New Get Ahead
 MATHEMATICS

Bilingual Teaching Guide
－がいと

Parveen Arif Ali

OXFORD
UNIVERSITY PRESS

Contents

Page
Introduction IV
Unit 1: Sets 2
Unit 2: Rational and Irrational Numbers 4
Unit 3: Squares and Square Roots. 9
Unit 4: Cubes and Cube Roots 12
Unit 5: Number system with Base Two, Five, Eight, and Ten 14
Unit 6: Compound Proportions 22
Unit 7: Banking 24
Unit 8: Percentage, Insurance, and Taxation 25
Unit 9: Algebra: Polynomials 28
Unit 10: Factorisation 31
Unit 11: Simultaneous Linear Equations 36
Unit 12: Introduction to Trigonometry 43
Unit 13: Fundamentals of Geometry 46
Unit 14: Practical Geometry 49
Unit 15: Surface Area and Volume 50
Unit 16: Demonstrative Geometry 53
Unit 17: Information Handling. 54

Introduction

Get Ahead Mathematics is a series of eight books from levels one to eight. The accompanying Teaching Guides contain guidelines for the teachers. The Teaching Guides, for Books 2 to 5 , contain answers to the mathematical problems in the books. The teachers should devise means and ways of reaching out to the students so that they have a thorough knowledge of the subject without getting bored.
The teachers must use their discretion in teaching a topic in a way they find appropriate, depending on the intelligence level as well as the academic standard of the class.
Encourage the students to relate examples to real things. Don't rush.
Allow time to respond to questions and discuss particular concepts.
Come well prepared to the class. Read the introduction to the topic to be taught in the pupils' book. Prepare charts if necessary. Practice diagrams to be drawn on the blackboard. Collect material relevant to the topic. Prepare short questions, homework, tests and assignments.
Before starting the lesson make a quick survey of the previous knowledge of the students, by asking them questions pertaining to the topic. Explain the concepts with worked examples on the board. The students should be encouraged to work independently, with useful suggestions from the teacher. Exercises at the end of each lesson should be divided between class work and homework. The lesson should conclude with a review of the concept that has been developed or with the work that has been discussed or accomplished.
Blackboard work is an important aspect of teaching mathematics. However, too much time should not be spent on it as the students lose interest. Charts can also be used to explain some concepts, as visual material helps students make mental pictures which are learnt quickly and can be recalled instantly.
Most of the work will be done in the exercise books. These should be carefully and neatly presented so that the processes can easily be seen.
The above guidelines for teachers will enable them to teach effectively and develop an interest in the subject.
These suggestions can only supplement and support the professional judgement of the teacher. In no way can they serve as a substitute for it. It is hoped that your interest in the subject together with the features of the book will provide students with more zest to learn mathematics and excel in the subject.

تحارف

Get Ahead Mathematics

 6 اطْْ ليّ ،و ريضن پط
 ج
زياه

 هرچظر، بو گی-

Sets (pages 1-18)

Following are the basic information of sets.

Standard sets of numbers

Set of Natural numbers
$\mathrm{N}=\{1,2,3,4, \ldots \ldots\}$
Set of whole numbers
$\mathrm{W}=\{0,1,2,3,4, \ldots \ldots\}$
Set of integers
$Z=\{\ldots \ldots 3,-2,-1,0,1,2,3, \ldots \ldots\}$
Set of rational numbers
$\mathrm{Q}=\{\mathrm{p} / \mathrm{q} / \mathrm{p}$ and $\mathrm{q} \in \mathrm{Z}$ and $\mathrm{q} \# 0\}$
Set of even numbers
$\mathrm{E}=\{2,4,6,8, \ldots \ldots\}$
Set of Odd numbers
$\mathrm{O}=\{1,3,5,7, \ldots \ldots\}$
Set of prime numbers
$P=\{2,3,5,7,11,13,17, \ldots \ldots\}$

Subsets

A set P is a subset of a set Q if all the members of P are also the member of Q.
From the given standard sets we can say
$\mathrm{N} \subset \mathrm{W}$ and $\mathrm{W} \subset \mathrm{Z}$
$\mathrm{N} \subset \mathrm{Z} W \subset \mathrm{Z}$
$\mathrm{N} \subset \mathrm{Z}$

Power set

The power set is a set which contains all the possible subsets of the given set.
Consider the following set.
$\mathrm{A}=\{1,2,3\}$
The power set of A is written as:
$P(A)=$ all the possible subsets of A.
$=[\{ \},\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}]$
The power set of A has 8 subsets.
To find out the power set (number of subsets) of a given set, we can use the formula, 2^{n} (where \mathbf{n} stands for the number of elements in the set).
$A=\{1,2,3\}$ (3 elements)
$P(A)=2^{n}=2^{3}=8$ subsets
$B=\{a, b, c, d\}$ (4 elements)
$P(B)=2^{n}=2^{4}=16$ subsets.

De Morgan's Laws:

De Morgan's laws state that
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(ii) $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$

Verification of the laws are given on page 4 of the book.
Verification of De Morgan's Laws thought Venn diagram.
Let us take two sets A, B, and an universal set U. According to De Morgan's laws

1. $(\mathbf{A} \cup \mathbf{B})^{\prime}=\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}$

U

$(A \cup B)^{\prime}$
2. $(\mathbf{A} \cap \mathbf{B})^{\prime}=\mathbf{A}^{\prime} \cup \mathbf{B}^{\prime}$

$(A \cap B)^{\prime}$

$\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$

UNIT

Rational and

2 Irrational Numbers

Rational Numbers

Natural numbers are the counting numbers (or positive integers). When we add two natural numbers the sum is always a natural number
$2+3=5$
When a natural number is subtracted from another natural number, the difference might not be a natural number
$2-4=-2,5-5=0$
Thus arose the concept of whole numbers and negative integers.
$0,-1,-2,-3, \ldots$ But what happens when a natural number is divided by another natural number? $4 \div 2=2$.

$$
3 \div 5=\frac{3}{5}
$$

In what system of numbers can we place $\frac{3}{5}$?
The numbers named by common fractions are part of a set of numbers, called 'rational numbers'. Thus $\frac{1}{2}, \frac{7}{6}, 5, \frac{3}{5}$ and 0 are all rational numbers.

The set of rational numbers contains the set of whole numbers as a subset. Thus we have enlarged the set of numbers that we can use.
We can define a rational number as: 'Any number which can be expressed in the form $\frac{p}{q}$, where p and q are integers and q is not equal to zero'.
Hence positive integers, negative integers, zero and common fractions belong to the system of rational numbers.
When we are given a fraction representing a rational number, we can always obtain a decimal numeral for the same number by dividing the numerator of the fraction by the denominator

$$
\frac{1}{2}=0.5, \frac{3}{5}=0.75, \quad \frac{12}{5}=2.4
$$

Sometimes, however, the division process has to be worked out by a long division $\frac{23}{16}=1.4375$

16 \begin{tabular}{c}
1.4375

$\frac{-16}{23.0000}$
$\frac{-64 \downarrow}{60}$
$\frac{-48}{120}$
$\frac{-112}{80}$
$\frac{80}{x}$

\end{tabular}

For many rational numbers, the division process does not lead to a remainder 0 $\frac{103}{33}=3.12 \overline{12} \ldots$,

Where the $\overline{12}$ indicates that the block of digits ' 12 ' repeats indefinitely In general we can say that every rational number can be represented either by a terminating decimal number or by a repeating decimal number.

Irrational Numbers

Look at the decimal expression:
0.535533555333

The digits after the decimal point are first one 5 and one 3, then two 5's and two 3 's, and so on. It is neither terminating nor repeating. We know then, that it does not represent a rational number.
We can say that Irrational Numbers are numbers represented by non-terminating, nonrepeating numerals e.g. $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc. are irrational numbers. The positive square root of a counting number that is not a perfect square is an irrational number.
Rational numbers can be represented on a number line. Construct the number line with integers as follows:

Dividing the segment between each pair of consecutive integers into equal parts we get rational numbers.

Properties of Equality of Real Numbers

We use the sign = to show that two expressions have the same number. We will be using the following properties of equality for all real numbers a, b and c .

1. Reflexive property: $\mathrm{a}=\mathrm{a}$
2. Symmetric property: If $a=b$, then $b=a$
3. Transitive property: If $a=b$ and $b=c$, then $a=c$
4. Additive property: If $a=b$, then $a+c=b+c$
5. Multiplicative property

If $a=b$, then $a c=b c$ and $c a=c b$
6. Cancellation property with respect to addition: if $a+c=b+c$ then $a=b$ and if $c+a$ $=c+b$ then $a=b$
7. Cancellation property with respect to multiplication: $\mathrm{ac}=\mathrm{bc}$ then $\mathrm{a}=\mathrm{b}$ and $\mathrm{ca}=\mathrm{cb}$ then $\mathrm{a}=\mathrm{b}$

Properties of Inequality

For all real numbers a, b and c .

1. Trichotomy property

Either $\mathrm{a}<\mathrm{b}$ or $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}>\mathrm{b}$
2. Transitive property

If $\mathrm{a}>\mathrm{b}$ and $\mathrm{b}>\mathrm{c}$ then $\mathrm{a}>\mathrm{c}$
If $\mathrm{a}<\mathrm{b}$ and $\mathrm{b}<\mathrm{c}$ then $\mathrm{a}<\mathrm{c}$
3. Additive property

If $a>b$ then $a+c>b+c$
If $\mathrm{a}<\mathrm{b}$ then $\mathrm{a}+\mathrm{c}<\mathrm{b}+\mathrm{c}$ and $\mathrm{c}+\mathrm{a}<\mathrm{c}+\mathrm{b}$
4. Multiplicative property

If $\mathrm{c}>0$ and $\mathrm{a}>\mathrm{b}$ then $\mathrm{ac}>\mathrm{bc}$ and $\mathrm{ca}>\mathrm{cb}$
If $\mathrm{a}<\mathrm{b}$ then $\mathrm{ac}<\mathrm{bc}$ and $\mathrm{ca}<\mathrm{cb}$
If $\mathrm{c}<0$ i.e., ' c ' is a negative integer, and if $\mathrm{a}>\mathrm{b}$ then $\mathrm{ac}<\mathrm{bc}$ and $\mathrm{ca}<\mathrm{cb}$
If $\mathrm{a}<\mathrm{b}$ then $\mathrm{ac}>\mathrm{bc}$ and $\mathrm{ca}>\mathrm{cb}$
5. Cancellation property with respect to addition

If $a+c>b+c$ then $a>b$
If $\mathrm{c}+\mathrm{a}>\mathrm{c}+\mathrm{b}$ then $\mathrm{a}>\mathrm{b}$
If $a+c<b+c$ then $a<b$
If $c+a<c+b$ then $a<b$
6. Cancellation property with respect to multiplication

If $\mathrm{c}>0$
If $\mathrm{ac}>\mathrm{bc}$ then $\mathrm{a}>\mathrm{b}$
If $\mathrm{ca}>\mathrm{cb}$ then $\mathrm{a}>\mathrm{b}$
If $\mathrm{ac}<\mathrm{bc}$ then $\mathrm{a}<\mathrm{b}$
If $\mathrm{ca}<\mathrm{cb}$ then $\mathrm{a}<\mathrm{b}$
If $c<0$
If $\mathrm{ac}>\mathrm{bc}$ then $\mathrm{a}<\mathrm{b}$
If $\mathrm{ca}>\mathrm{cb}$ then $\mathrm{a}<\mathrm{b}$
If $\mathrm{ac}<\mathrm{bc}$ then $\mathrm{a}>\mathrm{b}$
If $\mathrm{ca}<\mathrm{cb}$ then $\mathrm{a}>\mathrm{b}$
Verify by substituting the values of $\mathrm{a}=1, \mathrm{~b}=2$ and $\mathrm{c}=3$
In the above, equalities prove the properties. The pupils do not need to learn them, but as you proceed to solve equations and inequations the properties can be referred to as required.

Inequations

Look at the number line.

A number line indicates order relations among real numbers.
For example -4 is less than 2
4 is greater than -1
The sentence: $-3<x<2$ means that ' x ' denotes a number between -3 and 2 .
We can read the sentence as:
' x is greater than -3 and less than 2 '.
The same comparison is stated in the sentence: $2>\mathrm{x}>-3$.
Here are three inequalities:

$$
-2<0 \quad 4 x-3>2 \quad y+7<9
$$

An inequality is formed by placing an inequality symbol $(<,>)$ between numerical or variable expressions called the 'sides' of the inequality.
An inequality containing a variable is called an 'open sentence'
For example 5x-1<9

We can solve such an inequality by finding the value of the variable for which the inequality is a true statement. Such values are called 'solutions of the inequality'. They make up the 'solution set of the inequality'
If $a=\{-1,0,1,2,3,4\}$, what is the solution set of $a+7<9$?
Replace 'a' with each of its values in turn:

$$
\begin{aligned}
\mathrm{a}+7 & <9 \\
-1+7 & <9 \text { (true) } \\
0+7 & <9 \text { (true) } \\
1+7 & <9 \text { (true) } \\
2+7 & <9 \text { (false) } \\
3+7 & <9 \text { (false) } \\
4+7 & <9 \text { (false) }
\end{aligned}
$$

Therefore the solution set is: $\{-1,0,1\}$
Example: by using properties of inequalities, find the solution set of
$7 \mathrm{x}-10<\mathrm{x}+8$ where $\mathrm{x} \in \mathrm{N}$ (x is a natural number)
$7 x-10+10<x+8+10$ (additive property)
$7 \mathrm{x}-\mathrm{x}<\mathrm{x}+18-\mathrm{x}$ (cancellation property with respect to addition)
$7 \mathrm{x}-\mathrm{x}<+18$
$6 \mathrm{x}<18$
$\frac{6 x}{6}<\frac{18}{6}$ (cancellation property with respect to multiplication)
$\mathrm{x}<3$
This means that $7 \mathrm{x}-10<\mathrm{x}+8$ is true for all those values of ' x ' which are natural numbers less than 3 .
As 1 and 2 are the natural numbers less than 3 , the solution set is $\{1,2\}$.

