drawn on a circle?
- What can you say about the length of a radius compared to the diameter?

Textbook 6 P121
5. The four circles shown are drawn to scale and their diameters are given. Measure the circumference of each circle using a string.

Copy and complete the table.

Circle	Diameter	Circumference	Circumference Diameter (correct to 1 decimal place)
A	3 cm	9.4 cm	3.1
B	4 cm	12.5 cm	3.1
C	5 cm	15.7 cm	3.1
D	6 cm	18.8 cm	3.1

What do you notice?

OXFORD
CIRCLES 122

Let's Learn 3 tests the understanding of pupils about the parts of a circle. Get pupils to answer the questions and provide explanations.

For Let's Learn 4, pupils should not directly measure the length from the book as the diagrams are not drawn to scale. Guide pupils to conclude that the longer the diameter or radius of a circle, the bigger the circle.

In Let's Learn 5, the circles are drawn to scale.
Get pupils to work in pairs to measure the circumference. Allow them to use a calculator to find the value of Circumference \div Diameter.

Textbook 6 P123

8. Find the circumference of each circle. (Take $\pi=3.14$) (a) diameter $=20 \mathrm{~cm} \quad 62.8 \mathrm{~cm}$
(b) radius $=15 \mathrm{~m} 94.2 \mathrm{~m}$
9. Find the circumference of each circle. (Take $\pi=\frac{22}{7}$) (a) radius $=7 \mathrm{~m} 44 \mathrm{~m}$
(b) diameter $=28 \mathrm{~cm} 88 \mathrm{~cm}$
10. The diameter of the Singapore Flyer is 150 m . Find its circumference. (Take $\pi=3.14$)
Hin Circumference $=\pi \times 150$
$=471 \mathrm{~m}$

11. Find the circumference of a circular clock with radius 12.3 cm .Give your answer correct to 2 decimal places. (Take $\pi=3.14$)

Circumference $=\pi \times 2 \times 12.3$
$=77.24 \mathrm{~cm}$ (to 2 decimal places)

Pupils should observe that they got a constant value of 3.1 (correct to 1 d.p.). Introduce the symbol π and share with pupils that this is a Greek letter derived from the first letter of the Greek word perimetros, which means circumference. This could help pupils remember how π is related to the circumference of a circle.
Get pupils to press the π key on their calculators and highlight to them that 3.14 or $\frac{22}{7}$ is an estimation of this value. Guide pupils to see how the formula for finding circumference can be derived.

For Let's Learn 7 to 11, allow pupils to familiarise themselves with applying the formula to find the circumference of a circle using the different estimations of π. Go through with pupils what it means to leave their answers in terms of π.
Semicircles and quarter circles
12. Find the perimeter of a semicircle with diameter 4 cm . (Take $\pi=3.14$)

Perimeter of the semicircle $=$ diameter + length of arc

$$
\begin{aligned}
& =4+\left(\frac{1}{2} \times \pi \times 4\right) \\
& =4+\left(\frac{1}{2} \times 3.14 \times 4\right) \\
& =10.28 \mathrm{~cm}
\end{aligned}
$$

13. A circle with radius 21 cm is divided into 4 identical quarter circles. What is the perimeter of one quarter circle? (Take $\pi=\frac{22}{7}$)
Perimeter of one quarter circle
$=$ radius + radius + length of arc
$=21+21+\left(\frac{1}{4} \times \pi \times 2 \times 21\right)$
$=21+21+\left(\frac{1}{4} \times \frac{22}{7} \times 2 \times 21\right)$
$=42+33$
$=75 \mathrm{~cm}$

14. Find the perimeter of each figure. Give your answers correct to 2 decimal places.
(a) A quarter circle of radius 4.5 m 16.07 m
(b) A semicircle of radius $3.8 \mathrm{~cm} \quad 19.54 \mathrm{~cm}$

125 CHAPTER
OXFORD

Textbook 6 P125
15. The figure shows three-quarter of a circle. Find its perimeter. (Take $\pi=\frac{22}{7}$)

Perimeter of the figure $=7+7+$ length of arc

$$
\begin{aligned}
& =14+\left(\frac{3}{4} \times \pi \times 2 \times 7\right) \\
& =14+\left(\frac{3}{4} \times \frac{22}{7} \times 2 \times 7\right) \\
& =47 \mathrm{~cm}
\end{aligned}
$$

16. The shaded figure is made up of 4 identical quarter circles. Find the perimeter of the figure. (Take $\pi=3.14$)

Method 1
Perimeter of the figure $=4 \times$ length of each arc

$$
\begin{aligned}
& =4 \times\left(\frac{1}{4} \times \pi \times 2 \times 5\right) \\
& =10 \pi \\
& =31.4 \mathrm{~cm}
\end{aligned}
$$

Method 2

Perimeter of the figure = Circumference of the circle
$=\pi \times 10$
$=31.4 \mathrm{~cm}$

OXFORD

Use Let's Learn 12 to illustrate how to find the perimeter of a semicircle. Get pupils to fold their circle cut-outs in half and to trace out the perimeter of this semicircle. Emphasise to pupils that they must include the diameter, and not just take half of the circumference.

For Let's Learn 13, get pupils to fold their semicircle into half. Highlight to them that the perimeter of a quarter circle is made up of two radii and an arc, which is a quarter of the circumference of a circle.

In Let's Learn 14, the value of π is not given. Explain to pupils in such situations, they can use the calculator value and round off their answers to the required number of decimal places.

For Let's Learn 15, pupils should be able to cancel out the common factors to calculate the length of the arc. Get a pair to illustrate on the whiteboard or visualiser how they can obtain the answer.

For Let's Learn 16, show the figure on a visualiser. Ask the class how many arcs make up the perimeter of the figure. Guide pupils to see that the 4 arcs are quarter circles with the same radius. Some pupils might be able to visualise that these 4 arcs make up the circumference of a circle. Allow pupils to work in pairs and use two methods to find the answer.

Textbook 6 P127

Get pupils to work in pairs and complete the activity. When all pairs have completed the activity, get them to think of real-life examples where the distance a circle travels can be applied. For instance, ask pupils to compare two bicycles, one with bigger wheels than another. They should be able to conclude that when travelling at the same speed, the bicycle with bigger wheels would cover a greater distance.

4. The figure shows 2 identical quarter circles. Find the perimeter of the shaded part. (Take $\pi=3.14$)
30.84 cm

5. The figure shows a circle inside a square. Find the perimeter of the shaded part. (Take $\pi=3.14$)
32.13 cm

6. A wire is bent to form the following shape that shows two identical semicircles and a quarter circle. Find the length of the wire. (Take $\pi=\frac{22}{7}$)

66 cm

7. A bicycle wheel has a diameter of 62 cm . It rolls along and makes 4 complete turns. What is the distance it has travelled? (Take $\pi=3.14$)

129

Textbook 6 P129

Answers Worksheet 1 (Workbook 6B P1 - 8)

1. (a) $P Q, R S$
(b) OP, OQ, OR, OS, OV
2. (a) $3.14 \times 4=12.56 \mathrm{~cm}$
(b) $2 \times 3.14 \times 15=94.2 \mathrm{~cm}$
3. (a) $2 \times \frac{22}{7} \times 21=132 \mathrm{~cm}$
(b) $\frac{22}{7} \times 49=154 \mathrm{~cm}$
4. (a) $\left(\frac{1}{2} \times 3.14 \times 6\right)+6=15.42 \mathrm{~cm}$
(b) $\left(\frac{1}{2} \times 3.14 \times 7.5\right)+7.5=19.28 \mathrm{~cm}$
(c) $\left(\frac{1}{2} \times 2 \times \frac{22}{7} \times 12\right)+24=61.71 \mathrm{~cm}$
5. (a) $\left(\frac{1}{4} \times 2 \times 3.14 \times 100\right)+100+100=357 \mathrm{~cm}$
(b) $\left(\frac{1}{4} \times 2 \times \frac{22}{7} \times 35\right)+35+35=125 \mathrm{~cm}$
(c) $\left(\frac{1}{4} \times 2 \times \frac{22}{7} \times 17.5\right)+17.5+17.5$ $=62.5 \mathrm{~cm}$

For questions 4 to 6 , some guidance may be required.
Ask:

- Can you describe the parts that make up the unknown perimeter of the given shape?
- Can you identify any hidden length, diameter or radius required to make the calculations?
- What are the steps that you need to take? What method would you use?

Independent seatwork

Select some examples of word problems from Worksheet 1 (Workbook 6B P1-8) for pupils to get more practice before assigning them to complete the rest as independent seatwork.
6. $\left(\frac{1}{4} \times 2 \times \frac{22}{7} \times 7\right)+\left(\frac{22}{7} \times 7\right)=33 \mathrm{~cm}$
7. $(3.14 \times 10)+\left(\frac{1}{2} \times 3.14 \times 20\right)=62.8 \mathrm{~cm}$
8. $\left(\frac{1}{4} \times 2 \times \frac{22}{7} \times 35\right)+\left(\frac{1}{2} \times \frac{22}{7} \times 35\right)+35$
$=145 \mathrm{~cm}$
9. $\left(\frac{1}{2} \times 3.14 \times 10\right)+\left(\frac{1}{4} \times 2 \times 3.14 \times 10\right)$ $=31.4 \mathrm{~cm}$
10. $\left(\frac{1}{2} \times 3.14 \times 24\right)+12=49.68 \mathrm{~cm}$
11. $2 \times \pi \times 16=100.5 \mathrm{~cm}$
12. (a) $\frac{22}{7} \times 14=44 \mathrm{~cm}$
$44 \times 10=440 \mathrm{~cm}$
The wheel moves 440 cm in 10 complete turns.
(b) $88 \div 44=2$

The wheel will make 2 complete turns.

LESSON AREA OF A CIRCLE

 2
LEARNING OBJECTIVES

1. Find the area of a circle.
2. Find the area of a composite figure made up of square(s), rectangles(s), triangles(s), semicircles(s) and quarter circles(s).

Textbook 6 P130

3. Find the area of each circle with centre O.
(a)

$$
\begin{aligned}
& (\text { Take } \pi=3.14) \\
& \text { Area }
\end{aligned}=\pi \times 10 \times 109 .
$$

(b)

4. Find the area of a movie DVD that has a diameter of 12 cm . (Take $\pi=3.14$)

Area $=\pi \times 6 \times 6$
$=113.04 \mathrm{~cm}^{2}$
5.

Find the area of a pizza with radius 13 cm . (Take $\pi=3.14$)
Area $=\pi \times 13 \times 13$
$=530.66 \mathrm{~cm}^{2}$

For Let's Learn 2, a group activity can be conducted. Hint to pupils that they can use a formula to find the area of a circle.

Allow pupils to work in groups of 2 to 4. Provide each group with a circle cut-out with 24 equal sectors marked out, a pair of scissors and some glue. Give clear instructions on how to cut and rearrange the pieces to form a rectangle. After pupils have formed the rectangle, guide them to see how the formula can be derived. Ask:

- Can you identify the length and breadth of the rectangle formed?
- How are these related to the radius and circumference of the original circle?

Let's Learn 3 to 5 offer opportunities for pupils to apply the formula to find the area of a circle. Remind pupils that the formula uses the radius and not the diameter.

Textbook 6 P133
6.

A pie has a diameter of 14 cm . Find the area of half of the pie. (Take $\pi=\frac{22}{7}$)

Area of the semicircle $=\frac{1}{2} \times$ area of the circle
$=\frac{1}{2} \times \pi \times 7 \times 7$
$=77 \mathrm{~cm}^{2}$
7. What is the area of a quarter circle with radius 12 cm ? (Take $\pi=3.14$)

Eiin

Area of the quarter circle $=\frac{1}{4} \times$ area of the circle
$=\frac{1}{4} \times \pi \times 12 \times 12$
$=113.04 \mathrm{~cm}^{2}$
8. Find the area of each figure. Give your answers correct to 2 decimal places. (Take $\pi=3.14$)
(a) A quarter circle of radius $31 \mathrm{~cm} 754.39 \mathrm{~cm}^{2}$
(b) A semicircle of diameter $44 \mathrm{~cm} 759.88 \mathrm{~cm}^{2}$

This activity allows pupils to draw connections between the area of a circle (of radius r) and the area of a square that fits outside of it as well as inside of it. Guide pupils to see that the area of the circle would be less than $4 r^{2}$ and more than $2 r^{2}$, thus reinforcing the formula of πr^{2}.

Let's Learn 6 to 8 require pupils to apply the formula to semicircles and quarter circles. Ensure that pupils have no misconceptions of area.

Textbook 6 P135

Let's Learn 9 and 10 introduce composite figures.
Guide pupils through the problem-solving process.
i) Understanding the question:

- Can you identify the familiar shapes that make up this figure?
- Can you identify the hidden length, diameter or radius that is required to find the unknown area?
ii) Planning:
- What are the steps you need to take?
- What method would you use?
- Can you visualise a way to move the parts to form another figure of the same area?
iii) Checking:
- Is your answer reasonable?
- Can you estimate to check it?

PRACTICE
Pupils should be able to do questions 1 to 3 on their own. Get them to check their answers in pairs.
2. A figure is made up of 3 identical quarter circles. Find its area. (Take $\pi=\frac{22}{7}$) $115.5 \mathrm{~cm}^{2}$
3. The figure is made up of 4 identical quarter circles. Find its area. (Take $\pi=3.14$)
$314 \mathrm{~cm}^{2}$

4. This figure is formed using 2 quarter circles. Find the area of the shaded part. (Take $\pi=3.14$)
$125.6 \mathrm{~cm}^{2}$

5. The figure shows a circle and a semicircle. Find the area of the shaded part. (Take $\pi=3.14$)
$78.5 \mathrm{~cm}^{2}$

137

Textbook 6 P137

Answers Worksheet 2 (Workbook 6B P9 - 14)

1. (a) $3.14 \times 10 \times 10=314 \mathrm{~cm}^{2}$
(b) $\frac{22}{7} \times 7 \times 7=154 \mathrm{~cm}^{2}$
(c) $\frac{1}{2} \times 3.14 \times 2 \times 2=6.28 \mathrm{~cm}^{2}$
(d) $\frac{1}{2} \times \frac{22}{7} \times 17.5 \times 17.5=481.25 \mathrm{~cm}^{2}$
(e) $\frac{1}{4} \times \frac{22}{7} \times 21 \times 21=346.5 \mathrm{~cm}^{2}$
(f) $\frac{1}{4} \times 3.14 \times 40 \times 40=1256 \mathrm{~cm}^{2}$
2. $\left(\frac{22}{7} \times 7 \times 7\right)+\left(\frac{1}{4} \times \frac{22}{7} \times 7 \times 7\right)=192.5 \mathrm{~cm}^{2}$
3. $\frac{1}{2} \times 3.14 \times 6 \times 6=56.52 \mathrm{~cm}^{2}$
$\frac{1}{2} \times 3.14 \times 2 \times 2=6.28 \mathrm{~cm}^{2}$
$\frac{1}{2} \times 3.14 \times 4 \times 4=25.12 \mathrm{~cm}^{2}$
$56.52-6.28-25.12=25.12 \mathrm{~cm}^{2}$

Allow pupils to work in pairs for questions 4 and 5, where each pupil solves one question while explaining his steps to his partner. Partners should follow the explanations and clarify any steps if needed.