Squares and square Roots

Squares

The square of a number is obtained by multiplying the number with itself.
Pattern followed by a square number
$2^{2}=1+2+1=4$
$3^{2}=1+2+3+2+1=9$
$4^{2}=1+2+3+4+3+2+1=16$
$5^{2}=1+2+3+4+5+4+3+2+1=25$
$=1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=100$
We have learnt that subtracting a number is the inverse of adding that number, and that dividing a non-zero number is the inverse of multiplying by that number. The inverse of squaring a number is finding a 'square root'.
If $\mathrm{a}^{2}=\mathrm{b}$, then ' a ' is called the square root of ' b '.
$8^{2}=64$ and $(-8)^{2}=64$ then +8 and -8 are the square roots of 64 .
The symbol $\sqrt{ }$ called the radical sign is used to denote the principal or non-negative square root of a positive number.
Thus $\sqrt{64}=8$ and $-\sqrt{64}=-8$.
An expression written underneath the radical sign, such as 64 , is called the radicand.
Often it is convenient to use plus - or - minus notation (\pm) with radicals
For example $\pm \sqrt{64}$ means the positive or negative square root of 64 .
It means that: $\left(\sqrt{\mathrm{a}^{2}}\right)=\mathrm{a}$
Zero has only one square root, namely zero itself, i.e. $\sqrt{0}=0$.
The values of certain square roots can be seen at a glance, e.g. we may be able to find other square roots by expressing them as a product of square roots that are familiar to you
Examples:
Find $\sqrt{144}=\sqrt{9 \times 16}=3 \times 4=12$
For any non-negative real numbers 'a' and ' b '.

$$
\sqrt{\mathrm{ab}}=\sqrt{\mathrm{a}} \times \sqrt{\mathrm{b}}
$$

Find $\sqrt{\frac{64}{16}}=\sqrt{\frac{64}{16}}=\frac{8}{4}=2$

For any non-negative real number a and b

$$
=\sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}
$$

To find the square root of decimal fractions

Find the square root of 256.009 . Count the digits after the decimal point. It is three which is an odd number. Add a zero to the extreme right to make pairs. $\hat{256} . \overline{0090}$

Follow the steps as explained for whole numbers keeping in mind that the decimal point is placed (in the quotient) as soon as the digits in the integral part are over, and the process is continued till the last pair after the decimal has been taken into consideration. Find the positive square root of 126.1129

	11.23
1	$1 \overline{26} . \overline{11} \overline{29}$
	-1
21	26
+1	-21
222	511
+2	-444
2243	6729
	$-\quad 6729$
	x

Square Root of Common Fractions

If the numerator and denominator are perfect squares then extract their square roots separately and then solve the fraction obtained.
Find the square root of $\frac{4}{9}$
$\sqrt{\frac{4}{9}}=\frac{2}{3}=0.666$
If both the numerator and denominator are not perfect squares then convert the common fraction into a decimal fraction and then find the square root of the number.
Find the square root of $\frac{3}{7}$
Changing $\frac{3}{7}$ into a decimal fraction
$\frac{3}{7}=0.428571$

Finding the square root by the division method.

0.654	
6	$0 . \overline{42} \overline{85} \overline{71}$
+ 6	-36
125	685
+1	- 625
1304	6071
	- 5216

The square root of $\frac{3}{7}=0.654$ (up to 3 decimal places)

Square Root of Numbers which are not Perfect Squares

For numbers that are not perfect squares, we can find their square roots by the division method, up to a specific number of decimal places.
Find the square root of 2 .

1.4142	
	$2 . \overline{00}, \overline{00}, \overline{00}, \overline{00}$
$+\quad 1$	-1
24	100
$+\quad 4$	-96
281	400
$+\quad 1$	-281
2824	11900
$+\quad 4$	-11296
28282	60400
$+\quad 2$	-56564
	3836

$\sqrt{2}=1.4142$
It must be remembered that irrational numbers, which cannot be written in the form of $\frac{p}{q}$ where ' p ' and ' q ' are integers and ' q ' is not equal to zero cannot be converted into common fractions e.g. $\pi, \sqrt{2}, \sqrt{3}$, etc.
The square roots of irrational numbers are found in the same way as for decimal fractions up to a specific number of decimal places.

Cubes and Cube Roots

Perfect cubes are obtained by multiplying a number three times. $7^{3}=7 \times 7 \times 7=343$. They have only three identical factors $27=3 \times 3 \times 3=3^{3}$

Properties of a cube
even numbers are even

$$
6^{3}=216
$$

negative integers are negative

$$
(-4)^{3}=-64
$$

odd numbers are odd

$$
9^{3}=729
$$

natural numbers are of the same form

$$
\begin{gathered}
4^{3}=64=3 \times 21+1 \\
5^{3}=125=3 \times 41+2
\end{gathered}
$$

Geometrically cubes are represented as

Cube root of a number is the factor multiplied by itself 3 times. Finding the cube root of a number is opposite of cubing a number.

Properties of cube roots

Activity 1 :

- Take a cubic block with all sides equal
- Measure length, breadth and height.
- Find $\mathrm{l} \times \mathrm{b} \times \mathrm{h}$ which will be a cubic number.

3 - Find the cube root of the obtained number.

Activity 2:
Copy the table on the board and call the students one by one to complete it.

n	n^{3}
9	
	729
	125
10	8000
11	

Base Two or Binary System

In the decimal system, we make use of the symbols $0,1,2, \ldots 9$, together with their place values to represent a number. The symbols are known as digits. The value of the digit depends on its place within the number. Every digit has a value following a certain place value
For example 124 is a number with three digits $-1,2$ and 4 . The value is one hundred and twenty four, which follows the place values 1 hundred, 2 tens and 4 units.

1	2	4
hundreds	tens	units
$\frac{4}{7}$	$\stackrel{4}{\wedge}$	$\stackrel{4}{\text { - }}$
1×100	2×10	4×1

i.e. $124=(1 \times 100)+(2 \times 10)+(4 \times 1)$

We can see that in this system, the place a symbol occupies has a fixed value. All the place values in the decimal system are in terms of powers of ten. Therefore, the decimal system is also called the system to base 10.0 is called a place holder. Thus, 240,204 and 24 , all have different values.
Another system of numbering where the place values are in terms of powers of two (i.e. counting in groups of two) is called the 'binary system', or 'base two system'. In the binary system we have units, twos, fours, eights, ...etc. i.e. each place has a value two times the value of the place on the right. All the place values are in terms of powers of two.
We can use the 'binary number reader' to discover the base ten value of base two numerals.

We enter the base two number into the binary number reader and multiply and add. To change 11011 in the base two system to the base ten value, we enter the base two number in the Binary Number Reader.

Multiply $1 \times 16=16$
$1 \times 8=8$
$0 \times 4=0$
$1 \times 2=2$
$1 \times 1=1$

Now add: $16+8+0+2+1=27$
The base of the system is often written below the number to avoid confusion $11011_{2}=27_{10}$

Note that here 0 is a place holder.
Make the pupils practice writing numbers from 1 to 12 in the binary system as compared to those in the decimal system.

Base 2 Number
0 1 1
10 11 100
101
110
111
1000
1001
1010
1011
1100

Base 10 Number
0

2
3
4
5
6
7
8
9 101112

101 is different from 110 and 011 . Stress importance of ' 0 ' as place holder.

Base Five Number System

In this system, a number is expressed in terms of powers of 5 or as the sum of multiples of 5. In the base five system, five symbols are used which are: $0,1,2,3,4$.
Write the base five numbers and their equivalent base ten numbers.
10 5
$11 \quad 6$
$12 \quad 7$
13 8
$14 \quad 9$

Base 5 number
1
2
3
4

20

Base 10 number
1
2
3
4 4
10

Conversion of Decimal System to Base Two System

To change any decimal number (base 10) into a binary number, we carry out successive divisions of the decimal number by ' 2 ' and write the remainder after each division next to the quotient. We carry out the divisions until we get ' 0 ' or ' 1 ' as the remainder. The binary number is found by writing the remainders starting from the bottom to the top Convert 23_{10} to the base two system, dividing each quotient by 2 .

2	23	Remainder
2	11	-1
2	5	-1
2	2	-1
2	1	-0
2	0	-1

The required binary number is:
$23_{10}=10111_{2}$

Conversion of Binary Numbers into Base Ten

We can use the place value property by which a binary number can be changed easily into a base ten number
Convert 111_{2} into the decimal system:
111_{2} consists of 3 digits.
The place value of binary numbers are: $2^{2} 2^{1} 2^{0}$
The binary number 111_{2} can be written by multiplying each digit, starting from the right with the increasing power of 2 .

Place value	2^{2}	2^{1}	2^{0}
Numbers	1	1	1

$$
\begin{aligned}
111_{2} & =1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =4+2+1 \\
& =7
\end{aligned}
$$

Conversion of Decimal System to base 8 system.
Example:
Convert 5890_{10} to base 8 system.

8	5890	Remainder	
8	736	-2	
8	-0		
8	92		
8	11		
8	1	-4	
8	0	-1	

$5890_{10}=13402_{8}$
Conversion of base 8 number to decimal system
$1340_{28}=\left(1 \times 8^{4}\right)+\left(3 \times 8^{3}\right)+\left(4 \times 8^{2}\right)+\left(0 \times 8^{1}\right)+\left(2 \times 8^{0}\right)$
$=4096+1536+256+0+2$
$=5890_{10}$

Operations on Binary Numbers

Addition:

Binary Numbers can be added in columns as we add decimal numbers.

$$
\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
+0 & +1 & +0 & +1 \\
\hline & +1_{2} & + & \\
\hline
\end{array}
$$

In the binary system ' 2 ' is written 10_{2}. So when adding binary numbers every time we get a ' 2 ' we change it into 10_{2}. We write ' 0 ' in the units column and carry ' 1 ' to the next column

Add:	1012
	102 +11
	111_{2}
Add:	1012
	$+10012$
	1110_{2}
Add:	1012
	$+1012$
	1010

Subtraction of Binary Numbers

Binary numbers can be subtracted in column form as we subtract decimal numbers.

$$
\begin{array}{rrrc}
0 & 1 & 1 & 10 \\
-0 & -0 \\
\hline 0_{2} & -1 & \frac{-1}{1_{2}} & - \\
\hline
\end{array}
$$

Carry out the following subtractions to explain subtraction in the binary system Subtract.

1.	110	(1 cannot be subtracted from 0 so borrow
	$\underline{-1012}$	a 2 from the next column and subtract 1 from 2)
	001	
2.	1012	
	$-11{ }_{2}$	
	10_{2}	

Answers of the subtractions can be checked by changing them into the decimal system

When simplifying sums having addition and subtraction signs follow the DMAS Rule i.e. add first and then subtract.

Multiplication of Binary Numbers

The multiplication of ' 0 ' and ' 1 ' in the binary system is the same as in the decimal system

$$
\begin{aligned}
& 0 \times 0=0 \\
& 1 \times 0=0 \\
& 0 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

Therefore multiplication is done in the same way as in the decimal system Find the product of 110_{2} and 11_{2}

$$
\begin{array}{r}
110_{2} \\
\times 11_{2} \\
\hline 110_{2} \\
\hline 110_{2} \\
\hline 10010_{2} \\
\hline
\end{array}
$$

To check the answers change the binary numbers into decimals.

$110{ }_{2}$	6_{10}
$\times 11_{2}$	310
110 (=6)	18_{10}
1100 (= 12)	
$\underline{10010_{2}}$	

Conversion of the Decimal System to the Base Five System

To change a base 10 number into a base five number we use the division method with the successive remainders in the same way as we did for binary numbers. The division continues till we get the quotient less than five. Example $47{ }_{10}$ to base five.

5	47	Remainder
5	9	-2
5	1	-4
5	0	-1

The answer is 142_{5}.

Conversion of the Base Five System into the Decimal System

To change a base five number into a decimal number, we multiply the number with the respective powers of 5 according to its position and then find the sum

Convert 24 to base 10 .
$(2 \times 5)+\left(4 \times 5^{\circ}\right) \quad$ (multiplying by the powers of 5$)$
$10+(4 \times 1)$
$10+4$
$=14_{10}$

Multiplication with Base Five

We can find the product of numbers in the base five system as following.
Multiply: 342_{5} and 32_{5}
342_{5}
$\begin{array}{r} \\ \times \quad 32_{5} \\ \hline 1235\end{array}$
1234_{5}
$+21310_{5}$
230445

Operations of Numbers with Different Bases

Before simplifying the expression we have to convert all the numbers to the same base system. It is easier if we convert all of them to the decimal or base 10 system
$110111_{2}+21413_{5}+457_{10}$
Changing to the base 10 system:

$$
\begin{aligned}
110111_{2} & =1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{\circ} \\
& =32+16+0+4+2+1 \\
& =55_{10} \\
21413_{5} & =2 \times 5^{4}+1 \times 5^{3}+4 \times 5^{2}+1 \times 5^{1}+3 \times 5^{\circ} \\
& =1250+125+100+5+3 \\
& =1483_{10} \\
& =110111_{2}+21413_{5}+457_{10} \\
& =55_{10}+1483_{10}+457_{10} \\
& =1995_{10}
\end{aligned}
$$

Simplify $360_{10}-231_{5}-1111_{2}$

Changing the numbers to the base 10 .

$$
\begin{aligned}
231_{5} & =50+15+1=66_{10} \\
1111_{2} & =8+4+2+1=15_{10} \\
& =360_{10}-231_{5}-1111_{2} \\
& =360_{10}-66_{10}-15_{10} \\
& =360_{10}-81_{10} \\
& =279_{10}
\end{aligned}
$$

We can find the product of numbers given in different bases by changing them into the same base 10 .

Simplify
$241_{5} \times 1011_{2}$
Changing the numbers to base 10 .

$$
\begin{aligned}
241_{5} & =50+20+1=71_{10} \\
1011_{2} & =8+0+2+1=11_{10} \\
& =241_{5} \times 1011_{2} \\
& =71_{10} \times 11_{10} \\
& =781_{10}
\end{aligned}
$$

UNIT

Compound Proportion

6

Another kind of proportion in which more than two ratios are involved is called a compound proportion.

To solve a compound proportion we can split it into two or more simple ratios.
Example:
If 14 men can do a job in 8 days working 5 hours a day, how many hours a day must 35 men work to complete it in 4 days?

Reasoning: less men more days; less hours more days.
The proportion between men and days is inverse, and the proportion between hours and days is also inverse.
(Keep the quantity to be found in the middle.)

We multiply as shown by the arrows.

$$
\begin{aligned}
& 35 \times 4 \times x=14 \times 5 \times 8 \\
& \frac{35 \times 4 \times x}{35 \times 4}=\frac{14 \times 5 \times 8}{35 \times 4} \\
& x=4 \text { hours }
\end{aligned}
$$

More men working less days will work less hours a day

Example:

30 men are employed to complete a job in 8 days, but only $\frac{1}{3}$ of the work was completed in 3 days. Find out how many more men should be employed to complete the work in time.

work	$:$	men	$:$	days
$\frac{1}{3}$	$:$	30	$:$	3
$\frac{2}{3}$	$:$	x	$:$	5

Reasoning: More men less days, less work less men. The proportion is direct between work and days. The proportion is inverse between men and days.

(direct proportion) (inverse proportion)
$\frac{1}{3} \times x \times 5=\frac{2}{3} \times 30 \times 3$ (following the arrows)
$\frac{5}{3} \times \frac{3}{5} \times x=\frac{2 \times 3 \times 30 \times 3}{3 \times 5}$
$x=36$
$36-30=6$ i.e. 6 more men should be employed.

UNIT

7

Banking (pages 60-66)

Banking is the business activity regarding money.

Services provided by the banks:

- Checking accounts
- Cheque books
- Saving accounts
- Certificate of deposits
- Debit cards
- Mutual funds
- Personal loans
- Automated Teller Machine (ATM)
- Transactional Account
- Online banking
- Currency conversions
- Overdraft
- Leasing
- Demand finance

Instruments used in banking:

- cheques
- pay order
- demand draft
- deposit slip
- voucher

Banking Activity

Prepare this activity for morning presentation.
Call a banker (some parent working in bank). Request him/her to bring some bank instruments like cheque book, deposit slip, account opening forms etc. The presentor will explain the different procedures and daily activities going on in a bank. There are separate bank accounts for minors, he/she will explain the procedure to open their accounts emphasizing that saving is a good habit.
This activity can be an interactive session between the banker and the students.
If time permits, a role play related to the topic can be presented.
Next day, distribute a worksheet to the class with related multiple choice questions.

Percentage, Insurance, and Taxation

The ratio of one number to another can be expressed as a percent. The word 'percent' (denoted by ' $\%$ ') means 'hundredth' or divided by 100
For example $\frac{29}{100}$ is called 29 percent and written as 29%.
We can express one quantity as a percent of another quantity
Express 3 as a percentage of 5
$\frac{3}{5}$ of 100
$=\frac{3}{5} \times 100=\frac{300}{5}=60 \%$
This means that 3 is 60% of 5 .

Application of Percentage

Percentage is widely used because of its application in calculating zakat, commission, discount, taxes, etc.

Profit and Loss

Cost price is the actual price of an article. Selling price is the price at which it is sold.
If the selling price is higher than the cost price, the shopkeeper has made a profit.
For example:
Cost price is Rs 50
Selling price is Rs 60
Profit is $60-50=$ Rs 10
Cost price Rs 50
Selling price Rs 40
Loss is $50-40=$ Rs 10

To express the profit or loss in terms of percentage:

$$
\begin{aligned}
& C P=50 \\
& S P=60 \\
& \text { Profit }=60-50=10
\end{aligned}
$$

The profit on CP (Rs 50) is Rs 10
The profit on Rs 100 would be $\frac{10}{50} \times 100=20 \%$

$$
\mathrm{CP}=\text { Rs } 50
$$

SP = Rs 40
Loss $=50-40=10$

The loss on CP (Rs 50) is Rs 10 . The loss on CP (Re 1) is $\frac{10}{50}$.
The loss on Rs 100 would be $\frac{10}{50} \times 100=20 \%$
Note: The profit or loss percent is always calculated on the cost price.

Insurance

To protect a house, a car or other expensive items from loss or damage a person can have them insured. He pays a certain sum called 'premium', to an Insurance Company. This sum is calculated at a certain percentage of the total cost of the items. This percentage is called 'rate of the premium'.

To find the premium:

A man insures his life for Rs 500,000 . What is the annual premium he has to pay at the rate of $2 \frac{1}{2} \%$?
On Rs 100 he has to pay Rs 2.50 premium.
On Rs 500,000 he has to pay $\frac{2.50}{100} \times 500,000$
Annual premium = Rs 12,500.

To find the rate of the premium:

A man insures his life for Rs 450,000 and pays an annual premium of Rs 13,500 . Find the rate of the premium.
On Rs 450,000 he pays Rs 13,500 .
On Rs 100 he pays $\frac{13,500}{450,000} \times 100=$ Rs 3
So his premium rate is 3%.

Income Tax

All the money a person earns in a year is called his 'gross - income'.
A part of the gross income which is paid to the government is called income tax. The remaining amount is called 'net-income'.
Make a table of the rate of income tax deductions on various amounts of income and display it in the class during the course of the lesson. Rebate is a \% reduction in tax liability.
Income Tax Slabs 2018-2019

Salary per annum		Income tax rate
1.	Up to Rs. $1,200,000$	0%
2.	Rs. $1,200,001$ to $2,400,000$	5%
3.	Rs. $2,400,001$ to $4,800,000$	10%
4.	Rs. $4,800,001$ and above	15%

To find the tax payable

Example:
The annual income of a person is Rs $1,355,000$. Find the income tax due on him.
Total income = Rs $1,355,000$
Amount exceeding Rs $1,200,000=$ Rs $1,355,000$

$$
\frac{- \text { Rs } 1,200,000}{\text { Rs } 155,000}
$$

Since his income does not exceed Rs $2,400,000$, the rate of income tax will be 5%.
Income tax on Rs 155,000 will be: $\frac{5}{100} \times 155,000=$ Rs 7750

UNIT

Algebra:

9 Polynomials

Addition and Subtraction of Polynomials

To add two polynomials, we write the sum and simplify by adding similar or like terms. It is also convenient to arrange the expressions in ascending or descending order.
Add:
$3 \mathrm{x}-2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-4$ and $6 \mathrm{x}+7+2 \mathrm{x}^{3}-5 \mathrm{x}^{2}$
Arranging the expressions in descending order of x , and writing them in vertical form.
$-2 y^{3}+3 x^{2}+3 x-4$
$2 x^{3}-5 x^{2}+6 x+7$
$-2 x^{2}+9 x+3$
Subtracting polynomials is very much like subtracting real numbers. To subtract a number we add the opposite of that number. To subtract a polynomial we add the opposite of each term of the polynomial and then simplify.
Example:
Subtract $3 \mathrm{x}^{4}-5 \mathrm{x}^{2}+5 \mathrm{x}-3$ from $8 \mathrm{x}^{4}-3 \mathrm{x}^{2}+4 \mathrm{x}-6$
Writing the expressions in vertical form:
$8 \mathrm{x}^{4}-3 \mathrm{x}^{2}+4 \mathrm{x}-6$
$\frac{ \pm 3 x^{4} \mp 5 x^{2} \pm 5 x}{5 x^{4}+2 x^{2}-x-3}$ (changing to the opposite)

Multiplication of Polynomials

When we multiply two powers having the same base, we add the exponents as shown below:
$x^{2} \times x^{5}=x^{2+5}=x^{7}$
Example:
Multiply $3 x^{2}+2 x-4$ by $2 x^{2}-4 x+5$
Arrange the expressions in vertical form.

$$
\begin{aligned}
& 3 x^{2}+2 x-4 \\
& \times 2 x^{2}-4 x+5 \\
& \hline 6 x^{4}+4 x^{3}-8 x^{2} \\
&-12 x^{3}-8 x^{2}+16 x \\
&+15 x^{2}+10 x-20 \\
& \hline
\end{aligned}
$$

$$
6 x^{4}-8 x^{3} \quad-x^{2}+26 x-20
$$

Division of Polynomials

Division of one polynomial by another is very much like ordinary long division. When we divide polynomials we should make sure that the terms in each polynomial are arranged in order of decreasing degree in the variable. The division process ends when the remainder is either zero or of a lesser degree than the divisor
For example:
Divide $8 \mathrm{x}^{4}-12 \mathrm{x}^{3}+6 \mathrm{x}^{2}+22 \mathrm{x}-15$ by $4 \mathrm{x}^{2}+2 \mathrm{x}-3$

$$
\begin{array}{rc}
& 2 x^{2}-4 x+5 \\
4 x^{2}+2 x-3 & \begin{array}{c}
8 x^{4}-12 x^{3}+6 x^{2}+22 x-15 \\
\pm 8 x^{4} \pm 4 x^{3} \mp 6 x^{2}
\end{array} \\
\begin{array}{r}
-16 x^{3}+12 x^{2}+22 x-15 \\
\mp 16 x^{3} \mp 8 x^{2} \pm 12 x \\
\hline 20 x^{2}+10 x-15 \\
\pm 20 x^{2} \pm 10 x \mp 15
\end{array} \\
& x
\end{array}
$$

The quotient is $2 \mathrm{x}^{2}-4 \mathrm{x}+5$.

Simplifying Algebraic Expressions

The following types of brackets are used in algebra:
(): simple brackets or parenthesis
\{ \}: curly brackets or braces
[]: square brackets

- : vinculum

When brackets occur in an algebraic expression, start simplifying with the vinculum first.
The other brackets should be removed in the order: parenthesis, braces and then square brackets.
If there is a number just before the bracket, then all the terms inside the brackets should be multiplied by that number.
If a negative sign occurs before the bracket then the signs of all the terms within the brackets will change.
The expressions within a bracket should be simplified according to the DMAS rule. i.e. division first, then multiplication, then addition and last of all subtraction.

Example:
Simplify:
$2 x-[x-\{3 x-(x-2 y-1)\}]$
$2 x-[x-\{3 x-(x-2 y+1)\}] \quad$ removing the vinculum
$2 x-[x-\{3 x-x+2 y-1\}] \quad$ removing the parenthesis
$2 x-[x-3 x+x-2 y+1] \quad$ removing the braces
$2 x-x+3 x+x \mp 2 y-1$ solving the like terms
$3 x+2 y-1$

Factorisation

When we write:
$72=9 \times 8$ or $72=(2)(36)$
we have factorized 72 .
In the first case the factors are 9 and 8 .
In the second case they are 2 and 36.
In algebra we factorize a polynomial by expressing it as a product of other polynomials.
We can use division to test for factors of a polynomial
Example:
bx + by
Dividing both terms by b
$\frac{b x}{b}+\frac{b y}{b}$
$=(x+y)$
Multiplying $\mathrm{x}+\mathrm{y}$ by b we get $\mathrm{bx}+\mathrm{by}$.
So the factors of $b x+b y$ are b and $(x+y)$.

Factorisation of an expression of the type: $\mathrm{ka}+\mathrm{kb}+\mathrm{kc}$

k is a common factor of all the terms in the expression so (k) and $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ are the factors of $\mathrm{ka}+\mathrm{kb}+\mathrm{kc}$.
Example:

- Factorize $8 \mathrm{cx}+10 \mathrm{cy}+12 \mathrm{cz}$

2 c is the common factor of the term in the expression.
Dividing each term by 2 c we get:

$$
\begin{aligned}
& \frac{8 c x}{2 c}+\frac{10 c y}{2 c}+\frac{12 c z}{2 c} \\
& =(4 \mathrm{x}+5 \mathrm{y}+6 \mathrm{z})
\end{aligned}
$$

The factors of the expression are:
2 c and $(4 \mathrm{x}+5 \mathrm{y}+6 \mathrm{z})$

- Factorize $8 a^{3} b c x+16 a^{2} b^{2} c^{2} y$

The common factor in both terms is $8 a^{2} b c$.
Dividing each term by $8 \mathrm{a}^{2} \mathrm{bc}$
$\frac{8 a^{3} b c x}{8 a^{2} b c}+\frac{16 a^{2} b^{2} c^{2} y}{8 a^{2} b c}=a x+2 b c y$

The factors of the expression are:
$8 a^{2} b c$ and (ax $+2 b c y$).