Independent seatwork

Assign pupils to complete Worksheet 2 (Workbook 6B P9-14).
4. $\frac{1}{2} \times \pi \times 6 \times 6=18 \pi \mathrm{~cm}^{2}$
$\frac{1}{2} \times \pi \times 4 \times 4=8 \pi \mathrm{~cm}^{2}$
$18 \pi-8 \pi=10 \pi \mathrm{~cm}^{2}$
5. $\pi \times 12 \times 12=144 \pi \mathrm{~cm}^{2}$
$\pi \times 9 \times 9=81 \pi \mathrm{~cm}^{2}$
$\pi \times 3 \times 3=9 \pi \mathrm{~cm}^{2}$
$144 \pi-81 \pi-9 \pi=54 \pi$ $=169.56 \mathrm{~cm}^{2}$
6. $\frac{1}{2} \times 3.14 \times 20 \times 20=628 \mathrm{~cm}^{2}$

LESSON 3
 AREA AND PERIMETER OF COMPOSITE FIGURES

LEARNING OBJECTIVE

1. Find the area and perimeter of figures made up of a variety of squares, rectangles, triangles, semicircles and quarter circles.

Textbook 6 P138
2. The figure is made up of a square, a quarter circle and an isosceles triangle. Find the perimeter and area of the figure. (Take $\pi=3.14$)

$$
\begin{aligned}
\text { Length of the arc } & =\frac{1}{4} \times 2 \times \pi \times 3 \\
& =\frac{1}{4} \times 2 \times 3.14 \times 3 \\
& =4.71 \mathrm{~cm}
\end{aligned}
$$

Perimeter of the figure $=4.71+1+4+4+1+5+5$
$=24.71 \mathrm{~cm}$
Area of the square $=4 \times 4$
$=16 \mathrm{~cm}^{2}$
Area of the triangle $=\frac{1}{2} \times 6 \times 4$
$=12 \mathrm{~cm}^{2}$
Area of the quarter circle $=\frac{1}{4} \times \pi \times 3 \times 3$
$=7.065 \mathrm{~cm}^{2}$
Area of the figure $=16+12+7.065$
$=35.065 \mathrm{~cm}^{2}$

For Let's Learn 2, guide pupils to identify the shapes that make up the figure. Allow them to perform the calculations on their own.

Textbook 6 P139
3. Meiling had a semicircle and a rectangle. She cut out one part of the rectangle and formed a figure as shown. Find the perimeter and the area of the figure. (Take $\pi=\frac{22}{7}$)

Perimeter of the figure $=44+16 \times 2+11 \times 2+6 \times 3$

$$
=116 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Area of the semicircle } & =\frac{1}{2} \times \frac{22}{7} \times 14 \times 14 \\
& =308 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of part that was cut out } & =6 \times 6 \times \quad \times \quad \text { Explain your answers. } \\
& =36 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Area of the figure }=(16 \times 28-36)+308
$$

$$
=720 \mathrm{~cm}^{2}
$$

OXFORD

For Let's Learn 3, highlight to pupils the significance of the part of the rectangle that was cut out. Ask:

- Do we include this in the area of the figure?
- Do we include these sides in the perimeter of the figure?

4. The figure shows 2 semicircles and 1 rectangle. Find the perimeter and area of the shaded part. (Take $\pi=\frac{22}{7}$)

Perimeter of the shaded part $=20+20+\pi \times 14$
$=84 \mathrm{~cm}$
Area of the shaded part = Area of rectangle - Area of circle
$=280-154$
$=126 \mathrm{~cm}^{2}$

5. The figure shows 1 small square and 4 identical circles inside a big square Find the perimeter and area of the shaded part. (Take $\pi=\frac{22}{7}$)

Radius of each circle $=28 \div 4=7 \mathrm{~cm}$
Perimeter of the shaded part = Circumference of circle

$$
\begin{aligned}
& =\frac{22}{7} \times 2 \times 7 \\
& =44 \mathrm{~cm}
\end{aligned}
$$

Area of the shaded part = Area of small square - Area of circle

$$
\begin{aligned}
& =(14 \times 14)-\left(\frac{22}{7} \times 7 \times 7\right) \\
& =42 \mathrm{~cm}^{2}
\end{aligned}
$$

141
CHAPTER 6 OXFORD

Textbook 6 P141
For Let's Learn 4, get pupils to discuss in pairs how they would approach the problem. Suggest to pupils that they can trace out the sides included in the perimeter to help with their calculations.

Let's Learn 5 may require more prompting. Ask:

- How do you find the radius of the circle?
- Do we simply subtract the area of the 4 circles from the area of the big square to find the shaded area? Why?
- What can you observe when the centres of the circles are joined together by the dotted lines to form a square?
- How do we go about finding the shaded area from here?

Pupils may need some guidance for question 3 . Hint to them that the figure can be divided diagonally into 2 , and half of the shaded part can be viewed as the top portion of a quarter circle.

Textbook 6 P143

1. Perimeter $=\left(\frac{1}{2} \times \frac{22}{7} \times 14\right)+7+7+14$

$$
=50 \mathrm{~cm}
$$

2. Area of shaded part $=\frac{1}{4} \times 3.14 \times 4 \times 4$

$$
=12.56 \mathrm{~cm}^{2}
$$

3. (a) $2 \times \frac{22}{7} \times 14=88 \mathrm{~cm}$
(b) $14 \times 14+\left(2 \times \frac{22}{7} \times 7 \times 7\right)=504 \mathrm{~cm}^{2}$
4. (a) $\left(\frac{1}{2} \times 3.14 \times 8\right)+10+6+18+6=52.56 \mathrm{~cm}$
(b) $\left(\frac{1}{2} \times 3.14 \times 4 \times 4\right)+(18 \times 6)=133.12 \mathrm{~cm}^{2}$
5. Perimeter $=\left(\frac{1}{2} \times 3.14 \times 20\right)+\left(\frac{1}{2} \times 3.14 \times 16\right)+12$

$$
=68.52 \mathrm{~cm}
$$

$$
\text { Area }=\left(\frac{1}{2} \times 3.14 \times 10 \times 10\right)+\left(\frac{1}{2} \times 3.14 \times 8 \times 8\right)+\left(\frac{1}{2} \times 16 \times 12\right)
$$

$$
=353.48 \mathrm{~cm}^{2}
$$

6. (a) $\left(\frac{1}{2} \times 3.14 \times 6\right)+\left(\frac{1}{2} \times 3.14 \times 8\right)+\left(\frac{1}{2} \times 3.14 \times 10\right)=37.68 \mathrm{~cm}$
(b) $\frac{1}{2} \times 3.14 \times 5 \times 5=39.25 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& 39.25-\left(\frac{1}{2} \times 6 \times 8\right)=15.25 \mathrm{~cm}^{2} \\
& \left(\frac{1}{2} \times 3.14 \times 3 \times 3\right)+\left(\frac{1}{2} \times 3.14 \times 4 \times 4\right)-15.25=24 \mathrm{~cm}^{2}
\end{aligned}
$$

7. $18 \times 18=324 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \frac{1}{4} \times 3.14 \times 18 \times 18=254.34 \mathrm{~cm}^{2} \\
& \frac{1}{2} \times 3.14 \times 9 \times 9=127.17 \mathrm{~cm}^{2} \\
& \frac{1}{2} \times 18 \times 18=162 \mathrm{~cm}^{2} \\
& (324-254.34)+127.17+162=358.83 \mathrm{~cm}^{2} \\
& \\
& \left.=358.8 \mathrm{~cm}^{2} \text { (to } 1 \text { decimal place }\right)
\end{aligned}
$$

8. (a) $\frac{6}{4} \times 2 \times 3.14 \times 1=9.42 \mathrm{~cm}$

$$
9.42+(6 \times 1)=15.42 \mathrm{~cm}
$$

(b) $6 \times 1=6 \mathrm{~cm}^{2}$

$$
\begin{aligned}
&(2 \times 1)-\left(\frac{1}{2} \times 3.14 \times 1 \times 1\right)=2-1.57 \\
&=0.43 \mathrm{~cm}^{2} \\
& 6+0.43=6.43 \mathrm{~cm}^{2}
\end{aligned}
$$

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIIEW

Textbook 6 P143

MIND WORKOUT

Give pupils a hint that it is possible to solve the question without a calculator and get the answer simply by calculating the area of squares.

Mind Workout
The figure shows 2 quarter circles in 7 similar squares. The area of the shaded part is $48 \mathrm{~cm}^{2}$. Find the perimeter of the shaded part, leaving your answer in terms of π.

$48 \div 3=16$
The area of one square is $16 \mathrm{~cm}^{2}$
Length of one side of a square $=\sqrt{16}$
$\left(\frac{1}{2} \times \pi \times 16\right)+(4 \times 4)=(8 \pi+16) \mathrm{cm}$
The perimeter of the shaded part is $(8 \pi+16) \mathrm{cm}$.

Similar to the Mind Workout question in the Textbook, this requires visualisation to shift the parts around, to make up 3 squares in the grid. The area of one square can then be calculated, and subsequently, the length of one square, i.e. radius of the quarter circles, can be found.

MATHS JOURNAL

This task enables pupils to review the concept of the perimeter of a square in comparison to the circumference of a circle. They can apply the appropriate formulae to find the areas of each shape and compare their sizes.

Before pupils proceed to do the SELF-CHECK self-check, review the parts of a circle, formulae to find its circumference and area, as well as the skills to apply them when solving questions involving composite figures.

The self-check can be done after pupils have completed Review 6 (Workbook 6B P21 - 30).

1. (a)

(b) $A B=$ \square $\times O B$
(c) $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
(d) Circumference of the circle $=\pi \times \mathrm{AB}$

$$
=\pi \times 2 \times \mathrm{OC}
$$

(e) Area of the circle $=\pi \times \begin{gathered}\mathrm{OA} / \mathrm{OB} \\ / \mathrm{OC}\end{gathered} \times \begin{gathered}\mathrm{OA} / \mathrm{OB} / \\ \mathrm{OC}\end{gathered}$
2. (a) Perimeter $=3.14 \times 24$

$$
=75.36 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Area } & =3.14 \times 12 \times 12 \\
& =452.16 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Perimeter $=\left(\frac{1}{2} \times 2 \times 3.14 \times 13\right)+13+13$

$$
=66.82 \mathrm{~cm}
$$

$$
\text { Area }=\frac{1}{2} \times 3.14 \times 13 \times 13
$$

$$
=265.33 \mathrm{~cm}^{2}
$$

(c) Perimeter $=\left(\frac{1}{4} \times 2 \times 3.14 \times 16\right)+16+16$

$$
=57.12 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Area } & =\frac{1}{4} \times 3.14 \times 16 \times 16 \\
& =200.96 \mathrm{~cm}^{2}
\end{aligned}
$$

3. Distance travelled $=4 \times \frac{22}{8} \times 35$

$$
=440 \mathrm{~cm}
$$

4. Area $=\frac{1}{2} \times \pi \times 8 \times 8$

$$
=32 \pi \mathrm{~cm}^{2}
$$

5. Perimeter $=(3.14 \times 42)+21+21$

$$
=173.9 \mathrm{~cm} \text { (to } 1 \text { decimal place })
$$

$$
\text { Area }=3.14 \times 21 \times 21
$$

$$
\left.=1384.7 \mathrm{~cm}^{2} \text { (to } 1 \text { decimal place }\right)
$$

6. Perimeter $=\left(\frac{3}{4} \times 2 \times 3.14 \times 30\right)+30+30$

$$
=201.3 \mathrm{~cm}
$$

Area $=\frac{3}{4} \times 3.14 \times 30 \times 30$

$$
=2119.5 \mathrm{~cm}^{2}
$$

7. (a) $\frac{1}{4} \times 2 \times 3.14 \times 8=12.56 \mathrm{~cm}$

$$
\begin{aligned}
& \frac{1}{4} \times 2 \times 3.14 \times 16=25.12 \mathrm{~cm} \\
& \text { Perimeter }=12.56+25.12+24+8+32 \\
& \\
& =101.68 \mathrm{~cm}
\end{aligned}
$$

(b) $\frac{1}{4} \times 3.14 \times 8 \times 8=50.24 \mathrm{~cm}^{2}$ $\frac{1}{4} \times 3.14 \times 16 \times 16=200.96 \mathrm{~cm}^{2}$

$$
(40 \times 16)-50.24-200.96=388.8 \mathrm{~cm}^{2}
$$

8. $\left(\frac{22}{7} \times 7 \times 7\right)-\left(2 \times \frac{22}{7} \times 3.5 \times 3.5\right)=77 \mathrm{~cm}^{2}$
9. Diameter of smaller semicircle $=10 \mathrm{~cm}$

Diameter of larger semicircle $=20 \mathrm{~cm}$
$\frac{1}{2} \times 3.14 \times 5 \times 5=39.25 \mathrm{~cm}^{2}$
$\frac{1}{2} \times 3.14 \times 10 \times 10=157 \mathrm{~cm}^{2}$
$(30 \times 20)-39.25-157=403.75 \mathrm{~cm}^{2}$
10. $\frac{1}{2} \times \frac{22}{7} \times 7 \times 7=77 \mathrm{~cm}^{2}$
$\frac{1}{2} \times 7 \times 7=24.5 \mathrm{~cm}^{2}$
$77+24.5=101.5 \mathrm{~cm}^{2}$
11. The length of the rectangle is twice its breadth.