- Factorize $a x+a y+b x+b y$.

Grouping two terms together
$(a x+a y)+(b x+b y)=$
$a(x+y)+b(x+y)$
$=(x+y)(a+b)$
Now take $(x+y)$ as a common factor
The factors are: $(\mathrm{a}+\mathrm{b})$ and $(\mathrm{x}+\mathrm{y})$
$(a+b)(x+y)$
$=a x+a y+b x+b y$
Sometimes the terms have to be arranged in order to factorize them easily

- Factorize: axy - bcz + bcxy - az.

Rearranging the terms:
$a x y+b c x y-a z-b c z$
Grouping the terms:
(axy +bcxy) - (az +bcz)
Finding the common factors
$x y(a+b c)-z(a+b c)=(a+b c)(x y-z)$
The factors are $(x y-z)$ and $(a+b c)$.
Factorisation of an expression of the type $a^{2} \pm \mathbf{2 a b}+\mathbf{b}^{2}$
The symmetry property of equality enables us to rewrite the formulas for squaring a binomial in a form useful for factorisation.

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2}=(a+b)(a+b) \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}=(a-b)(a-b)
\end{aligned}
$$

The expressions on the left sides of the equations are called 'trinomial squares', or 'perfect squares' since each expression has three terms and is the square of a binomial.
To determine whether or not a trinomial is a trinomial square ask the following questions.
Is the first term a square?
Is the last term a square?
Is the middle term twice the product of the square roots of the first and last terms?
Examples:

- Is $81 x^{2}+90 x y+25 y^{2}$ a trinomial square?

The first term $81 \mathrm{x}^{2}$ is the square of 9 x .

The last term $25 y^{2}$ is the square of 5 y .
The middle term $90 x y$ is twice the product of the square roots of $81 x^{2}$ and $25 y^{2}$.
Thus $81 x^{2}+9 x y+25 y^{2}$ is a perfect square.

- Is $100 c^{2}+30 c d+9 d^{2}$ a perfect square?

$$
\sqrt{100 c^{2}}=10 c, \sqrt{9 d^{2}}=3 c d
$$

But 2(10c) $(3 \mathrm{~d})=60 \mathrm{~cd} \neq 30 \mathrm{~cd}$.

$$
\begin{aligned}
(10 c+3 d)^{2} & =(10 c)^{2}+2(10 c)(3 d)+(3 d)^{2} \\
& =100 c^{2}+60 c d+9 d^{2}
\end{aligned}
$$

Thus $100 c^{2}+30 c d+9 d^{2}$ is not a perfect square, because the middle term should have been 60 cd not 30 cd .

Factorisation of an expression of the type $\mathbf{a} \boldsymbol{x}^{2}+\mathbf{b} x+c$

The technique for factorizing polynomials of the type $a x^{2}+b x+c$ is as follows:

1. List the pairs of factors that have a product equal to the constant term.
2. Find the pair of factors in the list that have a sum equal to the coefficient of the middle term.

Examples:

- Factorize $x^{2}+5 x+6$

$$
\begin{aligned}
& 2 \times 3=6 \\
& 1 \times 6=6
\end{aligned}
$$

1. Since the coefficient of the middle term is 5 , which is positive, list the pairs of positive factors of 6 .
2. Find the factors that have a sum of 5 i.e. $(2+3=5)$
3. Rewrite $x^{2}+5 x+6$ as

$$
\begin{aligned}
& x^{2}+3 x+2 x+6 \\
& =\left(x^{2}+3 x\right)+(2 x+6) \\
& =x(x+3)+2(x+3) \\
& =(x+3)(x+2)
\end{aligned}
$$

- Factorize $\mathrm{x}^{2}-5 \mathrm{x}+6$

1. Since $-5<0$, think of the negative factors of 6 .
2. Select the factors of 6 with the sum -5 i.e. -2 and -3 .
3. Rewrite $x^{2}-5 x+6$ as
$=x^{2}-3 x-2 x+6$
$=x(x-3)-(2 x-6)$
$=x(x-3)-2(x-3)$
$=(x-2)(x-3)$

- Factorize $\mathrm{x}^{2}+\mathrm{x}-6$

Factors of -6 are 3 and -2
$3+(-2)=1$
$=\mathrm{x}^{2}+3 \mathrm{x}-2 \mathrm{x}-6$
$=\left(\mathrm{x}^{2}+3 \mathrm{x}\right)-(2 \mathrm{x}+6)$
$=x(x+3)-2(x+3)$
$=(x+3)(x-2)$

- Factorize $\mathrm{x}^{2}+\mathrm{x}-6$

$$
\begin{aligned}
& x^{2}+x-6 \\
= & x^{2}+3 x-2 x-6 \\
= & \left(x^{2}+3 x\right)-(2 x+6) \\
= & x(x+3)-2(x+3) \\
= & (x+3)(x-2)
\end{aligned}
$$

It must be noted that all rules of addition and multiplication are taken into consideration when factorizing trinomials.

Cubes of sum and difference

$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$

Simple Equations

Look at the following equations:
$10-4=6,5 \mathrm{x}-1=9, \mathrm{a}+3=3+\mathrm{a}$
An equation is formed by placing an 'equals sign' (i.e. ' $=$ ') between two numerical or variable expressions called the 'sides' of the equation.
Sentences containing variables like the equation $5 \mathrm{x}-1=9$ and $\mathrm{a}+3=3+\mathrm{a}$ are called 'open sentences'.
When we replace each variable in an open sentence by a number we obtain a statement which may be true or false.
Examples:

- Find the value of x for which $5 \mathrm{x}-1=9$ becomes a true statement.

Replace x by $1,2 \& 3$.
$5 \mathrm{x}-1=9$
5(1) $-1=9$ (False)
5(2) $-1=9$ (True)
5(3) $-1=9$ (False)

Therefore the required value of x is 2 . Any value of a variable that converts an open sentence into a true statement is called a 'solution' of the sentence. It 'satisfies' the sentence.
The set of all solutions of an open sentence is called the 'solution set', of the sentence. Finding the solution set is called 'solving' the sentence. We may use braces to show a solution set. Thus for the above example we may say either.
'The solution is 2 '
or
'The solution set $=\{2\}$ '
Examples:

- Solve $\mathrm{x}+3=9$
$\mathrm{x}+3=9$
$\mathrm{x}+3-3=9-3 \quad$ (adding -3 the opposite of +3 to both sides)
$\mathrm{x}=6 \quad$ (additive property of equality)
The solution set is $\{6\}$
- Solve $x-8=6$
$\mathrm{x}-8=6$
$\mathrm{x}-8+8=6+8$ (adding +8 to both sides)
$\mathrm{x}-\{14\}$ (additive property of equality)
The solution set $=\{14\}$

Use of Equations in Problems

The skill we have gained in solving equations can often help us to solve word problems.
For solving a word problem follow the steps carefully:

1. Read the problem carefully a few times. Decide what numbers are asked for and what information is given. Making a sketch may be useful.
2. Choose a variable and use it with the given facts to represent the number described in the problem.
3. Reread the problem. Then write an open sentence that represents the relationships among the numbers in the problem.
4. Solve the open sentence and find the required number(s).
5. Check your results with the words of the problem. Give the answer.

UNIT

Simultaneous

(pages 110-122)

11 linear equations

Equations in the same variables form or in a system of equations and are called simultaneous equations.
A solution of simultaneous equations in two variables is an ordered pair of numbers that satisfies each of the equations.
Example
$x+y=24$
$x-y=2$
The solution set is $\{(13,11)\}$ which satisfies both the equations at the same time.
$13+11=24$
$13-11=2$

Methods of Solving Simultaneous Equations

1. Method of Substitution

Solve:

$$
\begin{aligned}
& x+y=4 \ldots \text { (i) } \\
& x-y=2 \ldots \text { (ii) }
\end{aligned}
$$

Steps to follow:
Solve the first equation for x :

$$
\begin{aligned}
& x+y=4 \\
& x=4-y
\end{aligned}
$$

Substitute this expression for x in the other equation and solve for y :

$$
\begin{aligned}
& x-y=2 \\
& (4-y)-y=2 \\
& 4-2 y=2 \\
& -2 y=2-4 \\
& -2 y=-2 \\
& y=1
\end{aligned}
$$

Substitute this value for ' y ' in the equation of step 1

$$
\begin{aligned}
& \mathrm{x}=4-\mathrm{y} \\
& \mathrm{x}=4-1 \\
& \mathrm{x}=3
\end{aligned}
$$

Check in both equations:

$$
\begin{align*}
& x+y=4 \tag{i}\\
& 3+1=4
\end{align*}
$$

$$
\begin{aligned}
& x-y=2 \ldots \text { (ii) } \\
& 3-1=2
\end{aligned}
$$

Therefore the solution set is $\{(3,1)\}$

Method of Equal Coefficients

This is also called the addition or subtraction method.
When solving a system of two equations, we can sometimes add or subtract the equations to form a new equation with just one variable.
Example
Solve $3 x-y=8$

$$
2 x+y=7
$$

Addition Method

Steps to follow:
Add similar terms of the two equations

$$
\begin{aligned}
& 3 x-y=8 \\
& 2 x+y=7 \\
& 5 x \quad=15 \quad \text { (The } y \text { terms are eliminated) }
\end{aligned}
$$

Solve the resulting equation

$$
\begin{aligned}
& 5 x=15 \\
& x=3
\end{aligned}
$$

Substitute ' x ' $=3$ in either of the given equations to find ' y '

$$
\begin{aligned}
& 2 x+y=7 \\
& 2(3)+y=7 \\
& 6+y=7 \\
& y=7-6 \\
& y=1
\end{aligned}
$$

Check in both the given equations.

$$
\begin{aligned}
& 2 x+y=7 \\
& 2(3)+1=7 \\
& 7=7 \\
& 3 x-y=8 \\
& 3(3)-1=8 \\
& 8=8
\end{aligned}
$$

Therefore the solution set is $\{(3,1)\}$.

Subtraction Method

Example:
Solve $4 \mathrm{a}+5 \mathrm{~b}=6$

$$
4 a-2 b=-8
$$

Steps to follow:

Subtract similar terms of the two equations.

$$
\begin{aligned}
& 4 \mathrm{a}+5 \mathrm{~b}=6 \\
& \pm 4 \mathrm{a} \pm 2 \mathrm{~b}= \pm 8 \\
& 7 \mathrm{~b}=14 \quad \text { (The a-terms are eliminated) }
\end{aligned}
$$

Solve the resulting equation $\mathrm{b}=2$.
Substitute $b=2$ in either of the given equations to find a.

$$
\begin{aligned}
& 4 a+5 b=6 \\
& 4 a+5(2)=6 \\
& 4 a+10=6 \\
& 4 a=6-10 \\
& 4 a=-4 \\
& a=-1
\end{aligned}
$$

Check in both the given equations:

$$
\begin{aligned}
& 4 a+5 b=6 \\
& 4(-1)+5(2)=6 \\
& -4+10=6 \\
& 6=6 \\
& 4 a-2 b=-8 \\
& 4(-1)-2(2)=-8 \\
& -4-4=-8 \\
& -8=-8
\end{aligned}
$$

Therefore the solution set is $\{(1,2)\}$.
In equations where fractions are involved we solve the fractions first by the LCM method and then proceed to solve the equations by addition or subtraction.
Example:
Solve $\frac{x}{2}+\frac{y}{3}=4 \ldots$ (i)

$$
\begin{equation*}
x+\frac{y}{6}=5 \ldots \tag{ii}
\end{equation*}
$$

The LCM for the denominators in both equations is 6 .

Multiplying each equation by 6 .

$$
\begin{aligned}
6\left(\frac{x}{2}+\frac{y}{3}\right) & =4 \times 6 \\
3 \mathrm{x}+2 \mathrm{y} & =24 \ldots(\mathrm{iii}) \\
6\left(x+\frac{y}{6}\right) & =5 \times 6 \\
6 \mathrm{x}+\mathrm{y} & =30 \ldots(\mathrm{iv})
\end{aligned}
$$

Equation (iii) and (iv) can be solved in the usual manner.

Comparison Method

Steps to follow:

1. For each equation find the first variable in terms of the second.
2. Comparing the two equations thus obtained, we get an equation with the second variable.
3. Solve this equation to find the value of the second variable.
4. Substitute the value of the variable obtained in either of the given equations.
5. Solve the resulting equation to find the value of the first variable.

- Solve $2 x+3 y=12 \ldots$ (i)

$$
3 x-2 y=5 \quad \ldots(i i)
$$

Finding the value of x from (i)
$2 x+3 y=12$
$2 \mathrm{x}=12-3 \mathrm{y}$
$x=\frac{12-3 y}{2} \ldots$ (iii)
Similarly finding the value of x in (ii)
$3 \mathrm{x}-2 \mathrm{y}=5$
$3 \mathrm{x}=5+2 \mathrm{y}$
$\mathrm{x}=\frac{5+2 y}{3} \ldots$ (iv)
Comparing (iii) and (iv)
$\frac{12-3 y}{2}=\frac{5+2 y}{3}$
LCM is 6 .
$6\left(\frac{12-3 y}{2}\right)=6\left(\frac{5+2 y}{3}\right)$
$3(12-3 y)=2(5+2 y)$
$36-9 y=10+4 y$
$-9 y-4 y=10-36$
$-13 y=-26$
$y=2$

Substituting the value of $y=2$ in ... (i)
$2 \mathrm{x}+3 \mathrm{y}=12$
$2 \mathrm{x}+3(2)=12$
$2 \mathrm{x}=12-6$
$\mathrm{x}=\frac{6}{2}$
$\mathrm{x}=3$
To check, substitute the values of x and y in the given equations.
$2 \mathrm{x}+3 \mathrm{y}=12$
$2(3)+3(2)=12$
$6+6=12$
$12=12$
Therefore the solution set is $\{(3,2)\}$.

Word Problems Involving Simultaneous Linear Equations

The same method applies to solving problems with equations in two variables as for one variable.

1. Read the problem carefully. Decide what numbers are asked for and what information is given.
2. Choose the variables and use them with the given facts to represent the numbers described in the problem.
3. Write open sentences that represent the relationships among the numbers in the problem.
4. Solve the open sentences by the methods learnt and find the required numbers.
5. Check your results with the words of the problem. Give the answer.

Absolute Value of a Number

The diagram shows pairings of points on a number line. The paired points are at the same distance from the origin but on opposite sides of the origin. The origin is paired with itself.

Each number in a pair such as 5 and -5 is called the 'opposite' of the other number ($5+$ $(-5)=0$).
The symbol for the opposite of number ' a ' is ' $-a$ '.
If the value of ' a ' is -3 , then $-a=-(-3)$ is the positive number 3 .
In general:
If ' a ' is a positive number, then -a is a negative number.
If ' a ' is a negative number then $-a$ is a positive number. If ' a ' is 0 then $-a$ is 0 .
The opposite of $-a$ is ' a ' that is $-(-a)=a$.
In any pair of non-zero opposites such as -5 and 5 , one number is negative and the other is positive. The positive number of any pair of opposite non-zero real numbers is called the absolute value of each number in the pair.
The absolute value of a number \mathbf{a} is denoted by $|\mathrm{a}|$
$|-5|=5$ and $|5|=5$
The absolute value of a number may also be thought of as the distance of the number from the origin on the number line. The distance of -5 and 5 are 5 units from the origin.
The absolute value of 0 is defined to be 0 itself.
$|0|=0$
Examples:
Find the solution set of:
$|x|=3$
$|\mathrm{x}|=3, \mathrm{x}=3$ or $\mathrm{x}=-3$

Equations Involving Absolute Values

Find the solution set of $|y-3|=4$
The condition for the equation is satisfied if ' y ' is replaced by a number such that $y-3$ becomes 4 or -4 .
So either $\mathrm{y}-3=4 \ldots$ (i)
or $y-3=-4 \ldots$ (ii)
(i) $y-3=4$
$y-3+3=4+3$
$y=7$
(ii) $y-3=-4$
$y-3+3=-4+3$
$y=-1$

Hence the solution set is $\{7,-1\}$.
Find the solution set of:
$|x+4|-2=6$
$|x+4|-2=6$
$|x+4|-2+2=6+2$
$|x+4|=8$
(i) $\mathrm{x}+4=8$

$$
\begin{aligned}
& x+4-4=8-4 \\
& x=4 \quad \text { or }
\end{aligned}
$$

(ii) $\mathrm{x}+4=-8$

$$
\begin{aligned}
x+4-4 & =-8-4 \\
x & =-12
\end{aligned}
$$

Hence the solution set is $\{4,-12\}$
Find the solution set: $|7 \mathrm{x}|=-14$
There is no real number whose absolute value is negative.
Therefore the solution set is an empty set which is written as $\}$ or φ.

Introduction to Trigonometry

In this unit we will see how the Pythagorean Theorem can be used to find the lengths of the sides of triangles.

Pythagorean Theorem

In any right-angled triangle, the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides.
For the triangle shown
$c^{2}=a^{2}+b^{2}$
$a^{2}=c^{2}-b^{2}$
$b^{2}=c^{2}-a^{2}$

We can apply the Pythagorean Theorem to find the length of one side of a right-angled triangle when the other two sides are given.
Examples:

- In a right-angled triangle $\mathrm{ABC} \mathrm{m} \angle \mathrm{C}=90^{\circ}, \mathrm{a}=8 \mathrm{~cm}, \mathrm{~b}=6 \mathrm{~cm}$, Find c $c^{2}=a^{2}+b^{2}$
$c^{2}=(8)^{2}+(6)^{2}$
$c^{2}=100$
$c=\sqrt{100}$
$\mathrm{c}=10 \mathrm{~cm}$

- The foot of a ladder 25 m long, is at a distance of 20 m from the wall. Find the height of the point on the wall where the top end of the ladder touches it.

Draw a diagram to represent the ladder and the wall:
$c^{2}=a^{2}+b^{2}$
$(25)^{2}=(20)^{2}+b^{2}$
$\mathrm{b}^{2}=(25)^{2}-(20)^{2}$
$\mathrm{b}^{2}=625-400$
$=225$

$\mathrm{b}=\sqrt{225}$
$=15 \mathrm{~m}$
Therefore the height of the point on the wall where the ladder touches it is 15 m .

Hero's Formula

Hero's formula is used to calculate the area of a triangle when the measures of its three sides are given.
In a triangle with sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ the perimeter 2 s is equal to the sum of the three sides i.e. $\mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~s}$.
The formula for finding the area is $\sqrt{s(s-a)(s-b)(s-c)}$
Where $s=$ half of the perimeter.
To find \mathbf{s}, add all the measures of the three sides and divide them by 2 .
$s=\frac{a+b+c}{2}$
Example:
Find the area of a triangle whose sides measure $10 \mathrm{~cm}, 8 \mathrm{~cm}$, and 6 cm respectively (by Hero's formula).
$\mathrm{a}=10, \mathrm{~b}=8, \mathrm{c}=6$
$\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{10+8+6}{2}=\frac{24}{2}=12 \mathrm{~cm}$

Applying Hero's Formula

Area of the $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
Area of the $\Delta=\sqrt{12(12-10)(12-8)(12-6)}$
Area of the $\Delta=\sqrt{12(2)(4)(6)}$
Area of the $\Delta=\sqrt{12 \times 2 \times 4 \times 6}$
Area of the $\Delta=\sqrt{576}$
Area of the $\Delta=24 \mathrm{~cm}^{2}$
Hero's Formula can be used for finding the area of a quadrilateral by dividing it into two triangles by drawing a diagonal joining the opposite vertices. First find the area of the triangles separately and then add them.

Trigonometric ratios of acute angles

The ratio of the sides of a rightangled triangle are called trigonometric ratios.
There are 3 basic trigonometric ratios named as Sine, cosine and Tangent.

Trigonometric Ratios:

Basic trigonometric ratios are
$\operatorname{Sin} A=\frac{p}{h}$
$\operatorname{Cos} A=\frac{b}{h}$
$\operatorname{Tan} \mathrm{A}=\frac{\mathrm{p}}{\mathrm{b}}$

$\mathrm{p}=$ perpendicular
b $=$ base
$\mathrm{h}=$ hypotenuse

Derived trigonometric ratios from basic forms are:
$\operatorname{Cosec} \mathrm{A}=1 / \operatorname{Sin} \mathrm{A}=\frac{\mathrm{h}}{\mathrm{p}}$
$\operatorname{Sec} A=1 / \cos A=\frac{h}{b}$
$\operatorname{Cot} \mathrm{A}=1 / \tan \mathrm{A}=\frac{\mathrm{b}}{\mathrm{p}}$

Real life application of trigonometric ratios.

A child flying a kite:
Distance from the child to the kite is hypotenuse.

Distance from the kite to ground is perpendicular.
Distance from child to the point below the kite on the ground is base.

link https://www.embibe.com

Fundamentals of

Angles made by the transversal intersecting two paralleled lines

Angles formed by the transversal.

- Vertically opposite angles are equal

$$
\begin{aligned}
& \mathrm{m}_{1}=\mathrm{k}_{1} ; \mathrm{n}_{1}=\mathrm{l}_{1} \\
& \mathrm{~m}_{2}=\mathrm{k}_{2} ; \mathrm{n}_{2}=\mathrm{l}_{2}
\end{aligned}
$$

- Corresponding angles are equal

$$
\begin{aligned}
& \mathrm{n}_{1}=\mathrm{n}_{2}, \mathrm{k}_{1}=\mathrm{k}_{2} \\
& \mathrm{~m}_{1}=\mathrm{m}_{2} ; \mathrm{l}_{1}=\mathrm{l}_{2}
\end{aligned}
$$

- Alternate interior angles are equal
$\mathrm{k}_{1}=\mathrm{m}_{2}$
$\mathrm{n}_{1}=\mathrm{l}_{2}$
- Alternate exterior angles are equal

$$
\begin{aligned}
& \mathrm{m}_{1}=\mathrm{k}_{2} \\
& \mathrm{n}_{1}=\mathrm{l}_{2}
\end{aligned}
$$

Activity:

Give the students three bamboo sticks. Ask them to place two of them parallel to each other on the floor. Third bamboo stick will be transversal to the parallel sticks. Student will name the types of angles made by the bamboo sticks and measure them with a big protractor made for use on the board.

Polygons

A polygon is a closed plane figure formed by line segments. The line segments are called sides. The point where the segments meet is called a vertex.

In a regular polygon, all sides are congruent and all angles are congruent.
Draw the following chart and ask the pupils to complete it.

	人ioco	1	$2 e^{\text {cror }}$		$\chi^{20 e^{* 00^{0}}}$	$00^{200^{00}}$	200^{200}	$\nabla^{e^{0^{20}}}$
No. of sides	3							
No. of vertices	3							
No. of diagonals	0							

Follow the steps of construction given in the textbook to draw polygons and quadrilaterals with the given measurements.
Construction of regular pentagon, hexagon and octagon are given on page 140-141 of the book

Properties of a parallelogram

1. Opposite sides of a parallelogram are parallel.

2. Opposite sides of a parallelogram are equal.

3. Opposite angles of a parallelogram are equal.

4. Interior angles on parallel lines are supplementary.

$<\mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$<\mathrm{B}+<\mathrm{C}=180^{\circ}$
5. Diagonals of a parallelogram bisect each other.

Practical Geometry (pages $58-160)$

14

The proofs of all the above properties are given on page 148 of the textbook.
This unit is based on the construction of quadrilateral considering different cases.
All the steps of construction are given in the book.
Activity:
Write all the cases of construction of rectangle and square on flash cards, one flashcard for each case. Divide the class in groups of 4 students. Assign each group on or two cases. Ask them to construct the shape and write the steps of construction on a sheet of paper.
Each group will present the work in front of whole class. Mark them for neatness, accuracy, handling of instrument, and timing.

UNIT

Surface Area and

(pages 161-166)

Surface Area and Volume of a Sphere

A sphere is a solid bounded by a single curved surface, and is such that all line segments drawn from a fixed point within the solid to the bounding surface are equal in length. The fixed point is called the 'centre' of the sphere and a line drawn from the centre to the bounding surface is called a radius.
Volume of a sphere of radius $\mathbf{r}=\frac{4}{3} \pi r^{3}$.
Surface area of a sphere $=4 \pi r^{2}$.
To calculate the volume and surface area of a sphere:
A solid sphere has a radius of 7 cm . Calculate its volume and its surface area. (for calculation purposes π is given value $\frac{22}{7}$)

$$
\begin{array}{ll}
& \quad \begin{array}{l}
\text { V }
\end{array} \quad \frac{4}{3} \pi \mathrm{r}^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \\
& =1437.33 \mathrm{~cm}^{3} \\
\text { Surface area } & =4 \pi \mathrm{r}^{2} \\
& =4 \times \frac{22}{7} \times 7 \times 7 \\
& =616 \mathrm{~cm}^{2}
\end{array}
$$

Surface Area and Volume of a Cone

A right circular cone is generated by the revolution of a right-angled triangle about one of the sides containing the right angle. Its base is a circle and the length of the segment joining the vertex and the centre of the base is known as the height of the cone. The length of the line segment joining the vertex to any point on the circumference of the base is called the slant height.

In the figure: AB is the height (h)
BC is the radius (r)
AC is the slant height (l)

Slant height of a cone:

In the figure of the cone $\triangle \mathrm{ABC}$ is a right-angled triangle, the base BC is the radius (r).
The slant height AC is the hypotenuse (I).
The height AB is the perpendicular (h).
The right angle is at B.
The vertex is at A .

By the Pythagorean Theorem:

$(\text { hypotenuse })^{2}=(\text { base })^{2}+(\text { altitude })^{2}$
$($ hypotenuse $)=\sqrt{(\text { base })^{2}+(\text { altitude })^{2}}$
Therefore the slant height $=\sqrt{(\text { base })^{2}+(\text { altitude })^{2}}$
$l=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}$

Curved surface area of a cone

Take a paper cone and cut along the slant edge and flatten it out. We get a sector of a circle, ACD.