Breadth $=10 \mathrm{~cm}$
Length $=20 \mathrm{~cm}$
Perimeter of shaded part $=\left(\frac{1}{2} \times 3.14 \times 20\right)+20$ $=51.4 \mathrm{~cm}$
Area of shaded part $=200-\left(\frac{1}{2} \times 3.14 \times 10 \times 10\right)$

$$
=43 \mathrm{~cm}^{2}
$$

12. $1232 \div(\pi \times 56) \approx 7$

It made 7 complete turns.

SPEED

CHAPTER

Related Resources
NSPM Textbook 6 (P145-165)
NSPM Workbook 6B (P31-50)

Materials
Stopwatch, measuring tape

Lesson
Lesson 1 Speed, Distance and Time
Lesson 2 Average Speed
Lesson 3 Solving Word Problems
Problem Solving, Maths Journal and
Pupil Review

INTRODUCTION

In this chapter, pupils are introduced to the concept of speed. They will learn how the three variables of speed, distance and time are related. In Grade Five, pupils were taught the concept of average. It is important that pupils understand how to find average speed correctly so that they can apply this information in real-world contexts.

SPEED, dISTANCE AND TIME

LEARNING OBJECTIVES

1. Define speed.
2. Relate distance, time and speed with a formula.
3. Write speed in different units such as $\mathrm{km} / \mathrm{hr}, \mathrm{m} / \mathrm{min}$, m / s and cm / s.

Textbook 6 P145

Use the chapter opener to discuss examples of speed in real life. Ask pupils if they have observed a speed limit sign on roads and get them to explain what the sign ' 70 ' means. Subsequently, get pupils to think whether Mr Lim exceeded the speed limit if the speed limit was $70 \mathrm{~km} / \mathrm{hr}$.
LET'S LEARN

1. Mr Lim drove a distance of 60 km in 1 hour
We say that he drove at a speed of 60 kilometres per hour The speed can be written as $60 \mathrm{~km} / \mathrm{hr}$

2. The table shows the distance four animals can cover in 1 hour. Find the speed of each animal.

Animal	Distance covered	Speed
Horse	45 km	$45 \mathrm{~km} / \mathrm{hr}$
Cheetah	110 km	$110 \mathrm{~km} / \mathrm{hr}$
Ostrich	60 km	$60 \mathrm{~km} / \mathrm{hr}$
Kangaroo	25 km	$25 \mathrm{~km} / \mathrm{hr}$

Arrange the animals in order, from the fastest to the slowest. Explain.
Cheetah . Ostrich . Horse Kangaroo
3. A bus took 2 hours to travel 140 km . Find the speed of the bus.
$140 \div 2=70$
The bus travelled 70 km in 1 hour. So, the speed of the bus was $70 \mathrm{~km} / \mathrm{hr}$. time, we divide to find the distance travelled in 1 hour.
OXFORD

Textbook 6 P146
Explain to pupils that "per hour" means "in 1 hour" and that 60 km per hour can be written as $60 \mathrm{~km} / \mathrm{hr}$. Go through the definition of speed, and state that in this case, the distance travelled is measured in km while the unit time is in hr.

For Let's Learn 2, guide pupils to see that since the distance given is what each animal travels in one hour, this is the per hour distance, which is equivalent to the speed. Get pupils to explain how they arranged the animals.

In Let's Learn 3, the distance given was covered in 2 hr . Ensure that pupils are clear with the concept of speed, whereby they need to find the distance travelled in 1 hr .

Let's Learn 4 uses different units, but highlight to pupils that the concept is still the same. Go through the speed formula and point out that the above examples all tally with this formula.

For Let's Learn 5, pupils can either use the unitary method or the formula to arrive at the answer. Guide pupils to see that both $\mathrm{km} / \mathrm{hr}$ and m / s are units of speed, but km/hr means how many kilometres are travelled in 1 hour while m/s means how many metres are travelled in 1 second.

Textbook 6 P1 48
8. Siti walks at a speed of $80 \mathrm{~m} / \mathrm{min}$. How far can she walk in 15 minutes? Method 1
$1 \mathrm{~min} \rightarrow 80 \mathrm{~m}$
$15 \mathrm{~min} \rightarrow 80 \times 15=1200 \mathrm{~m}$
She can walk 1200 m in 15 minutes.
Method 2
Distance $=$ Speed \times Time
$=80 \times 15$
$=1200 \mathrm{~m}$
She can walk 1200 m in 15 minutes.

A train is travelling at a speed of $75 \mathrm{~km} / \mathrm{hr}$. How long does it take to travel 675 km ? Method 1
$75 \mathrm{~km} \rightarrow 1 \mathrm{~h}$
$1 \mathrm{~km} \rightarrow \frac{1}{75} \mathrm{hr}$
$675 \mathrm{~km} \rightarrow \frac{1}{75} \times 675=\frac{6}{75}$

$$
=2 \mathrm{hr}
$$

The train takes 2 hr to travel 675 km

Method 2
Distance $=675 \mathrm{~km}$
Speed $=75 \mathrm{~km} / \mathrm{hr}$
Time $=$ Distance \div Speed
$=2 \mathrm{hr}$
The train takes 2 hr to travel 675 km .

Textbook 6 P1 49

For Let's Learn 6, the speed and time have been given. Pupils can be shown the unitary method of obtaining the answer first as the unitary method is familiar to them. From the unitary method, guide pupils to see that 800 $\mathrm{km} / \mathrm{hr}$ refers to the speed and 4 hours represents the time. Thus, what they have done was to multiply the speed by the time to obtain the distance. This leads to the formula: distance $=$ speed \times time $($ method 2$)$.

Let's Learn 7 is similar to example 6. Get pupils to fill in the blanks on their own to test their understanding.

In Let's Learn 8, another unit is introduced. Get pupils to explain the difference between m / s and $\mathrm{m} / \mathrm{min}$.

In Let's Learn 9, the speed and distance are given. Go through method 1 first to help pupils visualise that time taken can be obtained from the formula: distance \div speed.
10. An athlete runs a $800-\mathrm{m}$ race at a constant speed of $400 \mathrm{~m} / \mathrm{min}$. How much time does he take to complete the race?

Method 1
$400 \mathrm{~m} \rightarrow 1 \mathrm{~min}$
$800 \mathrm{~m} \rightarrow 800 \div 400=2 \mathrm{~min}$

He takes 2 min to complete the race.
Method 2
Time $=\frac{\text { Distance }}{\text { Speed }}$
$=\frac{800}{400}$
$=2 \mathrm{~min}$

He takes 2 min to complete the race.
11. A snail is crawling at a speed of $1.3 \mathrm{~cm} / \mathrm{s}$. How long will it take to crawla distance of 26 cm ?

Method 1
$1.3 \mathrm{~cm} \rightarrow 1 \mathrm{~s}$
$26 \mathrm{~cm} \rightarrow 26 \div 1.3=20 \mathrm{~s}$
It will take 20 s.
Method 2
Time $=\frac{\text { Distance }}{\text { Sped }}$
$=$ Speed
It will take 20 s .

OXFORD

Textbook 6 P150
12. A car travels at a speed of $80 \mathrm{~km} / \mathrm{hr}$. How many minutes will it take to travel a distance of 12 km ?

Method 1
$80 \mathrm{~km} \rightarrow 1 \mathrm{hr}$
$1 \mathrm{~km} \rightarrow \frac{1}{80} \mathrm{hr}$
$12 \mathrm{~km} \rightarrow \frac{1}{80} \times 12=\frac{3}{20} \mathrm{hr}$
$=9 \mathrm{~min}$

It will take 9 min

Method 2
Time $=\frac{\text { Distance }}{\text { Speed }}$

$$
\begin{aligned}
& =\frac{12}{80} \mathrm{hr} \\
& =\frac{3}{20} \mathrm{hr} \\
& =9 \mathrm{~min}
\end{aligned}
$$

It will take 9 min .

For Let's Learn 10 and 11, allow pupils to fill in the blanks on their own to ensure that they are able to grasp the concept of finding the time taken when given distance and speed.

Get pupils to explain how the triangle in the speech bubble shows the relationship between the three variables.

For Let's Learn 12, highlight to pupils that they are required to express the time taken in minutes. Since the speed is given in per unit hour, remind pupils that they will need to convert the answer to minutes.

Textbook 6 P152

Answers Worksheet 1 (Workbook 6B P31-34)

1. $90 \div 2=45 \mathrm{~km} / \mathrm{hr}$
2. $100 \div 20=5 \mathrm{~m} / \mathrm{s}$
3. $50 \times 15=750 \mathrm{~m}$
4. $40 \times 14=560 \mathrm{~km}$
5. $9000 \div 750=12 \mathrm{~min}$
6. $385 \div 70=5 \frac{1}{2} \mathrm{hr}$
7. $1.6 \times 30=48 \mathrm{~km}$
8. $2400 \div 150=16 \mathrm{~min}$
9. $20 \div \frac{1}{4}=80 \mathrm{~km} / \mathrm{hr}$

This activity should be carried out in an open area. Remind pupils of the formula they need to use as well as to pay attention to the units of measurement, i.e. m and s .

PRACTICE

Allow pupils to work in pairs on the practice questions. Give them sufficient time to complete them before going through.

Independent seatwork

Assign pupils to complete Worksheet 1 (P31-34).
10. Distance between Raju's home and the beach $=200 \times 20$
$=4000 \mathrm{~m}$
Distance between Nora's home and the beach
$=160 \times 36$
$=5760 \mathrm{~m}$
Distance between Xinyi's house and the beach
$=1800 \times 25$
$=4500 \mathrm{~m}$
Nora's home is the furthest from the beach.

AVERAGE SPEED

LEARNING OBJECTIVES

1. Define average speed.
2. Find average speed by dividing total distance by total time.

Textbook 6 P154
4. A radio controlled helicopter flies at a speed of $40 \mathrm{~m} / \mathrm{min}$ for $5 \frac{1}{2}$ minutes.

- It then flies another 270 m . The total fight time of the helicopter is 11 minutes. Find the average speed of the radio controlled helicopter in $\mathrm{m} / \mathrm{min}$, giving your answer to 1 decimal place.

Distance helicopter files during first part of journey $=40 \times 5 \frac{1}{2}$

$$
=220 \mathrm{~m}
$$

Total distance $=220+270$
$=490 \mathrm{~m}$
Average speed $=490 \div 11$
$=44.5 \mathrm{~m} / \mathrm{min}$ (to 1 decimal place)
The average speed of the helicopter is $44.5 \mathrm{~m} / \mathrm{min}$.

For Let's Learn 2, allow pupils to fill in the blanks on their own and ensure that they are able to identify the correct values to use in their calculations.

In Let's Learn 3, pupils are not given the time for the second part of the journey explicitly. Remind pupils that since the formula requires the total time taken, they will first have to find the time taken for the second part of the journey. Get pupils to make use of the diagram to see what information they can extract to perform their calculations.

Similarly for Let's Learn 4, the diagram would be helpful for pupils to consolidate the given information. In this case, they will first have to find the distance of the first part of the journey.
distance of 30 km . Her speed for the first 12 km was $24 \mathrm{~km} / \mathrm{hr}$ and she took 50 minutes to complete the remaining distance. What was her average speed for the whole journey?

$$
=22.5 \mathrm{~km} / \mathrm{hr}
$$

The skater's average speed for the whole journey was $22.5 \mathrm{~km} / \mathrm{hr}$.

1. A bus travelled at a speed of $80 \mathrm{~km} / \mathrm{hr}$ for 1 hour. It then travelled at a speed of $90 \mathrm{~km} / \mathrm{hr}$ for the next 2 hours. Find the average speed of the bus for the whole journey. Express your answer in $\mathrm{km} / \mathrm{hr} .86 \frac{2}{3} \mathrm{~km} / \mathrm{h}$
2. Farhan ran a distance of 2400 m . He took 4 minutes to run the first 800 m and he ran the remaining distance at a speed of $160 \mathrm{~m} / \mathrm{min}$. Find Farhan's average speed for the whole distance in $\mathrm{m} / \mathrm{min}$, giving your answer to the nearest whole number. $171 \mathrm{~m} / \mathrm{min}$
3. A bullet train took 3 hours to travel from one city to another city. After it

- travelled a distance of 380 km , it took $1 \frac{2}{3}$ hours to travel the remaining
distance at a speed of $300 \mathrm{~km} / \mathrm{hr}$. What was the average speed of the bullet train for the whole journey? Give your answer to the nearest whole number in $\mathrm{km} / \mathrm{hr}$. $293 \mathrm{~km} / \mathrm{h}$

Complete Workbook 6B, Worksheet 2• Pages 35-38

OXFORD

For Let's Learn 5, remind pupils to pay attention to the units of measurement. If average speed is to be found in km/hr, the times they calculate have to be expressed in hr and not min.

PRACTICE

Guide pupils through the practice questions and ensure that they apply the formula correctly.

Independent seatwork

Assign pupils to complete Worksheet 2 (Workbook 6B P35-38).

Answers Worksheet 2 (Workbook 6B P35-38)

1. Total distance $=50+50$

$$
=100 \mathrm{~m}
$$

Total time taken $=58+62$

$$
=120 \mathrm{~s}
$$

Average speed $=\frac{100}{120} \mathrm{~m} / \mathrm{s}$

$$
=\frac{5}{6} \mathrm{~m} / \mathrm{s}
$$

2. Time taken for second part of journey $=1500 \div 750$

$$
=2 \mathrm{hr}
$$

Total time taken $=3+2$

$$
=5 \mathrm{hr}
$$

Average speed $=3900 \div 5$

$$
=780 \mathrm{~km} / \mathrm{hr}
$$

3. Time taken $=3 \mathrm{hr}$

Average speed $=255 \div 3$

$$
=85 \mathrm{~km} / \mathrm{hr}
$$

4. Total time taken $=\frac{1}{2}+\frac{3}{4}$

$$
\begin{aligned}
& =1 \frac{1}{4} \mathrm{hr} \\
\text { Average speed } & =85 \div 1 \frac{1}{4} \\
& =68 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

5. Time taken $=14 \mathrm{hr}$

Total distance $=245+665$

$$
=910 \mathrm{~km}
$$

Average speed $=910 \div 14$

$$
=65 \mathrm{~km} / \mathrm{hr}
$$

6. Total time taken $=5 \frac{2}{3} \mathrm{hr}$

Average speed $=360 \div 5 \frac{2}{3}$
$=63.5 \mathrm{~km} / \mathrm{hr}$ (to 1 decimal place)
7. Time taken for first $1000 \mathrm{~m}=1000 \div 125$

$$
=8 \mathrm{~min}
$$

Total time taken $=8+27$

$$
=35 \mathrm{~min}
$$

Average speed $=3200 \div 35$

$$
\text { = } 91.43 \mathrm{~m} / \mathrm{min} \text { (to } 2 \text { decimal places) }
$$

8. Distance covered for the first part $=5 \times \frac{3}{4}$

$$
\begin{aligned}
& =3 \frac{3}{4} \mathrm{~km} \\
& =3.75 \mathrm{~km}
\end{aligned}
$$

Total distance covered $=3.75+6.75$

$$
=10.5 \mathrm{~km}
$$

Average speed $=10.5 \div 4$

$$
=2.625 \mathrm{~km} / \mathrm{hr}
$$

SOLVING WORD PROBLEMS

3

LEARNING OBJECTIVE

1. Solve up to 3 -step word problems involving speed and average speed.

Textbook 6 P157

Get pupils to draw a diagram to illustrate the given information. Point out to pupils that a diagram would be useful to pick out the information given in a word problem.