The plane figure thus obtained represents the curved surface of a cone. The length of arc $C D$ is equal to the circumference of the base circle of the cone i.e. the length of arc CD is equal to $2 \pi r$. We can prove that area of sector $\frac{\text { length of sector }}{\text { area of circle }}=\frac{\text { circumference of circle }}{\text { cen }}$
area of circle with radius $l=\pi l^{2}$
thus $\frac{\text { area of sector }}{\text { area of circle }} \quad=\frac{2 \pi r}{2 \pi l}$
$\underline{\text { area of sector } r}$
$=\frac{2 \pi r}{2 \pi l}$
area of sector

$$
\begin{aligned}
& =\frac{2 \pi r}{2 \pi l} \times \pi l^{2} \\
& =\pi r l .
\end{aligned}
$$

Therefore the curved surface area of a cone $=\pi r l$.
The total surface area $=$ Area of the base + Area of curved surface .

$$
\begin{aligned}
& =\pi r^{2}+\pi r l \\
& =\pi r(r+l) .
\end{aligned}
$$

Volume of a cone

Volume is the space occupied by a body. To find the volume of a cone we take a hollow cone and a hollow cylinder having the same altitude and base. Fill the cone with water and pour it into the cylinder. Repeat the procedure till the cylinder is full.
How many cones were needed to fill the cylinder? The answer is 3 .
This means that the volume of a cone is 3 times the volume of a cylinder.
We know that the volume of a cylinder $=\pi r^{2} h$ is equal to 3 times the volume of a cone. 3 times the volume of a cone $=\pi r^{2} h$
volume of a cone

$$
\begin{aligned}
& =\frac{\pi r^{2} h}{3} \\
& =\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

Demonstrative Geometry

Demonstrative geometry is a branch of mathematics in which theorems on geometry are proved through logical reasoning.

Demonstrative geometry

Reasoning

Postulates/axioms

Hypothesis

Corollary
Proposition

Theorem

A branch of geometry which deals with theorem through logical reasoning.

Inductive reasoning leads to a general conclusion.
Deductive reasoning leads to a specific conclusion.
Assumed to be true without any proof or demonstration.

The statements based on evidences. They are beginning point for further investigation.

Proposition that follows from one already proved.
Propositions are developed on the bases of postulates and axioms.

These are general statements proved by a chain of reasoning.

Theorem (1-9) are given on page (168-171) with proofs. Explain them on the board logically with reasoning.

UNIT

Information Handling

 17
Measure of central tendencies

Averages

When data is summarized in the form of a frequency distribution table, it can be represented by single value called the average or the measure of central tendency.

Types of Averages

Arithmetic Mean (AM) for Ungrouped Data
It is calculated like a simple average by the formula:
$\mathrm{AM} \quad$ or $\overline{\mathrm{X}}=\frac{\text { sum of observations }}{\text { No. of observations }}$

$$
\text { or } \bar{X}=\frac{\sum x}{n}
$$

(Σ is called sigma. It represents 'the sum of'.)

Mean for grouped data

When the data is very large it is convenient to make a frequency table and then apply the formula:
$\overline{\mathrm{X}}=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}$
When ' Σf ' is the total frequency
' $\Sigma \mathrm{fx}^{\prime}$ ' is the sum of the fx column (i.e. midpoint x frequency in interval)
Examples for finding mean of grouped and ungroup date are given on page 180, 181, and 182 of the book.

Median

Median is also an average. It is the value which lies exactly in the centre of the data.
Methods for finding the median

For ungrouped data:

Arrange the values in ascending or descending order.
If the number of values ' n ' is odd, apply the formula:
Median $=\frac{\mathrm{n}+1}{2}$ th value

If the number of values ' n ' is even, apply the formula:
Median $=\frac{\mathrm{n} / 2+(\mathrm{n}+2) / 2}{2}$ th value
Examples are given on page 183 of the book.

Median for grouped data

Formula to be used is:
Median $=1+\frac{\mathrm{n}}{2}\left(\frac{\mathrm{n}}{2}-\mathrm{c}\right)$
Where ' I ' is the lower class boundary of the median class.
h is the size of class intervals.
f is the frequency of the median class.
n is the total frequency i.e. Σf
c is the cumulative frequency of the intervals before the median class.
We are familiar with the terms except for c which is the cumulative frequency.
Cumulative frequency column is calculated by successive addition of the frequencies from the frequency column
From the data find the median:
Wages (Rs) No. of labourers
50-59 8

60 - 69 10
70-79 16
80-89 14
$90-99 \quad 10$
100-109 5
110-119 $\quad \underline{2}$
$\mathrm{n}=65$
$\frac{\mathrm{n}}{2}=\frac{65}{2}=32.5$
Make four columns.

Class Interval	Class Boundary	Frequency	Cumulative Frequency
$50-59$	$49.5-59.5$	8	8
$60-69$	$59.5-69.5$	10	18 C

$70-79$	$69.5-79.5$	16	34
Median class			
$80-89$	$79.5-89.5$	14	58
$90-99$	$89.5-99.5$	10	58
$100-101$	$99.5-109.5$	5	63
$110-119$	$109.5-119.5$	2	65

The median group or class is where the $\frac{\mathrm{n}}{2}$ value lies
Median $=1+\frac{\mathrm{h}}{\mathrm{f}}\left(\frac{\mathrm{n}}{2}-\mathrm{c}\right)$
$\mathrm{l}=69.5$
$\mathrm{f}=16$
$\mathrm{h}=10$
$\mathrm{n}=65$
$\mathrm{c}=18$
Applying the formula:
Median $=69.5+\frac{10}{16}(32.5-18)$

$$
=78.56
$$

Mode

Mode is the value which occurs most frequently in a data.

Mode of ungrouped data:

The value which has the highest frequency in the data is called mode of the data.
There can be several modes in a data. The examples for ungrouped data are given on page 184 of the book.

Mode of grouped data:

The modal class has the highest frequency value.
Formula:
Mode $=I+\frac{\left(f_{m}-f_{1}\right) \times h}{\left(f_{m}-f_{1}+\left(f_{m}-f_{2}\right)\right.}$
I = lower class boundary of the modal class
$\mathrm{f}_{\mathrm{m}}=$ frequency of the modal class
$\mathrm{f}_{1}=$ frequency preceding the modal class
$\mathrm{f}_{2}=$ frequency following the modal class
$\mathrm{h}=$ size of the class interval
All the concepts have been discussed and explained through examples in the book. Students should learn the formula to solve the problems.

گرونى موار6 انداز

$$
\begin{aligned}
& \text { 6 } \\
& 1+/\left(\mathrm{f}_{\mathrm{m}}-\mathrm{f}_{1}\right) \times \mathrm{h} /\left(\mathrm{f}_{\mathrm{m}}-\mathrm{f}_{1}\right)+\left(\mathrm{f}_{\mathrm{m}}-\mathrm{f}_{2}\right)=j \\
& - \text { - } \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { = } \mathrm{f}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{l}=69.5 \\
& \mathrm{f}=16 \\
& \mathrm{~h}=10 \\
& \mathrm{n}=65 \\
& \mathrm{c}=18
\end{aligned}
$$

: ك

$$
\begin{aligned}
& =69.5+10 / 16(32.5-18) \\
& =78.56
\end{aligned}
$$

3	2	5	3	4	1	2	3	1
3	4	2	4	3	2	0	2	3

تمدرك جبرل

(شا	تر
0	1
1	2
2	5
3	6
4	3
5	1

60-69 10
70-79 16
80-89 14
90-99 10
100-109 5
110-119 2

$$
\mathrm{n}=65
$$

$$
\begin{aligned}
\mathrm{n} & =65 \\
\mathrm{n} / 2=65 / 2 & =32.5=32.5
\end{aligned}
$$

 l $=1+h / f(n / 2-c)$

$$
\begin{aligned}
& \text { جبكـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 'f } \\
& \text { كم }
\end{aligned}
$$

(Information اعراو وثّار6اندرانا Handling)

$$
\begin{aligned}
& \text { ات كو عام اورط كم } \\
& \text { AM } \\
& \overline{\mathrm{X}}=\Sigma \mathrm{x} / \mathrm{n} \quad \text { ي } \\
& \text { (} \\
& \text { گرونى مواو }
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathrm{X}}=\Sigma \mathrm{fx} / \Sigma \mathrm{f} \\
& \text { جبكـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وسطانـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وسطنه } \\
& \text { نيز گرونى موار ع لـ : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { قر n+1/2 = =وسطنيـ } \\
& \text { گرونى مواو }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} 1+\mathrm{h} / \mathrm{f}(\mathrm{n} / 2-\mathrm{c})
\end{aligned}
$$

$$
\begin{aligned}
& \text { بيكمرك رتب. } \\
& \pi \mathrm{rl}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { كمل سّع } 6 \text { ر رتب = اسا } 6 \text { ر رقب + } \\
& \pi r^{2}+\pi r l= \\
& \pi r(r+1)= \\
& \text { ? }{ }^{3} 6 . ;
\end{aligned}
$$

> .

$1 / 3 \pi r^{2} h=$

＂；

 - （1）$;$ AC
 زاويقاگ～ －ヶ\％Au

（；）$=V(U L)^{2}+\binom{(0)}{(0)}^{2}$

$1=\sqrt{\mathrm{r}^{2}+h^{2}}$
＂
嫁
 －

皆 ジ 8\％

$$
\begin{aligned}
& \pi 1^{2}=\text { ar }^{2} \mathrm{a} \text { [1/ }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \pi / 2 \pi 1=36
\end{aligned}
$$

(Surface Area and Volume)

 $4 \pi r^{2}=$ كرّ

个. $=4 / 3 \pi \mathrm{r}^{3}$
$=4 / 3 \times 22 / 7 \times 7 \times 7 \times 7$
$=1437.33 \mathrm{~cm}^{3}$

$=4 \times 22 / 7 \times 7 \times 7$
$=616 \mathrm{~cm}^{2}$
حُوط
צُول
 -

 - (r) - ب- (1)

(Fundamentals of Geometry)

 '

كثير الانلاع

تيرو6 ك6

$$
s=a+b+c / 2
$$

 （יيرو，عكميح ع；ري又）

$$
a=10, b=8, c=6
$$

$$
s=a+b+c / 2=10+8+6 / 2+24 / 2+12
$$

$$
\begin{aligned}
& \text { تر } 6 \triangle=\sqrt{s}(s-a)(s-b)(s-c) \\
& \text { 拱 } 6 \triangle \sqrt{ } 12(12-10)(12-8)(12-6) \\
& \text { 7ر } 6 \triangle=\sqrt{12(2)(4)(6)} \\
& \text { 霜 } 6 \triangle=\sqrt{ } 12 \times 2 \times 4 \times 6 \\
& \text { 局 } 6=\sqrt{ } 576 \\
& \text { تر } 6 \triangle=24 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}+\mathrm{b}+\mathrm{c}(=2 \mathrm{~s})
\end{aligned}
$$

$$
\begin{aligned}
& \text { جبكـ = = يكط } 6 \text { نصف }
\end{aligned}
$$

(Introduction to Trigonometry)

مسَّلِينّور

(base)
 , ونلور كَ لمباكَ معام هو

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=(8)^{2}+(6)^{2} \\
& c^{2}=100 \\
& c=\sqrt{ } 100
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& (25)^{2}=(20)^{2}+b^{2} \\
& b^{2}=(25)^{2}-(20)^{2} \\
& b^{2}=625-400 \\
& =225 \\
& b=\sqrt{ } 225 \\
& =15 \mathrm{~m}
\end{aligned}
$$

تمى قرد يّ ركّفْ والى هساوات

$$
\begin{align*}
& y-3=5 \ldots \text { (i) } \\
& y-3=4 \\
& y-3=4 \tag{i}\\
& y-3+3=4+3 \\
& y-3+3=4+3 \\
& y=7 \\
& y-3=-4 \tag{ii}\\
& y-3+3=-4+3 \\
& y=-1
\end{align*}
$$

$$
\begin{align*}
& |x+4|-2=6 \\
& |x+4|-2=6 \\
& |x+4|-2+2=6+2 \\
& |x+4|=8 \\
& x+4=8 \tag{i}\\
& x+4-4=8-4 \\
& x=4 \\
& x+4-4=-8-4 \\
& x=-12 \\
& x=4=-8 \tag{ii}\\
& \text { ح } \\
& \text { بثال : }
\end{align*}
$$

$$
\text { اكر a ك قر } 3 \text { بَتو (3- -) }
$$

-

$$
\text { ثضل :5 = |5-| |ور } 5 \text { = } 5
$$

$$
\{0\}=0
$$

$|x|=3$

$$
|x|=3, x=3\lfloor x=-3
$$

2－تنتيات 3 －

 اعراوك كُ 60 ب

$$
x-y=36 \ldots(\mathrm{ii})
$$

$$
x+y=60
$$

$$
48+y=60
$$

$$
y=60-48
$$

$$
=12
$$

آ ال
x

$$
x+y=60
$$

$$
48+12=60
$$

$$
\begin{aligned}
& x+y=60 \ldots \text { (i) } \\
& \text { اルノ } \\
& \text { اعراو6 ز٪ بـ-36 }
\end{aligned}
$$