LET'S LEARN

From the diagram, pupils should be able to see that they can find the average speed from Singapore to Taipei. They will then be able to calculate the average speed of the return journey followed by the time taken.

Textbook 6 P158

In Let's Learn 2, there is an alternative method that can be used. Guide pupils to see that in 1 second, the girls would cover a distance of 3.5 m . Hence, in 5 seconds, they would cover 17.5 m . The distance apart can be found by subtracting 17.5 m from 70 m .

For Let's Learn 3, get pupils to ensure all the information in the question is represented in the diagram. Remind pupils that the question asks for the time at which Bina arrived in school, and not simply the time taken.

Textbook 6 P1 60
5. Mr Tan and Mr Ali drove from Town X to Town Y . Mr Tan left Town X at 7 a.m. Town Y at the same time as Mr All. Mr Alr drove at an average speed of $90 \mathrm{~km} / \mathrm{hr}$ for the whole journey. Find Mr Tan's average speed for the journey.
Time taken by Mr Ali $=2 \mathrm{hr}$
Time taken by Mr Tan $=2 \frac{1}{2} \mathrm{hr}$

$$
30 \text { a.m. }
$$

$90 \mathrm{~km} / \mathrm{hr}$

Distance travelled by Mr Ali $=90 \times 2=180 \mathrm{~km}$ Mr Tan's average speed $=180 \div 2 \frac{1}{2}=72 \mathrm{~km} / \mathrm{hr}$ Mr Tan's average speed was $72 \mathrm{~km} / \mathrm{hr}$.

Bala and Sam took part in a 400-m race. During the race, Bala ran at a constant speed of $6 \mathrm{~m} / \mathrm{s}$ and Sam ran at a constant speed of $2.5 \mathrm{~m} / \mathrm{s}$. When Bala completed the race, how far away from the finishing point was Sam? Give your answer to the nearest metre.

Draw a diagram
to help you. Distance Sam ran in that time $=2.5 \times 66 \frac{2}{3}=166 \frac{2}{3} \mathrm{~m}$ Distance Sam needed to run to complete the race
$=400-166 \frac{2}{3}$
$=233 \frac{1}{3} \mathrm{~m}$
$=233 \mathrm{~m}$ (to the nearest metre)
Sam still needed to run 233 m more.
Textbook 6 P160

-

Draw a diagram

For Let's Learn 4, guide pupils to see that the distance apart from Tom and Meiling is equal to the total distance that the two of them cycled.

For Let's Learn 5, point out to pupils that Mr Tan and Mr Ali travelled the same distance, although the duration was different.

In Let's Learn 6, a diagram has not been provided. Get pupils to draw one to help them visualise what information is given and what else needs to be found.

In Let's Learn 7, guide pupils to see that when Xinyi and Farhan met, they would have covered a distance of 492 m in total. Hence, they first have to find the total distance both of them would cover in 1 s and proceed to find the time taken. Encourage pupils to explain why Farhan's speed should be used instead of Xinyi's. Show that if they found Xinyi's distance, they would still need to subtract the distance from 492 m. However, they can use the latter method to check their answer.

For Let's Learn 8, point out to pupils that in the time Junhao took to reach Point B, he travelled 960 m more than Priya. Pupils should be familiar with the formula to find the time taken. Guide them to see that in this case, the speed used should be how much faster Junhao is, i.e. the difference in their speeds, since the distance given is how much more Junhao has travelled. Get pupils to think of other possible methods to solve the question, such as the use of proportion.

Get pupils to work in pairs or individually on the practice questions.

Independent seatwork

Assign pupils to complete Worksheet 3 (Workbook 6B P39-43)

Textbook 6 P164

1. Time taken $=500 \div 25$

$$
=20 \mathrm{~min}
$$

She started walking from her house at 7.10 a.m.
2. Time taken from house to office $=20 \div 50$

$$
=\frac{2}{5} \mathrm{hr}
$$

Time taken for return journey $=20 \div 60$

Total time taken $=\frac{2}{5}+\frac{1}{3}$

$$
=\frac{1}{3} \mathrm{hr}
$$

$$
=\frac{11}{15} \mathrm{hr}
$$

Mr Lee took $\frac{11}{15} \mathrm{hr}$ altogether.
3. Distance Sam jogged $=150 \times 20$

$$
=3000 \mathrm{~m}
$$

Distance Raju jogged $=5400-3000$

$$
=2400
$$

Raju's jogging speed $=2400 \div 20$

$$
=120 \mathrm{~m} / \mathrm{min}
$$

Raju's jogging speed was $120 \mathrm{~m} / \mathrm{min}$.
4. Time taken by car $=240 \div 90$

$$
=2 \frac{2}{3} \mathrm{hr}
$$

Time taken by van $=240 \div 80$

$$
=3 \mathrm{hr}
$$

Difference in amount of time $=3-2 \frac{2}{3}$

$$
=\frac{1}{3} \mathrm{hr}
$$

The difference in the amount of time they took to arrive at their destination was $\frac{1}{3} \mathrm{hr}$.
5. Distance covered in $1 \mathrm{~s}=1.2+1.8$

$$
=3 \mathrm{~m}
$$

Time need $=90 \div 3$

$$
=30 \mathrm{~s}
$$

It took them 30 s to meet each other.
6. Time taken by bus $=340 \div 60$

$$
=5 \frac{2}{3} \mathrm{hr}
$$

Time taken by car $=5 \frac{2}{3}-1$

$$
=4 \frac{2}{3} \mathrm{hr}
$$

Average speed of car $=340 \div 4 \frac{2}{3}$

$$
\begin{aligned}
= & 72.9 \mathrm{~km} / \mathrm{hr} \\
& \text { (to } 1 \mathrm{decimal} \text { place) }
\end{aligned}
$$

The average speed of the car was $72.9 \mathrm{~km} / \mathrm{hr}$.
7. Speed for journey from Singapore to Malacca
$=243 \div 4$
$=60.75 \mathrm{~km} / \mathrm{hr}$
Time taken for return journey $=243 \div(60.75+15)$
$=243 \div 75.75$
$=3 \mathrm{hr} 12 \mathrm{~min}$ (to the nearest minute)
Mr Ali took 3 hr 12 min for his return journey.
8. Difference in speeds $=75-60$

$$
=15 \mathrm{~km} / \mathrm{hr}
$$

$15 \mathrm{~km} \rightarrow 1 \mathrm{hr}$
$5 \mathrm{~km} \rightarrow 60 \div 3=20 \mathrm{~min}$ $75 \times \frac{1}{3}=25 \mathrm{~km}$

The distance between Malir and Clifton is 25 km .

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIEW

MIND WORKOUT

This question involves the same concept that pupils have encountered in Let's Learn 8. However, they will have to extract an additional piece of information since no distance is given. Guide pupils to see that for Kate to reach Point B in 30 seconds, the remaining distance she has to skate is $\frac{1}{2} \times 180=90 \mathrm{~m}$. From there, pupils can work out the distance between the two points like they did in Let's Learn 8.

Siti and Xinyi ran a $50-\mathrm{m}$ race. When Siti completed the race, Xinyi was 10 m behind They then ran a 80 -m race and each girl ran at the same speed as they did in the $50-\mathrm{m}$ race. When siti finished running 80 m , how far from the finishing line was Xinyi?

For every 50 m Siti ran, the difference was 10 m
For every 1 m siti ran, the difference was $\frac{10}{50} \mathrm{~m}$.
$\frac{10}{50} \times 80=\frac{1}{5} \times 80$

When Siti finished running 80 m , Xinyi was 16 m away from the finishing line.

Guide pupils to answer this question using proportion. Since it is not possible to find their individual speeds, highlight to pupils that they are able to calculate the difference in distance covered between the two girls for every 1 m Siti runs.

44 Chapter 7 20.K.
Workbook 6B P44

MATHS JOURNAL

Mr Tan travelled at an average speed of $70 \mathrm{~km} / \mathrm{hr}$ for 2 hours from Point A to Point B. He then travelled at an average speed of $80 \mathrm{~km} / \mathrm{hr}$ for 3 hours from Point B to Point C

To find Mr Tan's average speed for his whole journey, Raju did the working below.

Raju said Mr Tan's average speed for the whole journey was $75 \mathrm{~km} / \mathrm{hr}$. Is Raju correct? Explain.

I know how to..
SELF-CHECK
find the speed given the distance and the time
find the distance given the speed and the time.
find the time given the distance and the speed
find average speed.
solve word problems involving speed

MATHS JOURNAL

Get pupils to discuss whether Raju's solution was correct. Remind them that they cannot add the speeds and divide the result by 2 because the duration for both parts of the journey was different. Get pupils to find the correct average speed.

Before pupils proceed to do the SELF-CHECK self-check, review the important concepts by asking for examples learnt for each objective.

The self-check can be done after pupils have completed Review 7 (Workbook 6B P45-50)

1. $1600 \div 20=80 \mathrm{~m} / \mathrm{min}$
2. $3 \times \frac{7}{12}=\frac{7}{4} \mathrm{~km}$

$$
=1 \frac{3}{4} \mathrm{~km}
$$

3. $200 \div 80=2 \frac{1}{2} \mathrm{hr}$

The train arrived at its destination at 11 a.m.
4. Total time taken $=2+3$

$$
=5 \mathrm{hr}
$$

Total distance $=1600+2250$

$$
=3850 \mathrm{~km}
$$

Average speed $=3850 \div 5$

$$
=770 \mathrm{~km} / \mathrm{hr}
$$

5. Distance $=2 \times 200$

$$
=400 \mathrm{~m}
$$

Farhan's speed $=400 \div 250$

$$
=1.6 \mathrm{~m} / \mathrm{s}
$$

6. They travelled for 21 min before they met.

Distance travelled by Bina $=72 \times 21$

$$
\text { = } 1512 \text { m }
$$

Distance travelled by Sam $=90 \times 21$

$$
=1890 \mathrm{~m}
$$

$1512+1890=3402 m$
The distance between the food centre and the library is 3402 m .
7. Distance travelled for second part of journey
$=90 \times 2$
$=180 \mathrm{~km}$
Time taken for first part of journey $=180 \div 80$

$$
=2 \frac{1}{4} \mathrm{hr}
$$

Total time taken $=2 \frac{1}{4}+2$

$$
\begin{aligned}
& =4 \frac{1}{4} \mathrm{hr} \\
& =4 \mathrm{hr} 15 \mathrm{~min}
\end{aligned}
$$

Mrs Ali reached her destination at 11.15 a.m.
8. Distance covered in second part of journey
$=3800-2400$
$=1400 \mathrm{~km}$

Time taken for second part of journey
$=1400 \div 850$
$=1 \frac{11}{17} \mathrm{hr}$
Time taken for the whole journey $=3+1 \frac{11}{17}$

$$
=4 \frac{11}{17} \mathrm{hr}
$$

The number of hours taken for the whole journey was $4 \frac{11}{17} \mathrm{hr}$.
9. Distance travelled in first part of journey $=240 \div 2$

$$
=120 \mathrm{~km}
$$

Time taken for first part of journey $=120 \div 50$

$$
=2 \frac{2}{5} \mathrm{hr}
$$

Time taken for second part of journey $=6-2 \frac{2}{5}$

$$
=3 \frac{3}{5} \mathrm{hr}
$$

He took to $3 \frac{3}{5} \mathrm{hr}$ complete the second part of his journey.

VOLUME OF CUBES AND CUBOIDS

Related Resources
NSPM Textbook 6 (P166 - 192)
NSPM Workbook 6B (P51 - 80)
Materials
1-cm cubes

Lesson
Lesson 1 Volume of Cubes and Cuboids
Lesson 2 Solving Word Problems
Problem Solving, Maths Journal and
Pupil Review

INTRODUCTION

Pupils have already learnt the concept of volume in Grade Five, i.e. Length \times Breadth \times Height. They have encountered questions that require them to find the volume of cubes, cuboids and liquid in rectangular containers. In this chapter, they will build on current knowledge and learn to find other variables, such as the length of a side of a cuboid given its volume and the other two sides. They will be exposed to bigger values of perfect squares and perfect cubes and as such, learn to use a scientific calculator to obtain the square roots and cube roots of these numbers.

LESSON 1

VOLUME OF CUBES AND CUBOIDS

LEARNING OBJECTIVES

1. Find one dimension of a cuboid given its volume and the other dimensions.
2. Find the length of one edge of a cube given its volume.
3. Find the height of a cuboid given its volume and base area.
4. Find the area of a face of a cuboid given its volume and one dimension.
5. Use of the symbols: $\sqrt{ }$ and $\sqrt[3]{ }$.

Textbook 6 P166

RECAP

Recap with pupils how to find the volume of a cuboid and cube.

Textbook 6 P167
2. A cuboid has a volume of $60 \mathrm{~cm}^{3}$. Its length is 5 cm and its breadth is 3 cm . Find its height.

The height of the cuboid is 4 cm .
3. A cuboid has a breadth of 4 m and a height of 6 m . Its volume is $192 \mathrm{~m}^{3}$. What is the length of the cuboid?

Guide pupils to recall that the volume of a cuboid is equal to Length $(2 \mathrm{~cm}) \times$ Breadth $(2 \mathrm{~cm}) \times$ Height. Ask pupils what variables they have been given which can be used to find the height.

LET'S LEARN

Prompt pupils to solve the question by asking:

- How many 1-cm cubes are needed to make a $12-\mathrm{cm}^{3}$ cuboid?
- Given that the length and breadth are 2 cm each, how many cubes do we put in the first layer?
- How many layers should we have?