(iii) (iv)

$$
12-3 y / 2=6(5+2 y / 3)
$$

زوانحاف اقل ب6

$$
6(12-3 y / 2)=6(5+2 y / 3)
$$

$$
3(12-3 y)=2(5+2 y)
$$

$$
36-9 y=10+4 y
$$

$$
-9 y-4 y=10-36
$$

$$
-13 y=-26
$$

$$
y=2
$$

$$
2 x+3 y=12
$$

$$
2 x+3(2)+12
$$

$$
2 x=12-6
$$

$$
x=6 / 2
$$

$$
x=3
$$

$$
2 x+3 y=12
$$

$$
2(3)+3(2)=12
$$

$$
6+6=12
$$

$$
12=12
$$

(
的
 -

$$
\begin{aligned}
& 3 x-2 y=5 \\
& 3 x=5+2 y \\
& x=5+2 y / 3 \ldots \text { (iv) }
\end{aligned}
$$

$$
\begin{aligned}
x / 2+y / 3 & =4 \ldots(i) \quad-\ldots \text { (i) } \\
x+y / 8 & =5 \text {...(ii) }
\end{aligned}
$$

$$
6(x / 2+y / 3)=4 \times 6
$$

$$
=3 x+2 y=24 \ldots \text {... (iii) }
$$

$$
6(x+y / 6)=5 \times 6
$$

$$
=6 x+y=30 \ldots(\mathrm{iv})
$$

3- تقابل6 6
ك6.
1-2-

4-

$$
\begin{aligned}
& 2 x+3 y=12 \ldots \text { (i) } \\
& 3 x-2 y=6 \ldots \text { (ii) } \\
& \text { (i) } \\
& 2 x+3 y=12 \\
& 2 x=12-3 y \\
& x+12-3 y / x \ldots \text { (iii) }
\end{aligned}
$$

$$
\begin{aligned}
2 x+y & =7 \\
2(3)+1 & =7 \\
7 & =7 \\
3 x-y & =8 \\
8 & =8
\end{aligned}
$$

البزار بيث بـ

$$
4 a+5 b=6
$$

$$
4 a-2 b=-8
$$

$$
4 a+5 b=6
$$

$$
+4 a+2 b=+8
$$

$$
7 \mathrm{~b}=14
$$

b = 2 - -

$$
4 a+5 b=6
$$

$$
4 a+5(2)=6=4 a+10=6
$$

$$
4 a=6-10
$$

$$
4 a=-5
$$

$$
a=-1
$$

$4 a+50=6$
$4(-1)+5(2)=6$
$-4+10=6$
$6=8$
$4 a-2 a=-8$
$4(01)-2(2)=-8$
$-4-4=-8$
$-8=-8$
البزاحل سيث بـ -

$$
\begin{array}{r}
x=4-1 \\
x=3
\end{array}
$$

$$
\begin{aligned}
& x+y=4 \ldots(\mathrm{i}) \\
& 3+1=4 \\
& x-y=2 \ldots(\mathrm{ii}) \\
& 3-1=2
\end{aligned}
$$

(2,1 (1

$3 x-y=8 \quad$ 气㐅
$2 x+y=7$
.

$$
3 x-y=8
$$

$2 x+y=7$

$5 x=15$
$x=3$
ك $x=3$ -
$2 x+y=7$
$2(3)+y=7$
$6+y=7$
$y=7-6$
$y=1$

$$
\begin{aligned}
& \text { 6\% }
\end{aligned}
$$

$$
\begin{aligned}
& x+y=24 \\
& \text { : } \\
& x-y=2 \\
& \text { حل سيت ب } \\
& 13+11=24 \\
& 13-11=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1- ثّمّاول } \\
& x+y=4 \ldots \text { (i) } \\
& x-y=2 \ldots \text { (ii) } \\
& \text { ن6. } \\
& \text { : 1 } \\
& x+y=4 \\
& x=4-y
\end{aligned}
$$

$$
\begin{aligned}
& x-y=2 \\
& (4-y)=y=2=4-2 y=2 \\
& -2 y=2-4 \\
& -2 y=-2 \\
& y=1
\end{aligned}
$$

$$
\begin{aligned}
& x=4-y
\end{aligned}
$$

$$
\begin{aligned}
& x+3=9 \\
& x+3-3=9-3 \\
& x=6 \\
& \{6\}=\lessdot \downarrow \\
& x-8=6 \\
& x-8+8=6+8 \\
& x-\{14\} \\
& \{14\}=\%
\end{aligned}
$$

((

$$
\begin{aligned}
& \text { (مـاوات ى ? }
\end{aligned}
$$

هساكّل بي مساوات 6

 3-

$$
10-4=6,5 x-1=9, a+3=3+a
$$

（b） $5(1)-1=0$
（i）$\quad 4=9$
（ぞ） $5(2)=1=0$
（b） $5(3)=1=9$

 ＇ $2<{ }^{\circ}$

$$
\begin{aligned}
& \text { x } \\
& 5 x-1=9
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \\
& x^{2}+x-6 \\
& =x^{2}+3 x-2 x-6 \\
& =\left(x^{2}+3 x\right)-(2 x+6) \\
& =x(x+3)-2(x+3) \\
& =(x+3)(x-2)
\end{aligned}
$$

$$
(x+3)(x+4)=x^{2}+7 x+12
$$

$(x+\mathrm{a})(x+\mathrm{b})=x^{2}+(\mathrm{a}+\mathrm{b}) x+\mathrm{ab}$
 1- ان اجزا

$$
\begin{aligned}
& x^{2}+5 x+6 \\
& 2 \text { x } 3=6 \\
& 1 \times 6
\end{aligned}
$$

2- 2-

- -

-3

$$
=x^{2}-3 x-2 x+6
$$

$$
=x(x-3)-(2 x-6)
$$

$$
=x(x-3)-2(x-3)
$$

$$
=(x-2)(x-3)
$$

$$
\text { 6- عكاجزا_ خربِ بِّل } 3 \text { اور 2- }
$$

$$
3+(-2)=1
$$

$$
=x^{2}+3 x-2 x-6
$$

$$
=\left(x^{2}+3 x\right)-(2 x+6)
$$

$$
=x(x+3)-2(x+3)
$$

$$
=(x+3)(x-2)
$$

$$
\begin{aligned}
& x^{2}+3 x+2 x+6 \\
& =x\left(x^{2}+3\right)+(2 x+6) \\
& =x(x+3)+2(x+3) \\
& =(x+3)(x+2) \\
& x^{2}-5 x+6-2 \text { - } \\
& \text { 1- }
\end{aligned}
$$

 كَ آزَ رَّ

 ثل: كا بيا

$$
\sqrt{100} \mathrm{c}^{2}=10 \mathrm{c}, \sqrt{ } 9 \mathrm{~d}^{2}=3 \mathrm{~cd}
$$

$$
2(10 c)(3 d)=60 \mathrm{~cd} \neq 30 \mathrm{~cd} \text { كي }
$$

$$
(10 \mathrm{c}+3 \mathrm{~d})^{2}=(10 \mathrm{c})^{2}+2(10 \mathrm{c})(3 \mathrm{~d})+(3 \mathrm{~d})^{2}
$$

$$
100 c^{2}+60 c d+9 d^{2}
$$

(اب ان طاملات ヶڭ

$$
(x+3)(x+4)=x 2+7 x+12
$$

$$
\pi \pi
$$

$$
\begin{aligned}
& 36 a^{2}-84 a b+49 b^{2} \quad: 1 \\
& 36 a^{2}-84 a b+49 b^{2} \\
& =(6 a)^{2}-2(6 a)(7 b)+(7 b)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { كم }{ }^{\text {ax²}} \text { + bx + c }
\end{aligned}
$$

$$
\begin{aligned}
& 81^{2}+90 x y+25 y^{2} \\
& \text { ث } \\
& 81 x^{2}+90 x y+25 y^{2} \\
& =(9) x^{2}+2(9) x(5 y)+\left(5 y^{2}\right) \\
& \text { - }=(9 x+5 x)^{2}=(9 x+5 y)(9 x+5 y)
\end{aligned}
$$

$$
(\mathrm{a} x+\mathrm{a} y)+(\mathrm{b} x+\mathrm{b} y)=\mathrm{a}(x+y)+\mathrm{b}(x+y)
$$

$$
=(x+y)(\mathrm{a}+\mathrm{b})
$$

(a+b) اور (x+y)
اجزا 二نرب بِيل

$$
(\mathrm{a}+\mathrm{b})(x+y)
$$

$$
=a x+a y+b x+b y
$$

 $\mathrm{a} x y-\mathrm{bc} z+\mathrm{bc} x y-\mathrm{a} z:$ ：ثل ：

$$
\mathrm{a} x y-\mathrm{bc} x y-\mathrm{a} z-\mathrm{bc} z
$$

$$
(\mathrm{a} x y+\mathrm{bc} x y)-(\mathrm{a} z+\mathrm{bc} z)
$$

$$
\begin{aligned}
x y(\mathrm{a}+\mathrm{bc})-z(\mathrm{a}+\mathrm{bc}) & =(\mathrm{a}+\mathrm{bc})(x y-z) \\
& (\mathrm{a}+\mathrm{bc})(x y-z)
\end{aligned}
$$

ك $\mathrm{a}^{2} \pm 2 \mathrm{ab}+\mathrm{b}^{2}$
 جا ：جواجزاح

$$
\begin{aligned}
& \mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b}) \\
& \mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{b})
\end{aligned}
$$

 \rightarrow 出 6
草

> اظهار (ax+2bcy) $8{ }^{2} \mathrm{ma}^{2} \mathrm{bc}$

اجزا عُ خربِ بنانا (Factorisation)

$$
\begin{aligned}
& \text { جب اتم لكمت بي : } \\
& 72=9 \times 8 \text { ي } 72=(2)(36)
\end{aligned}
$$

$$
\begin{aligned}
& \text { وورّ كاصورت يّل } 2 \text { اور } 36 \text { بيل - }
\end{aligned}
$$

"

- , وونو
$\mathrm{b} x / \mathrm{b}+\mathrm{b} y / \mathrm{b}$
$=(x+y)$
لالمزا
: كى ka + kb + kc
- ك ka + kb + kc
منض

$$
\begin{aligned}
& 8 c x / 2 c+10 c y / 2 c+12 c z / 2 c \\
& =(4 x+5 y+6 z)
\end{aligned}
$$

$4 x+5 y+6 z)(2 c$
-
8a²bc وونو رقون يّ
هر رّم 8a²bc
$8 a^{3} b c x / 8 a^{2} b c+16 a^{2} b^{2} c^{2} y / 8 a^{2} b c=a x+2 b c y$

$$
\begin{aligned}
& 2 x-[x-\{3 x-(x-2 y-1)\}] \\
& 2 x-[x-\{3 x-(x-2 y+1)\}] \\
& 2 x-[x-\{3 x-x+2 y-1\}] \\
& 2 x-[x-3 x-x+2 y+1] \\
& 2 x-x+3 x-x+2 y-1 \\
& 3 x+2 y-1
\end{aligned}
$$

$$
\begin{aligned}
& 3 x^{2}+2 x-4 \\
& \times 8 x^{2}-4 x+5 \\
& \hline 6 x^{4}+4 x^{3}-8 x^{2} \\
& -12 x^{3}-8 x^{2}+16 x \\
& +15 x^{2}+10 x-20 \\
& \hline 6 x^{4}-8 x^{3} \quad-x^{2}+26 x-20
\end{aligned}
$$

كثير تُ اطهاريل كَتّتم
毛 -- $4 x^{2}+2 x-3 x^{4}-12 x^{3}+6 x^{2}+22 x-15: ل$ 范

$$
\begin{aligned}
& \begin{array}{c}
2 \mathrm{x}^{2}-4 \mathrm{x}+5 \\
4 \mathrm{x}^{2}+2 \mathrm{x}-3 \quad \begin{array}{|c|}
8 \mathrm{x}^{4}-12 \mathrm{x}^{3}+6 \mathrm{x}^{2}+22 \mathrm{x}-15
\end{array}
\end{array} \\
& \pm 8 x^{4} \pm 4 x^{3} \mp 6 x^{2} \\
& -16 x^{3}+12 x^{2}+22 x-15 \\
& \mp 16 x^{3} \mp 8 x^{2} \pm 12 x \\
& +20 x^{2}+10 x-15 \\
& \pm 20 x^{2} \pm 10 x \mp 15 \\
& 2 x^{2}-4 x+5<6 \\
& \text { X }
\end{aligned}
$$

-
 40en, bix,
[]: []

- :

الجبرا (Algebra)
كثير رُّ اظطهر ليو كَ بحّ اورتّ تٌ

 : ثـ

$$
3 x-2 x^{3}+3 x^{2}-4 \text { رو } 6 x+7+2 x^{3}-5 x^{2}
$$

$$
\begin{aligned}
& +3 x^{2}+3 x-4 \\
& -5 x^{2}+6 x+7 \\
& \hline-2 x^{2}+9 x+3 \\
& \hline
\end{aligned}
$$

كى عروكوُ - كِ - ثل اطهاريول كومورى شثل هي لكمنا

$$
\begin{array}{r}
8 x^{4}-3 x^{2}+4 x-6 \\
3 x^{4}-5 x^{2}+5 x-3 \\
-\quad \begin{array}{c}
+5 x+ \\
\hline 5 x^{4}+2 x^{2}-x-9 \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
x^{2} \cdot x^{5}=x^{2+5}=x^{7}
$$

 - ك
 - ك

$$
\begin{aligned}
& \text { كَ كّ آثن = }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\%}{\prime}, 1,200,000 \\
& \text { ヶ, 155,000 }
\end{aligned}
$$

"

Income Tax Slabs 2018-2019

Salary per annum		Income tax rate
1.	Up to Rs. $1,200,000$	0%
2.	Rs. $1,200,001$ to $2,400,000$	5%
3.	Rs. $2,400,001$ to $4,800,000$	10%
4.	Rs. $4,800,001$ and above	15%

 «夫丷天

$$
\begin{aligned}
& 100 \\
& \frac{2.50}{100} \times 500,000 \text { \& } 400,000
\end{aligned}
$$

$$
\begin{aligned}
& \text { لاكت = } 50 \text { رو } \\
& \text { قيتّ زوخت = } 40 \text { رو }
\end{aligned}
$$