Pupils should be able to see that when the cuboid is 3 layers tall, its height is 3 cm .
Explain to pupils that based on the formula for volume, the formula for height can be easily derived.

For Let's Learn 2, go through with pupils how to substitute the relevant values into the formula.

In Let's Learn 3, pupils have to find the unknown length instead of the unknown height. Guide pupils to see that the same formula can be used, replacing length with height.
Ensure that pupils are clear that in general, unknown sides can be calculated accordingly:
Height $=\frac{\text { Volume }}{\text { Length } \times \text { Breadth }}$,
Length $=\frac{\text { Volume }}{\text { Breadth } \times \text { Height }}$,
Breadth $=\frac{\text { Volume }}{\text { Length } \times \text { Height }}$.

Textbook 6 P1 69
7. The volume of a cuboid is $24 \mathrm{~cm}^{3}$ and its base area is $6 \mathrm{~cm}^{2}$. What is the height of the cuboid?

Length \times Breadth \times Height $=$ Volume Base area \times Height $=24$ Height $=\frac{24}{6}$

$$
=4 \mathrm{~cm}
$$

The height of the cuboid is 4 cm .
8. A rectangular tank has a capacity of 5 litres and a base area of $500 \mathrm{~cm}^{2}$. Find the height of the tank.
Volume of tank $=5 \ell$
$=5000 \mathrm{~cm}^{3}$
Base area \times Height $=5000$

The height of the tank is 10 cm .

Let's Learn 4 to 6 offer more practice for pupils. Remind them to be careful when keying in numbers into the calculator and to round off answers to the correct place values.

For Let's Learn 7, check for pupils' understanding of base area. Referring to the diagram, point out that the base area is the area of the rectangle at the bottom of the cuboid. Elicit from pupils that based on the formula:
Height $=\frac{\text { Volume }}{\text { Length } \times \text { Breadth }}$,
they can get:
Height $=\frac{\text { Volume }}{\text { Base area }}$.
For Let's Learn 8, check for pupils' understanding of the problem. Ask:

- What does capacity of the tank mean? Do we know the volume of tank?
- Can we use 5 litres directly in the calculation? Why not?

Textbook 6 Pl 70

Textbook 6 P1 71

Textbook 6 P1 72

Let's Learn 9 differs from the two previous examples as the area of the face given is not the base area. Explain to pupils that the same concept can still be applied. Guide pupils to conclude that in general, an unknown edge of a cuboid can be found by dividing the volume by the area of the given face.

In Let's Learn 10, allow pupils to discuss in pairs how the area of the shaded face can be found.
Ask:

- Is the area of shaded face equal to the base area?
- From the formula of Height = $\frac{\text { Volume }}{\text { Base area }}$, how can we swap the values around to find the base area?

For Let's Learn 11, allow pupils to discuss the question in pairs. Hint to them that only one of the given sides is necessary for the calculation. Some pupils might not be able to correctly identify the edge to use. Emphasise that

Unknown area of face
$=\frac{\text { Volume }}{\text { Length of edge perpendicular to face }}$,
which in this case is the length of 12 cm .
For Let's Learn 12 and 13, get pupils to draw out the cuboids if they are unable to visualise which values to use in their calculation.

Textbook 6 P1 73

Let's Learn 14 introduces the concept of square root. Explain how the square root of a number is written and its meaning with respect to area of a square and its length.

Use Let's Learn 15 to go through with pupils simple numbers that do not require the use of a calculator. For Let's Learn 16, show pupils how to use the calculator to find the square root of bigger numbers.

For Let's Learn 17 and 18, allow pupils to work in pairs and guide them through the problem-solving process.
i) Understanding the question:

- What information is given?
- What do we need to find?
- How is the information about the square base helpful?
- Is there a hidden unknown we need to find first?
ii) Planning:
- What are the steps you need to take?
- What method would you use?
iii) Checking:
- Have you answered the question?
- Is your answer reasonable? How can you estimate to check it?

Textbook 6 P1 75

Textbook 6 P1 76
Let's Learn 19 introduces the concept of cube root. Point out to pupils that in a cube, all the lengths are equal. Explain to pupils that based on the volume of a cube as a product of the three equal lengths, we can in turn find the length using cube root.

For Let's Learn 20, work together with pupils to find the cube root of small numbers.

For Let's Learn 21, show pupils how to use the calculator to find the cube root of bigger numbers.

Let's Learn 22 and 23 are straightforward and offer pupils opportunities to practise finding the cube root of a perfect cube. Highlight that to check their answers, pupils can use the length they found to calculate the volume they will get using this value.

Textbook 6 P1 77

This activity enables pupils to relate the concepts of square root and cube root in a concrete way using $1-\mathrm{cm}$ cubes. Pupils should observe that the length of an edge of a cube is equal to the square root of its base area or the cube root of its volume.

Textbook 6 P1 78
4. The base of each cuboid is a square. Find the length of one side of the base.

5
(a) Volume $=882 \mathrm{~m}^{3}$
(b) Volume $=3249 \mathrm{~cm}^{3}$

19 cm
5. For each cube, find the length of each edge(a) Volume $=216 \mathrm{~cm}^{3}$
(b) Volume $=729 \mathrm{~m}^{3}$

6 cm

6. The volume of a cuboid is $285 \mathrm{~m}^{3}$. It has a height of 8 m and a length of 5 m Find the breadth of the cuboid, giving your answer to 2 decimal places. 7.13 m
7. A container in the shape of a cube has a capacity of 8 litres. Find the height of the container in cm . 20 cm
8. A rectangular tank with a breadth of 17 cm and a base area of $340 \mathrm{~cm}^{2}$ has a capacity of $8500 \mathrm{~cm}^{3}$. Find the height of the tank.
25 cm

179 \qquad

Textbook 6 P179

Answers Worksheet 1 (Workbook 6B P51-58)

1. (a) 108
(b) 128
(c) 216
(d) 27
2. (a) 13
(b) 10
(c) 15
(d) 5
3. (a) 6
(b) 7
(c) 8
(d) 7
4. (a) 65
(b) 72
(c) 120
(d) 300
5. (a) 8 m
(b) 9 m
(c) 11 m

Independent seatwork
Assign pupils to complete Worksheet 1 (Workbook 6B P51-58)
6. (a) 7 m
(b) 11 cm
7. $2025 \div 9=225 \mathrm{~m}^{2}$ $\sqrt{225}=15 \mathrm{~m}$
8. $40000 \div 80=500 \mathrm{~cm}^{2}$
9. $3000 \div(23 \times 8)=16 \mathrm{~cm}$ (to the nearest whole number)
10. (a) $\sqrt[3]{5832}=18 \mathrm{~cm}$
(b) $18 \times 18=324 \mathrm{~cm}^{2}$
11. $\sqrt[3]{729}=9$
$\begin{aligned} \text { Total area of painted faces } & =6 \times 9 \times 9 \\ & =486 \mathrm{~cm}^{2}\end{aligned}$

$$
=486 \mathrm{~cm}^{2}
$$

12. Volume of cube $=5 \times 5 \times 5$

$$
=125 \mathrm{~cm}^{3}
$$

Height of cuboid $=125 \div(10 \times 10)$ $=1.25 \mathrm{~cm}$

SOLVING WORD PROBLEMS

LEARNING OBJECTIVE

1. Solve word problems involving volume of a cube/ cuboid.

(8) RECAP

In this lesson, pupils will apply what they have learnt previously to solve 2-step word problems. Recap with pupils on the conversion of units as they will need to make calculations in the appropriate units later on.

IN \ggg FOCUS

Help pupils understand the word problem. Ask:

- What are the dimensions of the tank?
- Which part of the tank represents the water it is filled with?
- How much water is in the tank? Are we given the volume of water?
- What are we required to find? What do we need to find first?

Textbook 6 P180

LET'S LEARN

To solve the In Focus problem, guide pupils along the steps. Remind pupils to convert the capacity of the tank to litres in order to subtract the amount of water present.

For Let's Learn 2, allow pupils to work in pairs and fill in the blanks. Point out to them that in this case, the question asks for the amount of water in cm^{3}.

Textbook 6 P181
3. A rectangular tank with a square base of side 30 cm contains 6.3ℓ of water The tank is $\frac{1}{4}$ full. Find the height of the tank.

Method 1
Volume of water $=6.3$
$=6300 \mathrm{~cm}^{3}$
Height of water $=\frac{6300}{30 \times 30}$
$=7 \mathrm{~cm}$
Height of tank $=7 \times 4$
$=28 \mathrm{~cm}$
The height of the tank is 28 cm .
Method 2
Volume of water $=6300 \mathrm{~cm}^{3}$
Capacity of tank $=6300 \times 4$ $=25200 \mathrm{~cm}^{3}$

Height of tank $=\frac{25200}{30 \times 30}$
$=28 \mathrm{~cm}$
The height of the tank is 28 cm .

OXFORD

For Let's Learn 3, highlight to pupils that although the length of only one side is given, they are able to find the base area since it is a square base. Guide pupils and ask:

- Are we able to use the volume of water to find the height of the water?
- If the tank is $\frac{1}{4}$ full, what does this say about the height of the water compared to the height of the tank?
Go through method 2 as well and point out that the capacity of the tank can be found by multiplying the volume of water by 4 , since the water takes up $\frac{1}{4}$ of its capacity.

4. A tank measuring 28 m by 20 m by 48 m is $\frac{1}{3}$ filled with water. Find the amount
of water needed to fill the tank completely.

Method 1
Capacity of tank $=28 \times 20 \times 48$
$=26880 \mathrm{~m}^{3}$
Amount of water needed $=\frac{2}{3} \times 26880 \mathrm{~m}^{3}$
$=17920 \mathrm{~m}^{3}$
The amount of water needed to fill the tank completely is $17920 \mathrm{~m}^{3}$.

The amount of water needed to fill the tank completely is $17920 \mathrm{~m}^{3}$.

CHAPTER 8
Textbook 6 P1 83

Let's Learn 4 is similar to Let's Learn 3. Allow pupils to work in pairs and ensure that they are able to interpret the information correctly.

Let's Learn 5 presents the problem in a different way whereby pupils work with two volumes of water. Guide pupils to break down the information given and recap that since the base area is given, the height of water added can be found.

Textbook 6185
7. A rectangular container with a square base area of $625 \mathrm{~cm}^{2}$ was $\frac{1}{5}$ filled with water. When the water from the container was poured into a cubical tank of edge 10 cm , the tank was completely filled.
(a) Find the length of the rectangular tank.
(b) Find the capacity of the rectangular container.

(a)
$\begin{aligned} \text { Length of rectangular container } & =\sqrt{625} \\ & =25 \mathrm{~cm}\end{aligned}$
The length of the rectangular container is 25 cm .
(b) Capacity of cubical tank $=10 \times 10 \times 10$

$$
=1000 \mathrm{~cm}^{3}
$$

Capacity of rectangular container $=1000 \times 5$
$=5000 \mathrm{~cm}^{3}$
The capacity of the rectangular container is $5000 \mathrm{~cm}^{3}$.

OXFORD
VOLUME OF CUBES AND CUBOIDS

Textbook 6 P186

Get pupils to note the difference between Let's Learn 6 and Let's Learn 5. The problems are the opposite of each other, where water is removed instead of added. However, the basic concepts involved are the same and pupils should be able to solve for the answer.

Let's Learn 7 helps pupils break down the information through a 2-part question. For part (b), point out to pupils that the volume of water does not change when the water is transferred. Get pupils to see that since the water fills up the cubical tank, the volume of water is equal to the capacity of the cubical tank.

Textbook 6 P187
9. An empty rectangular tank measures 50 cm by 60 cm by 30 cm . Water flows
from a tap into the tank at a rate of 15 litres per minute. How long will it take to from a tap into the tank at a rate of 15 litres per minute. How long will it take to
fill the tank completely? fill the tank completely?

10. An empty rectangular tank with a breadth of 50 cm and a length of 80 cm is filled with water at a rate of 12 litres per minute. It takes 18 minutes to fill the tank completely. Find the height of the tank.

Let's Learn 8 requires pupils to apply the same process as Let's Learn 7. Point out to pupils that half the capacity of the container is equal to the amount of water in the tank.

In Let's Learn 9, pupils are required to apply the concept of rate. Guide pupils through the problem-solving process and ask:

- Is there water in the tank at first? [Pupils may mistakenly assume there is, based on the diagram; however the question states "empty rectangular tank".]
- Are we given the dimensions of the tank? Can we find its capacity?
- What does rate mean?
- After finding the capacity of the tank, how can we use the rate given to find the time taken? What operation do we use?

For Let's Learn 10, hint to pupils that the problem requires a similar concept applied in Let's Learn 9. Ask:

- What information can we use to find the capacity of the tank if we do not have all the dimensions?

The height of the tank is 54 cm .

OXFORD VOLUME OF CUBES AND CUBOIDS

Textbook 6 P189

For Let's Learn 11, draw pupils' attention to the unit of measurement given in the problem. Explain to pupils that converting the measurements would be more convenient as they can then work with whole numbers. Since the rate is given in litres, it would also be easier to find the capacity in litres. Remind pupils that the question does not ask for the tank to be completely filled, unlike previous examples.

ACTIVITY

TIME
This activity enables pupils to apply the mathematical concepts and skills that they have acquired to generate word problems involving volumes. It enables them to gain insights about what information is needed and how to structure a question in order for it to be solved. Ensure that each group is able to solve their own question before they present it to the class.

PRACTICE

Let pupils work individually or in pairs on the practice questions.

Independent seatwork
Assign pupils to complete Worksheet 2 (Workbook 6B P59-69).