(Percentage, Insurance,
نو صر اطلات
تٌ اور ثٌصان
اگر قيتتز وخت لاگت س زياوه rوتو رك نراركمنانع ،وتا بـ-

$$
\text { ثنا : لاگت } 50 \text { رو }
$$

پيّت زوخت

$$
60-50=\underset{\forall}{ } 10 \underset{\zeta}{ } 10 \text { رون }
$$

$$
\text { ثضل : لاگت } 50 \text { رو }
$$

$$
\text { پيـت زوخت بك } 40 \text { روپ }
$$

$$
\text { تنصان ،ووا } 10 \text { رو } 50-40=
$$

$$
\begin{aligned}
& \text { لاكت } 50 \\
& \text { تيّتزورخت = } 60 \\
& 10=60-50 \text { ت}^{\text {ت }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - 29\% }
\end{aligned}
$$

$$
\begin{aligned}
& 3 / 56100 \\
& =3 / 5 \times 100=300 / 5=60 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { آ آن اور ونو } \\
& \text { (راستتناسب) } \\
& 1 / 3 \times x \times 5=2 / 3 \times 30 \times 3 \\
& 5 / 3 \times 3 / 5 \times x=2 \times 3 \times 30 \times 3 / 3 \times 5 \\
& x=36
\end{aligned}
$$

（Compound Proportion）

 ك
 －E U

 （，（，（1）
乡，

$35 \times 4 \times x$	$=14 \times 5 \times 8$
$\frac{35 \times 4 \times x}{35 \times 4}$	$=\frac{14 \times 5 \times 8}{35 \times 4}$
x	$=$

$$
\begin{aligned}
& \text { 居 } \\
& \text { توجي: : زياه آرو مُ ون ،كمكم كم آرى- } \\
& \text { كم اور رؤل بيلنتاسب، راست بـ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ثـ }
\end{aligned}
$$

$$
\begin{aligned}
& 231_{5}=50+15+1=66_{10} \\
& =360_{10}-231_{5}-1111_{2} \\
& =360_{10}-66_{10}-15_{10} \\
& =360_{10}-81_{10} \\
& =279_{10}
\end{aligned}
$$

 $241_{5} \times 1011_{2}: ~ ل \dot{\omega}$

$$
\begin{array}{r}
241_{5}=50+20+1=71_{10} \\
1011_{2}=8+-2+1=11_{10} \\
=241_{5} \times 1011_{2} \\
=71_{10} \times 11_{10}
\end{array}
$$

6ص ك.
1234_{5}
$+\underline{21310_{5}}$

325 3242_{5} 342_{5}
$\times 32_{5}$

پ
342_{5}
$\frac{25}{1234_{5}}$
342_{5}

$\times 35$
2131_{5}

$$
2 \times 2=4
$$

$$
4 \times 2=8=13_{5}
$$

$$
3 \times 2=6+1=7=12_{5}
$$

$$
\text { اب'م } 342_{5} \text { كـ }{ }^{\text {ك }}
$$

$$
2 \times 3=6=1=1_{5}
$$

$$
4 \times 3=12+1=13=2=3_{5}
$$

$$
3 \times 3=9+2=11=2=1_{5}
$$

$110111_{2}+21413_{5}+457_{10}:$:
 $110111_{2}=1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$

$$
=32+16+0+4+2+1
$$

$$
=55_{10}
$$

$$
21413_{5}=2 \times 5^{4}+1 \times 5^{3}+4 \times 5^{2}+1 \times 5^{1}+3 \times 5^{0}
$$

$$
=1250+125+100+5+3
$$

$$
=1483_{10}
$$

$$
=110111_{2}+21413_{5}+457_{10}
$$

$$
=55_{10}+1483_{10}+457_{10}
$$

$$
=1995_{10}
$$

$$
\begin{array}{l|ll}
5 & 47 & \text { Remainder } \\
\hline 5 & 9 & -2 \\
\hline 5 & 1 & -4 \\
\hline 5 & 0 & -1
\end{array}
$$

$$
\text { جواب ب: } 142_{5}
$$

 ثل: 245 ك ك

(2n条)

\times	0	1
0		
1		

$$
0 \times 0=0
$$

$$
1 \times 0=0
$$

$$
0 \times 0=0
$$

$$
1 \times 1=1
$$

لالنزا

110_{2}
$\begin{array}{r}\frac{\times 11_{2}}{110_{2}} \\ \frac{110_{2}}{10010_{2}} \\ \hline\end{array}$

$$
\begin{aligned}
& 101_{2} \\
& \begin{array}{r}
+10_{2} \\
\hline 111_{2} \\
\hline
\end{array} \\
& 101_{2} \\
& +\frac{1001_{2}}{1110_{2}}-\text {. } \\
& 101_{2} \\
& +\frac{101_{2}}{1010_{2}} \\
& \text { ثناكَ اعراوكَ تٌ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ثضل :تز تِ بيمي } \\
& 110
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
-11_{2} \\
\hline 10_{2} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
23_{10} & =10111_{2}=1+2^{1}+2^{2}+0 \times 2^{3}+2^{4}: \text { مطلوبثاكَّ عرو ب } \\
& =1+2+4+0+16 \\
& =23
\end{aligned}
$$

ثغَّ اعراركوا

-

 -
田

$111_{2}=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
$=4+2+1$
$=7$
ثأَّا اعرارك

Mon

+	0	1
0		
1		

:

$$
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
+0 & \underline{+1} & \underline{+0} & +1 \\
\hline 0_{2} \\
& & 1_{2} & \\
\hline
\end{array}
$$

$0,1,2,34$

اوشارى نظا مكا

2	23	Remainder	
2	11	-1	4
2	5	-1	
$\frac{2}{2}$	2	-1	
2	1	-0	
2	0	-1	

$$
\begin{aligned}
1 \times 16=16 \\
1 \times 8=8 \\
0 \times 4=0 \\
1 \times 2=2 \\
1 \times 1=1
\end{aligned}
$$

اب $16+8+0+2+1=27$ ：
نظامْ كا

$$
11011_{2}=27_{10}: ل
$$

 $\begin{array}{cc}\text { と } 2 \text { びル } & \text { と } 10 \text { u゙い } \\ 0 & 0 \\ 1 & 1 \\ 10 & 2 \\ 11 & 3 \\ 100 & 4 \\ 101 & 5 \\ 110 & 6 \\ 111 & 7 \\ 1000 & 8 \\ 1001 & 9 \\ 1010 & 10 \\ 1011 & 11 \\ 1100 & 12\end{array}$
(Base Two and Base Five Number system)

ثناكَّ نظا ي ا ا

2
1×100
2×10

$$
124=(1 \times 100)+(2 \times 10)+(4 \times 1): \text { يُ } 10
$$

 اور 24 بتا كم كثتف قر يّ بي بي -

$$
\text { 3/7 6جر بـ- = } 0.654 \text { (ثيّن اوثارى ورـج بنك) }
$$

 شثل : 2 كا جزر معلوم تيمي -

	1.4142
	$\hat{2} . \overline{00}, \overline{00}, \overline{00}, \overline{00}$
$+\quad 1$	-1
24	100
$+\quad 4$	-96
281	400
$+\quad 1$	-281
2824	11900
$+\quad 4$	-11296
28282	60400
$+\quad 2$	-
	56564

$$
\sqrt{ } 2=1.4142
$$

 ت عاصل بوتا

11.23	
1	$1 \overline{26} \cdot \overline{11} \overline{29}$ 21 +1
222	-1
+2	-511
2243	-444

كور طام66جز

$$
\sqrt{\frac{4}{9}}=\frac{2}{3}=0.666
$$

$$
3 / 7=0.428571
$$

	0.654
	$0 . \overline{42} \overline{85} \overline{71}$ 6
125	-36
+1	-685
1304	625
	-5216

جزر (Square Root)
"م يجبان چِ

اكر

آل ال

-

$(\sqrt{a})^{2}=a \quad$ ان
مز

$$
\begin{aligned}
& \sqrt{144}=\sqrt{9 \times 16}=3 \times 4=12 \text { ش }
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\mathrm{ab}}=\sqrt{\mathrm{a}} \times \sqrt{\mathrm{b}} \\
& \sqrt{\frac{64}{16}}=\frac{\sqrt{64}}{\sqrt{16}}=8 / 4=2 \quad \text { ش }
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
\end{aligned}
$$

 $\hat{256} \overline{00} \overline{90}$

5x-1=9:

$$
a+7<9
$$

$$
-1+7<9 \quad \text { (धै) }
$$

$$
0+7<9 \text { (たٌ) }
$$

$$
1+7<9 \quad \text { (थُ) }
$$

$$
2+7<9 \quad \text { (ناط) }
$$

$$
3+7<9 \quad \text { (غنط) }
$$

$$
4+7<9 \quad \text { (غنط) }
$$

النزال بَ:

$$
x<3 x
$$

ج

$$
\begin{align*}
& 7 x-10<x+8 \cup \rightarrow x \in \mathrm{~N} \\
& 7 x-10+10<x+8+10
\end{align*}
$$

$$
\begin{aligned}
& 7 x-x<x+18-x
\end{aligned}
$$

$7 x-x<+18$
$6 x<18$
$6 x / 6<18 / 8$
(تنيّن ناميت بحلاطْب)

- 2 2 ب < $1<1$ ب 4

سَ بـ بـ
-

-

$$
\begin{aligned}
& \mathrm{a}<\mathrm{b}, \overrightarrow{\mathrm{~g}} \mathrm{a}+\mathrm{c}<\mathrm{b}+\mathrm{c} \sqrt{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& c>0 \text {, } \\
& \mathrm{a}>\mathrm{b}, \overrightarrow{\mathrm{~g}} \mathrm{ac}>\mathrm{bc} \sqrt{1} \\
& \mathrm{a}>\mathrm{b},{ }^{\pi} \mathrm{ca}>\mathrm{cb} \text { / } \\
& \mathrm{a}<\mathrm{b}, \overrightarrow{\mathrm{~g}} \mathrm{ac}<\mathrm{bc} \sqrt{1} \\
& \mathrm{a}<\mathrm{b} \boldsymbol{g} \mathrm{ca}<\mathrm{cb} \sqrt{1} \\
& c<0 \text { b } \\
& \mathrm{a}<\mathrm{b}, \mathrm{~g}_{\mathrm{ac}}>\mathrm{bc} \sqrt{1} \\
& \mathrm{a}<\mathrm{b}, \mathrm{~F}_{\mathrm{c}}^{\mathrm{ca}}>\mathrm{cb} \sqrt{1} \\
& \mathrm{a}>\mathrm{b}, \mathrm{~F} \mathrm{ac}<\mathrm{bc} \sqrt{1} \\
& \mathrm{a}>\mathrm{b}, ~ \mathrm{~g} \mathrm{ca}<\mathrm{cb} \leqslant
\end{aligned}
$$

 1-
4- جنى ظمات
نير ــاويانخصوصات
1- ثهالث فايت

$$
a>c{ }^{3} b>c \mid a>b \text { اور }
$$

a<c
3- ?

$$
a+c>b+c ; a>b, \sqrt{1}
$$

4- غربِناهيت

$$
\mathrm{ca}<\mathrm{cb} \text { ر. } \mathrm{ac}<\mathrm{bc} \mathrm{~J}_{\mathrm{a}}^{\mathrm{a}<\mathrm{b}}
$$

$$
\begin{aligned}
& \mathrm{ca}>\mathrm{cb} \text { ر } 1 \mathrm{ac}>\mathrm{bc} \mathrm{~F}_{\mathrm{j}} \mathrm{a}<\mathrm{b} \text { b } \\
& \text {-5 } \\
& a>b, a+c>b+c \text {, } \\
& a>b, \vec{j}+a>c+b \sqrt{1}
\end{aligned}
$$

$$
\begin{aligned}
& a<b \backslash a=b \backslash a<b \text { g } \\
& \text { 2 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{a}
\end{aligned}
$$

> هr $\frac{103}{33}=3.1212 \ldots . . .,: ~ ل$ ل

 تْ
 0.535533555333

 رثّل :

(Rational Numbers)
-اطّ اعراو

$$
2-4=-2,5-5=0: \text { كث }
$$

(0,-1,-2, -3,...

$$
\begin{array}{r}
4 \div 2=2 \\
3 \div 5=3 / 5
\end{array}
$$

اعداو6 و0 كون سام ليقت

 هر, اصر كر سكت بّى -

$$
\begin{aligned}
& 1 / 2=0.5,3 / 5=0.75,12 / 5=2.4: ل \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 23/16 = } 1.4375: ~ \text { ر }
\end{aligned}
$$

(إر) :

$$
A=\{1,2,3\}
$$

: c_{6} ك运 [\{\}, $\{1\},\{2\},\{3\},\{1,2\},\{2,3\}\{1,3\},\{1,2,3\}]=$ --

$$
\{1,2,3\}=(1 * \cdot 13)
$$

$$
: ل \dot{H}
$$

$$
\mathrm{P}(\mathrm{~A})=2^{\mathrm{n}}=2^{3}=\text {; } 8 \text {; سيـ }
$$

$$
B=\{a, b, c, d\}=(13 . \mid 4)
$$

$$
P(B)=2^{n}=2^{4}=\underset{\sim}{\text { m }} \text {; } 16
$$

1. $(\mathbf{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \mathrm{U}$

$(\mathrm{A} \cap \mathrm{B})$

U

U

$\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$

Notes

Notes