Textbook 6 P191

1. Height $=480 \div(10 \times 6)$

$$
=8 \mathrm{~m}
$$

2. Height $=2300 \div(25 \times 12)$

$$
=7.7 \mathrm{~cm} \text { (to } 1 \text { decimal place) }
$$

3. Height of water $=1280 \div(16 \times 16)$

$$
=5 \mathrm{~cm}
$$

Height of container $=5+8$

$$
=13 \mathrm{~cm}
$$

4. Height of water $=12-4$

$$
=8 \mathrm{~m}
$$

Volume of water $=7 \times 3 \times 8$

$$
=168 \mathrm{~m}^{3}
$$

5. Height of water needed $=10-3$

$$
=7 \mathrm{~m}
$$

Amount of water needed $=15 \times 5 \times 7$

$$
=525 \mathrm{~m}^{3}
$$

6. Capacity $=35 \times 22 \times 35$

$$
=26950 \mathrm{~cm}^{3}
$$

Amount of water needed $=26950-13860$

$$
\begin{aligned}
& =13090 \mathrm{ml} \\
& =13 \ell 90 \mathrm{ml}
\end{aligned}
$$

7. Height of water $=8000 \div(40 \times 30)$

$$
=6 \frac{2}{3} \mathrm{~cm}
$$

Height of tank $=6 \frac{2}{3} \times 3$

$$
=20 \mathrm{~cm}
$$

8. Height of water $=3456 \div(15 \times 12)$

$$
=19.2 \mathrm{~m}
$$

Height of tank $=19.2 \div 3 \times 5$

$$
=32 \mathrm{~m}
$$

9. Increase in height $=12000 \div(40 \times 50)$

$$
=6 \mathrm{~cm}
$$

Height of water in tank now $=12+6$

$$
=18 \mathrm{~cm}
$$

10. Decrease in height $=13440 \div(120 \times 35)$

$$
=3.2 \mathrm{~cm}
$$

Height of water left $=40-3.2$

$$
=36.8 \mathrm{~cm}
$$

11. Volume of water $=50 \times 45 \times 42$

$$
=94500 \mathrm{~m}^{3}
$$

Height of water $=94500 \div(70 \times 54)$

$$
=25 \mathrm{~m}
$$

12. Volume of water $=50 \times 50 \times 57.6$

$$
=144000 \mathrm{~cm}^{3}
$$

Height of water in container $=144000 \div(80 \times 60)$

$$
=30 \mathrm{~cm}
$$

Height of container $=30 \div 3 \times 4$

$$
=40 \mathrm{~cm}
$$

13. Capacity $=100 \times 85 \times 60$

$$
=510000 \mathrm{~cm}^{3}
$$

$$
=510 \ell
$$

Time needed to fill the tank completely
$=510 \div 14$
$=36 \mathrm{~min}$ (to the nearest minute)
14. Volume of water $=60 \times 70 \times 80$

$$
\begin{aligned}
& =336000 \mathrm{~cm}^{3} \\
& =336 \ell
\end{aligned}
$$

Time needed $=336 \div 24$

$$
=14 \mathrm{~min}
$$

15. Volume of water in each tank $=\frac{1}{2} \times 50 \times 40 \times 101$

$$
=101000 \mathrm{~cm}^{3}
$$

Height of water in Tank B $=101000 \div(80 \times 45)$

$$
=28.06 \mathrm{~cm} \text { (to } 2 \text { decimal }
$$ places)

16. Volume of water $=36 \times 250$

$$
\begin{aligned}
& =9000 \mathrm{ml} \\
& =9000 \mathrm{~cm}^{3}
\end{aligned}
$$

Height of water in tank at first $=9000 \div(32 \times 25)$

$$
=11.25 \mathrm{~cm}
$$

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIEW

Textbook 6 P191

This is a task based on deduction and visualisation. Guide pupils to see that there are a total of 21 cubes in the solid. Pupils may be confused and think that they have to find the number of cubes to remove from or add to this particular solid. Highlight to pupils that when Kate uses the cubes to form other solids, she can move the cubes around.

MATHS JOURNAL

This journal task requires pupils to spot an error in a solution. Guide them to work backwards and locate where and how the error was made.
Priya has a rectangular tank that is $\frac{2}{5}$ filled with water and an empty 2 -litre beaker. The tank has a square base of side 20 cm and a height of 50 cm .

How many beakers of water does Priya need to add into the tank so that it is completely filled?

Ahmad says she needs 6 beakers of water and Junhao says she needs 4 beakers of water.

Who is correct? Explain.

find one edge of a cuboid given its volume and the other edges.
find the height of a cuboid given its volume and base area.
find the length of one edge of a cube given its volume.
find the area of a face of a cuboid given its volume and one edge.
use the symbols $\sqrt{ }$ and $\sqrt[3]{ }$.
solve word problems involving volume of a cube or a cuboid.

VOLUME OF CUBES AND CUBOIDS

1. (a) 17 cm
(b) 16 m
(c) 5 cm
2. $1404 \div(13 \times 12)=9 \mathrm{~cm}$
3. $2520 \div 420=6 \mathrm{~cm}$
4. $1215 \div 15=81$
$\sqrt{81}=9 \mathrm{~m}$
5. Height $=225 \div(5 \times 5)$

$$
=9 \mathrm{~cm}
$$

6. $\sqrt[3]{2744}=14 \mathrm{~m}$
7. Length of edge $=\sqrt[3]{3375}$

$$
=15 \mathrm{~cm}
$$

Area of base $=15 \times 15$

$$
=225 \mathrm{~cm}^{2}
$$

8. $\sqrt[3]{1331}=11 \mathrm{~cm}$

Total area of painted faces $=6 \times 11 \times 11$

$$
=726 \mathrm{~cm}^{2}
$$

9. Volume of water $=20 \times 15 \times 8$

$$
=2400 \mathrm{~cm}^{3}
$$

10. Height $=1500 \div 140$

$$
=10.71 \mathrm{~cm} \text { (to } 2 \text { decimal places) }
$$

11. Height of water needed $=18-10$

$$
=8 \mathrm{~cm}
$$

Amount of water needed $=24 \times 15 \times 8$

$$
\begin{aligned}
& =2880 \mathrm{~cm}^{3} \\
& =2 \ell 880 \mathrm{ml}
\end{aligned}
$$

12. (a) Capacity $=30 \times 50 \times 20$

$$
=30000 \mathrm{~cm}^{3}
$$

$$
=30 \ell
$$

(b) Volume of water after $2 \mathrm{~min}=12 \times 2$

$$
\begin{aligned}
& =24 \ell \\
& =24000 \mathrm{~cm}^{3}
\end{aligned}
$$

Height of water $=24000 \div(50 \times 30)$

$$
=16 \mathrm{~cm}
$$

13. Decrease in height $=720 \div(30 \times 12)$

$$
=2 \mathrm{~m}
$$

Height of water left $=7-2$

$$
=5 \mathrm{~m}
$$

14. Volume of water in Container $A=40 \times 10 \times 30$ $=12000 \mathrm{~cm}^{3}$
Increase in height in Container B
$=12000 \div(60 \times 25)$
$=8 \mathrm{~cm}$
New height of water in Container $B=18+8$

$$
=26 \mathrm{~cm}
$$

15. Amount of water poured into container
$=\frac{1}{5} \times 50 \times 30 \times 40$
$=12000 \mathrm{~cm}^{3}$
Increase in height $=12000 \div(25 \times 20)$
$=24 \mathrm{~cm}$
New height of water $=4+24$
$=28 \mathrm{~cm}$

PIE CHARTS

CHAPTER

Related Resources
NSPM Textbook 6 (P193-209)
NSPM Workbook 6B (81-98)

Materials
Software to construct pie chart
Lesson
Lesson 1 Reading Pie Charts
Lesson 2 Solving Word Problems
Problem Solving, Maths Journal and Pupil Review

INTRODUCTION

This chapter reinforces the use of graphs to display data and the need to interpret graphs to obtain useful information. A new representation, i.e. pie chart, is introduced. Pupils will be given opportunities to explore the advantages and disadvantages of the use of pie charts to display statistical information.

LESSON 1
 READING PIE CHARTS

LEARNING OBJECTIVE

1. Interpret data from a pie chart.

Textbook 6 P193

RECAP
As interpreting pie charts involves calculations associated with fractions and percentages, revisiting the related concepts will help pupils with extracting the relevant information from pie charts.

Get pupils to display the given information in a table and represent it in a bar graph. Get them to discuss other ways to represent the data.

LET'S LEARN

1. We can use a pie chart to represent the information.

The whole circle represents a whole, or 100%.
2. The pie chart shows how 100 pupils travel to school every day

Study the pie chart and answer the questions.
(a) How many pupils walk to school?

```
25 pupils walk to school.
```

(b) Which mode of transport is used by most of the pupils? The mode of transport used by most of the pupils is bus

LET'S LEARN

Introduce pupils to the concept of a pie chart. Guide pupils to see that based on its name, the chart can be divided into 'slices' that represent certain quantities proportionately. Explain to pupils that the whole circle represents 1 whole or 100%.

For Let's Learn 2, guide pupils to see that since the parts of a pie chart are proportional, a bigger part reflects a larger quantity. Remind pupils to pay attention to what the total quantity is when expressing a particular quantity as a fraction or percentage.
(c)

What fraction of the pupils travel to school by car?

20 \% of the pupils travel to school by train.
3. The pie chart represents the number of each type of chocolate in a bag

Study the pie chart and answer the questions.
(a) What fraction of the chocolates are milk chocolates?
$\frac{1}{2}$ of the chocolates are milk chocolates.
(b) What fraction of the chocolates are dark chocolates? Method 1 Method 2
$\frac{1}{2}-\frac{3}{10}=\frac{1}{5}$
$1-\frac{1}{2}-\frac{3}{10}=\frac{1}{5}$
The pie chart represents 1 whole.
$\frac{1}{5}$ of the chocolates are dark chocolates.
OXFORD PIE CHARTS 196

Textbook 6 P196

Textbook 6 P197

Let's Learn 3 represents the quantities in the pie chart in fractions. Remind pupils that the whole circle represents 1 whole. Guide pupils with the interpretation of the pie chart.

Let's Learn 4 represents the quantities using percentage. Remind pupils that the whole circle represents 100%. Allow pupils to discuss in pairs and fill in the blanks.

Textbook 6 P198

The use of ICT facilitates the ease of construction of a pie chart. Pupils can change the data input to observe how the pie chart varies with each change. Creating questions based on the pie chart helps pupils understand the effective use of pie charts to display certain information.

Allow pupils to discuss and work in pairs or groups. Then, go through the questions and solutions with the class. It is important that the pupils accurately grasp the concept and its applications before they are given independent work.

Independent seatwork

Assign pupils to complete Worksheet 1 (Workbook 6B P81-84).

1. (a) Scouts
(b) $50+28+24+18=120$
(c) $50-18=32$

There are 32 more pupils in Scouts than in Speech and Drama.
2. (a) Cricket
(b) Tennis
(c) $60 \%=\frac{3}{5}$
(d) $10 \%=\frac{1}{10}$
(e) $100 \%-60 \%=40 \%$
3. (a) 5
(b) $\frac{1}{4}$
(c) $\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
(d) Bamboo plant and bougainvillea
(e) Croton
4. (a) $\frac{1}{10}+\frac{1}{4}=\frac{2}{20}+\frac{5}{20}$

$$
=\frac{7}{20}
$$

(b) $\frac{1}{5}=\frac{4}{20}$

There are more green marbles than yellow marbles.
(c) $1-\frac{3}{20}=\frac{17}{20}$
(d) $1-\frac{3}{20}-\frac{1}{5}-\frac{1}{4}-\frac{1}{10}=\frac{3}{10}$

SOLVING WORD PROBLEMS

LEARNING OBJECTIVE

1. Solve word problems involving pie charts.

Textbook 6 P200

Textbook 6 P201
3. A survey was conducted to find out the hobbies of some pupils. 50% of the pupils chose playing sports and playing computer games. The pie chart shows the results.

(a) What percentage of the pupils chose playing computer games as their hobby?
$50 \%-10 \%=40 \%$
40 \% of the pupils chose playing computer games as their hobby.
(b) What fraction of the pupils chose watching videos as their hobby? Express your answer in its simplest form.
$50 \%-38 \%=12 \%$
$12 \%=\frac{3}{25}$
$\frac{3}{25}$ of the pupils chose watching videos as their hobby.
(c) 57 pupils chose reading as their hobby. How many pupils took part in the survey?
$38 \% \rightarrow 57$
$100 \% \rightarrow(57 \div 38) \times 100=150$
150 pupils took part in the survey
OXFORD

For Let's Learn 2, guide pupils to interpret the usage of angles in a pie chart. Show them that 90° represents a quarter circle and this reflects that $\frac{1}{4}$ of the vehicles are motorcycles.

In Let's Learn 3, guide pupils to see that although there are two unknowns, the percentage of pupils who chose playing computer games and watching videos can each be found since the chart is split into two halves with each half corresponding to 50%.
For part (c), pupils should recognise that they have to solve a basic percentage question and find the total quantity of pupils, i.e. 100%.
4. The pupils in a class were asked about their favourite ice cream flavours. $\frac{1}{2}$ of the pupils chose chocolate and $\frac{3}{5}$ of the remaining pupils chose vanilla. The fraction of pupils who chose chocolate was $\frac{3}{10}$ more than the number of pupils who chose strawberry and mint.

(a) 20 pupils chose chocolate as their favourite ice cream flavour. How many pupils were there in the class?
$20 \times 2=40$
There were 40 pupils in the class.
(b) What fraction of the pupils chose vanilla?
$\frac{3}{5} \times \frac{1}{2}=\frac{3}{10}$
$\frac{3}{10}$ of the pupils chose vanilla.
(c) What fraction of the pupils chose strawberry and mint? Express your answer in its simplest form
$\underline{1}-\frac{3}{2}=\frac{2}{1} \quad$ Can you think of another $\begin{array}{llll}2 & 10 & 10 & 5\end{array}$ method to find the answer?
$\frac{1}{5}$ of the pupils chose strawberry and mint.

Textbook 6 P203
5. The pie chart shows the number of adults, children and senior citizens at
a concert.

The table shows the prices of each ticket.

Category	Adult	Child	Senior Citizen
Price	$\$ 34$	$\$ 25$	$\$ 30$

Find the total amount collected from the sales of all the tickets.
Total amount collected $=320 \times \$ 34+160 \times \$ 25+32 \times \$ 30$ $=\$ 10880+\$ 4000+\$ 960$ = \$ 15840

A total of \$ 15840 was collected from the sale of all the tickets.
6. The pie chart shows the number of boys and girls in class 6 A and the bar graph shows the number of boys and girls in class 6 B .

(a) How many pupils are there in class 6A?
$\frac{1}{4} \rightarrow 10$
$\frac{4}{4} \rightarrow 4 \times 10=40$
There are 40 pupils in class 6A.
(b) Which class has more boys? How many more?

Number of boys in class 6A $=10$
Number of boys in class 6B $=12$
Class 6B has more boys.
$12-10=2$
There are 2 more boys in class 6 B than in class 6 A

Textbook 6 P205

Let's Learn 6 requires pupils to interpret a different set of information from two charts. Allow pupils to obtain the relevant data individually and guide them if they have any misconceptions regarding the presentation of the data.

Textbook 6 P207
3. At a florist shop, there is a total of 50 roses, daisies and tulips. The pie chart Anw the fraction of each type of flowers.

The table shows the number of other types of flowers in the shop.

Types of flowers	Sunflowers	Carnations	Jasmine
Number of flowers	18	20	42

(a) How many daisies are there? 15
(b) Are there more roses or more Jasmine on display at the shop? Gerberas
(c) Which flower has the least number displayed at the shop? Tulips

Complete Workbook 6B, Worksheet 2 • Pages 85-92

MIND WORKOUT

The pie chart shows the amount of money
each pupil has saved.
Xinyil and Bala saved \$26 altogethe How much did Ahmad save? \$13

Allow pupils to discuss and work in pairs or groups. Then, go through the questions and solutions with the class.

Independent seatwork

Assign pupils to complete Worksheet 2 (Workbook 6B P85-92).

1. (a) $100 \%-25 \%-50 \%=25 \%$
(b) $22+11=33$
(c) $66 \times 2=132$
2. (a) $10+18=28$
(b) $20-14=6$
(c) $14+18=32$
(d) $20+10+18=48$
3. (a) $44-28=16$
(b) $120-44-28=48$
(c) $44+28=72$

$$
\frac{72}{120}=60 \%
$$

(d) $\frac{5}{7} \times 28=20$
4. (a) $\frac{20}{100} \times 120=24$
(b) $\frac{30}{100} \times 120=36$
(c) $30 \% \div 2=15 \%$

$$
15 \%=\frac{15}{100}=\frac{3}{20}
$$

(d) $100 \%-20 \%-30 \%=50 \%$

$$
50 \%=\frac{1}{2}
$$

5. (a) $1-\frac{1}{4}-\frac{1}{8}=\frac{5}{8}$
(b) $\frac{1}{8} \times 50=\$ 6.25$
(c) $\frac{1}{4} \times 50=\$ 12.50$
(d) $\frac{1}{8}+\frac{1}{4}=\frac{3}{8}$

$$
\frac{3}{8}=37.5 \%
$$

6. (a) Soft drinks
(b) Fruit juice
(c) $\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
(d) $100 \%-15 \%-25 \%-25 \%=35 \%$
(e) $15 \% \rightarrow 3 \ell$
$25 \% \rightarrow \frac{3}{15} \times 25=5 \ell$
7. (a) Lion
(b) $1-\frac{4}{15}=\frac{11}{15}$
(c) $40 \div 4 \times 15=150$
(d) $54 \%=\frac{54}{100}=\frac{27}{50}$ $\frac{2}{3} \times \frac{27}{50}=\frac{18}{50}=\frac{9}{25}$
8. (a) $2+5+4=11$

Meiling has fewer coins.
(b) $12-3-5=4$

Ahmad has more 10-cent coins.
(c) Meiling

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIEW

Textbook 6 P208

MIND WORKOUT

The Mind Workout provides as little information as possible to allow pupils to study the information and the pie chart carefully to answer the question. Guide pupils to see that the key to answering this question is to recognise that the total savings of Kate and Ahmad is equivalent to the total savings of Xinyi and Bala since
Kate's + Ahmad's savings $=\frac{1}{2}$ of the total.

The pie chart shows the amount of money shared among three boys.

Sam received $\$ 84$ and Farhan received $\$ 24$ more than Weiming. What was the total sum of money shared among the three boys?
$\begin{aligned} \text { Total sum of money } & =(\$ 84+\$ 24) \times 2 \\ & =\$ 216\end{aligned}$
$=\$ 216$
The total sum of money shared among the three boys was $\$ 216$

Workbook 6B P93

MATHS JOURNAL

Look at the two pie charts shown.

Is each statement correct? Explain.

209
CHAPTER 9

MATHS JOURNAL

This Maths Journal provides the stage for exploration and discussion that the percentages or fractions represented in the pie chart do not provide much information without any amount or quantity attached to them.

Pupils are not able to obtain much information from the pie chart itself. Hint to pupils that since Farhan's share was $\$ 24$ more than Weiming's, his portion of the pie chart
corresponds to $\frac{1}{4}+\$ 24$. If pupils can draw a dotted line to divide Farhan's part into $\frac{1}{4}$ and an additional \$24, they should be able to visualise that Sam's share $+\$ 24$ from Farhan forms half of the total sum of money.

The pie charts show the results of a class of pupils for two different Mathematics quizzes.

Compare the two pie charts and describe how the pupils perform in the two quizzes. Give a possible reason for the difference in the results between the two quizzes.

Maths Journal

This Maths Journal gives pupils the opportunity to interpret information from pie charts based on the proportionate size of their respective parts. Pupils should be able to observe that a higher quantity of pupils failed Quiz 2 compared to Quiz 1 since the total number of pupils is the same.

94 Chapter 9 2F:

Workbook 6B P94

Before pupils proceed to do the self-check, review the important concepts of the interpretation of pie charts.

The self-check can be done after pupils have completed Review 9 (Workbook 6B P95-98).

1. (a) $\frac{1}{4}$
(b) $100 \%-25 \%-55 \%=20 \%$
(c) $150 \times 4=600$
(d) $100 \%-55 \%=45 \%$

$$
45 \%=\frac{45}{100}=\frac{9}{20}
$$

2. (a) December
(b) $\frac{1}{5} \times 60=12$
(c) $\frac{1}{2} \times 60=30$
(d) $\frac{1}{2}-\frac{1}{5}=\frac{3}{10}$

$$
\frac{3}{10}=30 \%
$$

3. (a) $1-\frac{1}{4}=\frac{3}{4}$
(b) $1-\frac{1}{12}-\frac{1}{6}=\frac{3}{4}$

$$
\frac{3}{4}=75 \%
$$

(c) $1-\frac{1}{12}-\frac{1}{6}-\frac{1}{4}-\frac{1}{3}=\frac{1}{6}$
(d) $21 \times 4=84$
4. (a) Category D
(b) Category E
(c) $\frac{1}{4} \times \frac{1}{3}=\frac{1}{12}$
(d) $\frac{2}{3} \times 1800=1200$

SOLID FIGURES

CHAPTER

 10Related Resources
NSPM Textbook 6 (P210-229)
NSPM Workbook 6B (P99 - 118)
Materials
Paper, scissors, ruler, manipulatives
Lesson
Lesson 1 Solid Figures
Lesson 2 Nets of Solid Figures

INTRODUCTION

This chapter gets pupils to identify solid figures, including cubes, cuboids, cones, cylinders, prisms and pyramids. Pupils will learn to describe the unique characteristics of each solid figure and to recognise their respective nets.

LESSON
 1

 SOLID FIGURES
LEARNING OBJECTIVE

1. Describe the characteristics of solid figures: cube, cuboid, cone, cylinder, prism and pyramid.

Textbook 6 P210

Get pupils to link their prior knowledge of solid figures to real-life objects around them, identifying those that share the same features. Get them to explain how they categorise these objects.

LET'S LEARN

Textbook 6 P21 1

In the following examples, get pupils to observe and study the various solid figures. They should learn how to describe the characteristics of each solid figure and to make comparisons between them.
For Let's Learn 1, go through with pupils that a cube has 6 square faces, i.e. the lengths of all of its sides are equal.

In Let's Learn 2, point out to pupils that a cuboid has 6 flat surfaces as well, but unlike a cube, not every length must be equal.

For Let's Learn 3, explain to pupils that a cone has a curved face with a pointed edge and a flat circular face.

For Let's Learn 4, highlight to pupils that similar to a cone, a cylinder has a curved face. However instead of a pointed edge, a cylinder has 2 flat circular faces which are of equal sizes.

For Let's Learn 5, allow pupils to discuss in pairs the similarities between prisms and cylinders. They should see that both solid figures have two faces at the ends that are of the same size. However, a prism has sharp edges while a cylinder has circular faces.

Textbook 6 P213

Textbook 6 P214

For Let's Learn 6, highlight to pupils that a pyramid resembles a cone, whereby it has a pointed edge and a flat face. However, the flat face is not a circle but an angular shape such as a triangle or square.

In this activity, pupils will apply their knowledge and understanding of prisms and pyramids. They should be able to identify objects around them that take these shapes. They can then proceed to describe the solids as well as compare and contrast between the two.

Let's Learn 7 requires pupils to visualise real-life objects. Drawing solid figures allows pupils to show a better understanding of the features of each solid figure. Provide pupils with isometric dot grids to facilitate the drawing of these shapes.

ACTIVITY

TIME

Searching for real-life examples of each solid allows pupils to explore and be more aware of the shapes of objects around them. Being able to identify each shape accurately indicates that the pupils are able to recognise the characteristics of each shape.

Textbook 6 P215

Textbook 6 P216

Independent seatwork

Assign pupils to complete Worksheet 1 (Workbook 6B P99-104)
1.

2. (a) It is a cylinder. It has two circular faces and one curved face.
(b) It is a prism. It has two faces that are in the shape of a trapezium and 4 rectangular faces.
(c) It is a pyramid. It has a square base and 4 triangular faces.
3. (a) A
(b) R
(c) Y
4. (a) cuboid
(b) cylinder
(c) pyramid
(d) prism

LESSON NETS OF 2 SOLID FIGURES

LEARNING OBJECTIVES

1. Identify and draw 2D representations of a cube, cuboid, cone, cylinder, prism and pyramid.
2. Identify the nets of 3D solids: cube, cuboid, cone, cylinder, prism and pyramid.
3. Identify the solid which can be formed by a given net.

Let's Learn 2 enables pupils to explore and recognise that the nets of a cube can take different forms. Using the nets to fold cubes will help them visualise how each net can be folded to form a cube.

In Let's Learn 3, pupils explore further to see that not all 2-D figures with 6 squares can form cubes. Cutting out the figures and folding them will help them visualise and explain why they are not nets of cubes.

Textbook 6 P219

Textbook 6 P220

Highlight to pupils that the number of 2-D shapes a net of a solid figure has corresponds to the number of faces the solid figure has.

Get pupils to discuss and make nets of each solid which are different from what were shown in the examples.

Textbook 6 P222

Textbook 6 P223

In Let's Learn 5, allow pupils to cut out the nets if they need to visualise the shapes that the nets form. They should see that A and C form pyramids while B forms a prism.

In Let's Learn 6, point out to pupils that at first glance, all the figures look like the nets of a cuboid. Get them to examine each figure closely and see that for P, when folded, one side will end up having two faces while the opposite side will not have a face.

For Let's Learn 7, guide pupils to recognise the total number of faces a cube has, and observe that an extra square has to be removed.

For Let's Learn 8, get pupils to discuss with their partners. They should identify the missing face of each net and explain how the net will be folded. In pairs, get them to explore all possible ways of positioning the missing face.

Textbook 6 P224

This activity is an extension of the previous one, where pupils now explore the nets of other solid figures using manipulatives.

Textbook 6 P225

Allow pupils to discuss in pairs before going through the solutions. Ensure that pupils have grasped the concept of identifying nets and their respective solid figures.
2. For each of the following solids, draw two different nets.
(a)

(b)

(c)

(d)

(e)

(f)

OXFORD

Textbook 6 P226

Independent seatwork
Assign pupils to complete Worksheet 2 (Workbook 6B P105-111).
1.

2. (a)

(b)

PROBLEM SOLVING, MATHS JOURNAL AND PUPIL REVIEW

MIND WORKOUT
Kate painted the opposite faces of a cube with the same colour. Each pair of opposite faces of the cube is painted red, blue and green.

OXFORD SOLID FIGURES

Textbook 6 P228

MIND WORKOUT

The Mind Workout requires pupils to identify the position of each face of the cube with regards to its net.
Pupils need to visualise which position each face will be in when the nets are folded to form the cubes. Hint to pupils that two faces with the same colour cannot be directly next to each other when the net is folded.

Mind Workout
This Mind Workout is an extension of Let's Learn 1 and 2. Get pupils to recall that they have come across many ways to draw the nets of a cube and think of others.

MATHS JOURNAL

This Maths Journal tests pupils' understanding of the characteristics of a prism and a pyramid. Ask:

- What makes a prism a prism and a pyramid a pyramid?
- Are their faces made up of squares and triangles?
- Are there any other shapes that their faces can be made of?
Get pupils to see that based on the figures shown, the solids may have rectangular faces instead of square faces.

Before pupils proceed to do the self-check, review the important characteristics of each solid figure.

The self-check can be done after pupils have completed Review 10 (Workbook 6B P113-118).

1. (a) cuboid
(b) pyramid
(c) cone
(d) cube
(e) prism
(f) cylinder
2. (a)

(b)

(c)

(d)

3. (a)

(b)
 prism
(c)

pyramid
(d)

cuboid
4. (a)

(b)

Section A

1. 2
2. 2
3. 3
4. 1
5. 3
6. 2
7. 4
8. 4
9. 2
10. 3
11. 3
12. 2
13. 2
14. 1
15. 3

Section B

16. 1, 2, 4
17. 752
18. 0.43
19. 9
20. $(6+5 x)$
21. RS, QP
22. $\frac{1}{4}$
23. $\frac{2}{3}$
24. 75
25. Father's age $=4 m$ years old

Mother's age $=(4 m-3)$ years old Bina's mother will be $(4 m+7)$ years old in 10 years' time.
27. (a)

(b) rhombus
28. $\$ 12-\$ 4=\$ 8$
$\$ 8 \div \$ 3=2 \frac{2}{3}$
Maximum amount of time $=1+2$

$$
=3 \mathrm{hr}
$$

29. $\frac{2}{3} \times \frac{1}{2} \times 12 \times 9=36 \mathrm{~cm}^{2}$
30. Volume of water $=20 \times 20 \times 20$

$$
=8000 \mathrm{~cm}^{3}
$$

Capacity of tank $=8000 \times 5$

$$
=40000 \mathrm{~cm}^{3}
$$

Section C

1. A and D
2. $75 \% \rightarrow \$ 60$
$100 \% \rightarrow \frac{60}{75} \times 100=\$ 80$
3. Average increase $=\frac{9-2}{3}$

$$
=2 \frac{1}{3} \mathrm{~cm}
$$

22. 16
23. 17 units $=204$

1 unit $=204 \div 17$

$$
=12
$$

4 units $=12 \times 4$

$$
=48
$$

9 units $=12 \times 9$

$$
=108
$$

$108-48=60$
There are 60 more apples than oranges.
5. $(10 \times 10)-\left(\frac{1}{3} \times 3.14 \times 10 \times 10\right)=21.5 \mathrm{~cm}^{2}$ $\left(\frac{1}{2} \times 10 \times 10\right)+21.5=71.5 \mathrm{~cm}^{2}$
6. $72 \div 4=18$
$18=3 \times 6$
The breadth of each small rectangle is 3 cm .
7. $810 \div 81=10$
$81=9 \times 9$
$10 \times 9=90$
The area of the shaded face is $90 \mathrm{~cm}^{2}$.
8. (a) $\angle \mathrm{ABD}=110^{\circ}-90^{\circ}$

$$
\begin{aligned}
& =20^{\circ} \\
\angle \mathrm{ADB} & =180^{\circ}-90^{\circ}-20^{\circ} \\
& =70^{\circ}
\end{aligned}
$$

(b) $\angle \mathrm{ABC}=\left(180^{\circ}-90^{\circ}\right) \div 2$

$$
=45^{\circ}
$$

$$
\angle \mathrm{DBG}=45^{\circ}-20^{\circ}
$$

$$
=25^{\circ}
$$

$$
\begin{aligned}
\angle C G E & =\angle B G D \\
& =180^{\circ}-90^{\circ}-25^{\circ} \\
& =65^{\circ}
\end{aligned}
$$

9. Length of rectangle $=30 \div 3 \times 5$

$$
=50 \mathrm{~cm}
$$

Area of unshaded part $=\frac{1}{2} \times 30 \times(50-15)$

$$
=525 \mathrm{~cm}^{2}
$$

Area of shaded parts $=50 \times 30-525$

$$
=975 \mathrm{~cm}^{2}
$$

10. Cost of a notebook after discount
$=\frac{90}{100} \times \$ 2$
$=\$ 1.80$
Amount paid for notebooks on Monday
$=\$ 2 \times 15$
$=\$ 30$
Amount paid for notebooks on Tuesday
= \$102-\$30
= \$72
Number of notebooks bought on Tuesday
$=\$ 72 \div \$ 1.80$
= 40
She bought 40 notebooks on Tuesday.
11. Cost of 10 magnets $=\$ 0.45 \times 10$

$$
=\$ 4.50
$$

Since one magnet is given free with every 10 magnets bought, he can get 11 magnets for \$4.50.
Cost of 33 magnets $=\$ 4.50 \times 3$

$$
=\$ 13.50
$$

Cost of 7 magnets $=\$ 0.45 \times 7$

$$
=\$ 3.15
$$

Amount of money needed $=\$ 13.50+\$ 3.15$ = \$16.65
He needs \$16.65.
12. (a) Mass of 2 blue marbles and 3 red marbles = 532 - 392
$=140 \mathrm{~g}$
Mass of box $=392-(2 \times 140)$

$$
=112 \mathrm{~g}
$$

The mass of the empty box is 112 g .
(b) $392-112=280 \mathrm{~g}$
$280 \div 10=28 \mathrm{~g}$
The average mass of each marble is 28 g .
13. Time taken by Priya $=10 \mathrm{~min}$

Distance from school to library $=200 \times 10$

$$
=2000 \mathrm{~m}
$$

When Priya was at the midpoint after 5 min,
Weiming had travelled 1250 m .
Weiming's speed $=1250 \div 5$

$$
=250 \mathrm{~m} / \mathrm{min}
$$

Weiming's speed for the whole journey was $250 \mathrm{~m} / \mathrm{min}$.
14. (a) Capacity of tank $=50 \times 40 \times 45$

$$
\begin{aligned}
& =90000 \mathrm{~cm}^{3} \\
& =90 \ell
\end{aligned}
$$

Amount of water in tank after first 4 minutes $=3.5 \times 4$
$=14 \ell$
Length of time Tap B was turned on
$=(90-14) \div(3.5+4.5)$
$=76 \div 8$
$=9.5 \mathrm{~min}$
Tap B was turned on for 9.5 min .
(b) Total length of time that Tap A was turned on $=4+9.5$
$=13.5 \mathrm{~min}$
Amount of water that flowed from Tap A
$=3.5 \times 13.5$
$=47.25 \ell$
The total amount of water that flowed from Tap A was 47.25ℓ.
15. (a) Area of shaded part

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 3.14 \times 5 \times 5\right)-\left(\frac{1}{2} \times 3.14 \times 2.5 \times 2.5\right) \\
& =39.25-9.8125 \\
& =29.4375 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Perimeter of the shaded part

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 3.14 \times 10\right)+\left(\frac{1}{2} \times 3.14 \times 5\right)+5 \\
& =15.7+7.85+5 \\
& =28.55 \mathrm{~cm}
\end{aligned}
$$

16. Number of butter cookies: Number of chocolate cookies

3	$:$	4
12	$:$	16

Number of cookies sold $=\frac{1}{4} \times 12+\frac{1}{4} \times 16$

$$
=7 \text { units }
$$

Number of cookies sold $=269-213$

$$
=56
$$

7 units $=56$
1 unit $=56 \div 7$

$$
=8
$$

$$
28 \text { units }=8 \times 28
$$

28 units $=8 \times 28$

$$
=224
$$

Number of almond cookies $=269-224$

$$
=45
$$

There were 45 almond cookies.
$\begin{aligned} \text { Number of cookies } & =269-224 \\ & =45\end{aligned}$
17. Amount at first: Amount in the end

3	$:$	1
15	$:$	5

Amount remaining after spending $=\frac{1}{4} \times \frac{4}{5} \times 15$

$$
=3 \text { units }
$$

$$
\begin{aligned}
& \text { Difference }=5-3 \\
& =2 \text { units } \\
& \begin{aligned}
2 \text { units }= & \$ 4 \\
15 \text { units } & =\$ 4 \div 2 \times 15 \\
& =\$ 30
\end{aligned}
\end{aligned}
$$

Ahmad had $\$ 30$ at first.
18. $9 \times 4=36$
$36-19=17$
She had 17 packets of 5 sweets each.

$$
\begin{aligned}
17 \times 5+19 & =85+19 \\
& =104
\end{aligned}
$$

Xinyi packed 104 sweets altogether in the end.
Xinipacked

1. 90000
2. 11
3. Six million, eight hundred and seven thousand, nine hundred and forty-three
4. $3.5,3 \frac{1}{5}, 3.05$
5. 30.75
6. 7924
7. 19
8. 4
9. 3795
10. 7
11. 24
12. 28 January
13. 63,81
14. $1 \frac{7}{12} \mathrm{hr}$
15. $2 \frac{5}{6}$
16. $5 \frac{1}{20}$
17. $\frac{1}{8}$
18. 24.0
19. $\$ 0.16$
20. 16
21. 43
21.6
22. 44
23. 30
24. 228
25. 32
26. 819
27. \$312
28. $\$ 42$
29. 26
30. 175
31. 244
32. 672
33. $\$ 1.20$
34. 13
35. 5
36. 243
37. (a) $\$ 418$
(b) 160
38. 9
39. $\$ 90$

Review B (Textbook 6 P235-241)

1. 210 ml
2. 2.81 m
3. 2.6 cm
4. 3 kg 200 g

Review C (Textbook 6 P242-249)
5. 6.30 a.m.

1. $\$ 4$
2. (a) 8 cm
(b) 127°
3. 36 cm
4. 26 kg
5. 15
6. 378
7. $38 \mathrm{~m}^{2}$
8. 24
9. $66 \mathrm{~cm}^{2}$
10. 81
11. $1000 \mathrm{~cm}^{3}$
12. 94 cm
13. 40%
14. 2013 and 2014
15. 102 cm
16. 88
17. $\$ 11.40$
18. 36
19. 175000
20. 180 min
21. 22 cm
22. 15\%
23. $512 \mathrm{~cm}^{3}$
24. $217.75 \mathrm{~cm}^{2}$
25. 16 min 13. 35%
26. $\$ 500$
27. 2
28. 180 cm
29. $800 \mathrm{~cm}^{2}$
30. $105 \mathrm{~cm}^{2}$
31. $17408 \mathrm{~cm}^{3}$
32. $557 \mathrm{~cm}^{2}$
33. $324 \mathrm{~cm}^{2}$
34. $120 \mathrm{~cm}^{3}$

Review D (Textbook 6 P250-259)

1. Petrol station
2.

3. 3
4. Yes
5. S
6. D
7. EF and GH
8. 8 o'clock
9. 60°
10. 59°
11. 72°
12. 180°
13. 150°
14. 121°
15. 84°
16. 83°
17. 118°
18. 82°
19. 227°
20. 18°
21. (a) 75°
(b) 30°
22. (a) 52°
(b) 76°
23. (a) 29°
(b) 151°
24. 138°
25. 84°

Review E (Textbook 6 P260-261)

1. 160%
2. $\$ 875$
3. 60%
4. 108 cm
5. $\$ 45.60$
6. $7: 17$
7. $\$ 19.50$
8. $2: 3$
9. 120%
10. $19: 26$
11. 375
12. 132
13. 144
14. 1575
15. (a) $\$ 229.20$
(b) 50%
16. 70

Review F (Textbook 6 P262)

1. $9 \mathrm{~km} / \mathrm{hr}$
2. 495 km
3. $6 \mathrm{~m} / \mathrm{s}$
4. 16 min
5. $16 \mathrm{~km} / \mathrm{hr}$
6. $150 \mathrm{~m} / \mathrm{min}$
7. 45 s
8. (a) 8 a.m.
(b) 8 hr

Review G (Textbook 6 P263-264)

1. $\$ 5 a$
2. 7
3. $4 c+5$
4. $10 d-2$
5. $30 f-5$
6. 148 cm
7. $\frac{750-k}{20}$
8. (a) $(2 p+39) c m$
(b) 51 cm
9. 413
10. (a) $\left(\frac{12 y+18}{4}\right) \mathrm{cm}$
(b) $812.25 \mathrm{~cm}^{2}$

NAVIGATING THROUGH THE ASSESSMENT EXERCISES AND ACTIVITIES

For teachers to assess pupils' achievement of the learning objectives, the Teacher's Resource Book provides direction for teachers on how to use the following assessment and exercises. Summarising the evaluative aspect of this series, the following exercises can be utilised optimally.

TEXTB00K

CHAPTER OPENER

Chapter Opener consists of familiar events or occurrences that serve as an introduction of the topic to pupils.

FOCUS
Questions related to the lesson objectives are asked as an introductory activity for pupils. The activity allows pupils to explore different ways to solve the problem.

LET'S LEARN

Main concepts are introduced in Let's Learn. The consolidation and formalising of concepts are achieved. The exercises can be used by teachers to test their pupils' prior knowledge. Teachers can provide valuable assessment-based feedback to pupils. Having pupils attempt these exercises will help teachers identify the focus of each lesson and the adjustments they need to make to their teaching in order to help pupils meet the intended learning outcomes.

Most of the activities in the book are to be carried out in pairs or groups. Pupils explore mathematical concepts in a fun way through games. Observing pupils' approach and dexterity while doing the activity will give a clear indication to teachers on how the lesson should be conducted.

The questions in Practice enable teachers to gauge if pupils have grasped the concepts. Practice can be done as an independent exercise in class or as homework.

Through the questions, teachers get to understand what their pupils have learned. They will be able to find the answers to the following questions:
(i) Are there any common gaps in my pupils' knowledge of the topic which I need to revisit?
(ii) In which aspects of my pupils' learning of the topic did they achieve mastery?
(iii) What are the strengths and weaknesses in my planning for teaching?

Pupils' critical and problemsolving skills are enhanced when working on the Mind Workout. Teachers can use the exercises to challenge advanced learners. It is advisable to use the exercise as an independent assignment for pupils.

MATHS JOURNAL

Maths Journal enhances pupils' skills such as mathematical communication, reasoning, organisation and tabulation of data. The exercises can be done in a group or individually in class or at home.

Key concepts required in the syllabus that must be learnt are highlighted in Self-Check. It would be beneficial for pupils when teachers revise the key concepts in class as this allows pupils to assess their own learning at the end of each chapter and facilitates their revision in preparation for the examination.

WORKBOOK

Worksheets

Well-structured questions covering all the concepts taught in each lesson, are found in each worksheet. A suggested approach would be to have pupils do alternate questions from each worksheet or do the questions that will build their foundation of the concepts. The skipped questions can be revisited during revision before the examination. The worksheets in the workbooks can be done as a complimentary practice exercise to augment the concepts learnt.

Review

The Review Exercise consists of questions that requires the application of a consolidation of concepts learnt in the chapter. The exercises can be done as a group assignment for teachers to gauge the pupils' ability to grasp the consolidated concepts learnt in the chapter. Group assignments help pupils to learn together as they gather feedback from one another. Teachers can also get pupils to submit their completed exercises and mark them as a form of informal assessment.

Maths Journal
Maths Journal tests pupils' understanding of the mathematical concepts learnt in the chapter and further enhances their learning of the concepts.

Mind Workout

Mind Workout consists of higher-order thinking tasks which enable pupils to apply relevant heuristics and extend the concepts and skills learnt.

Revision

Revision exercises at the end of a set of chapters consist of questions that enable pupils to apply all the concepts and skills taught. The exercises can be done before an examination or a test. They serve as good revision exercises for pupils to do in class or as homework with guidance from their parents when necessary. They also enable teachers to evaluate the pupils' understanding of the concepts across strands and topics and can be used as an effective preparatory exercise for examinations.

Mid-Year and End-of-Year Revisions

These are assessment exercises with multiple choice questions, short-answer questions and word problems. Teachers can use the revision exercises as mock examinations to help pupils prepare for the examinations. Feedback provided to pupils will be extremely beneficial as they will be aware of the areas that they are weak in and work on them. The revision exercises test pupils' ability to recall the concepts taught and apply them. They also allow teachers to analyse the effectiveness of their spiral approach of teaching concepts. Teaching concepts by revisiting, re-linking to other concepts and creating a mind map help pupils do their examinations in a more effective way. A good evaluative assessment should not consist of questions that encourage rote learning, but should consist of questions that encourage learning by the spiral approach.

Examination papers should not be considered by teachers as the only means of evaluation. Informal evaluation involves classroom discussions, participation, exchange of ideas, multiple strategies, activities, group assignments, presentations and above all, mind-mapping, before they embark on independent work. It is essential for the pupils to receive feedback on their work which provides an important opportunity for reflection on what they have learnt. Similarly, teachers should be able to diagnose the progress and achievement of the pupils and decide on the future course of action, which is where the assessment activities and exercises come in.

Notes

