New Get Ahead
 MATHEMATICS

Bilingual Teaching Guide

 －ボレに

｜

Contents

Page
Introduction IV
Unit 1: Sets 2
Unit 2: Rational Numbers 10
Unit 3: Decimals 16
Unit 4: Exponents 18
Unit 5: Square Roots of Positive Numbers 20
Unit 6: Direct and Inverse Variation 23
Unit 7: Financial Arithmetic 26
Unit 8: Algebraic Expressions 28
Unit 9: Linear Equations 34
Unit 10: Fundamentals of Geometry 37
Unit 11: Practical Geometry 39
Unit 12: Circumference, Surface Area, and Volume 40
Unit 13: Information Handling 42

Introduction

Get Ahead Mathematics is a series of eight books from levels one to eight. The accompanying Teaching Guides contain guidelines for the teachers. The Teaching Guides, for Books 2 to 5 , contain answers to the mathematical problems in the books.
The teachers should devise means and ways of reaching out to the students so that they have a thorough knowledge of the subject without getting bored.
The teachers must use their discretion in teaching a topic in a way they find appropriate, depending on the intelligence level as well as the academic standard of the class.
Encourage the students to relate examples to real things. Don't rush.
Allow time to respond to questions and discuss particular concepts.
Come well prepared to the class. Read the introduction to the topic to be taught in the pupils' book. Prepare charts if necessary. Practice diagrams to be drawn on the blackboard. Collect material relevant to the topic. Prepare short questions, homework, tests and assignments.
Before starting the lesson make a quick survey of the previous knowledge of the students, by asking them questions pertaining to the topic. Explain the concepts with worked examples on the board. The students should be encouraged to work independently, with useful suggestions from the teacher. Exercises at the end of each lesson should be divided between class work and homework. The lesson should conclude with a review of the concept that has been developed or with the work that has been discussed or accomplished.
Blackboard work is an important aspect of teaching mathematics. However, too much time should not be spent on it as the students lose interest. Charts can also be used to explain some concepts, as visual material helps students make mental pictures which are learnt quickly and can be recalled instantly.
Most of the work will be done in the exercise books. These should be carefully and neatly presented so that the processes can easily be seen.
The above guidelines for teachers will enable them to teach effectively and develop an interest in the subject.
These suggestions can only supplement and support the professional judgement of the teacher. In no way can they serve as a substitute for it. It is hoped that your interest in the subject together with the features of the book will provide students with more zest to learn mathematics and excel in the subject.

تقارف

Get Ahead Mathematics
 اسا

 6 اطْْ ليّ ،و

 ج
زياه

UNIT

1

Sets (pages 1-15)

Notation of a Set

We use the word 'Set' in everyday life, to describe a collection of objects, e.g. a tea set, a water set etc. We can define a set as: 'a collection of clearly defined objects' (symbols denote objects). ‘Clearly-defined' means that a set must have some specific property so that it can be easily decided whether an object belongs to a given set or not. For example: a set of the letters of the English alphabet, a set of the months of a year, a set of the days of a week etc. all have well-defined objects.

For example:

$$
\begin{aligned}
& A=\{1,2,3\} \\
& A=\{A, B, C, D\}
\end{aligned}
$$

Now look at the following empty sets.
The thirteenth month of the year, the eighth day of the week, popular players of a cricket team. All these are not sets as the elements are not clearly defined by any fixed standards.

Members or Elements of a Set

The objects belonging to a set are called 'elements' or 'members' of a set
In the set $A=\{1,2,3\}, 1,2,3$ are the members or elements of a set.
We say that the elements $1,2,3$ belong to $\mathrm{A} .4,5$ do not belong to A . We generally use capital letters to denote sets e.g. A, B, C, X, Y, Z, etc.
We use the Greek letter \in short hand for 'belongs to' to denote that an object is a member of a set.
\notin denotes that an object is not a member of a set.
For example:
In set $\mathrm{A}=\{1,2,3\}$
We write: $2 \in \mathrm{~A}$.
We say: 2 is a member of A.
We write: $5 \notin \mathrm{~A}$.
We say: 5 is not a member of A .

Methods of representing a set

A set can be represented in the following ways:

Descriptive Method

The set is described by stating the properties which are common to all the members, in words. For example:

The set of the days of a week.
The set of players of the Pakistani cricket team.
The set of vowels of the English alphabet.

Tabular Method

The set is described by listing all the elements for a given set. All the members are enclosed within braces, separated by commas.
A is a set of the days of a week. We can tabulate it like this.
A = \{Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday $\}$.

Kinds of Sets

Sets are differentiated into different types depending on the number of elements they have.

Finite Set

A set containing a limited number of elements is called a finite set (elements can be counted).
$\mathrm{A}=\{1,2,3\}$
$B=\{a, b, c, \ldots z\}$
$C=$ The set of days of a week

Infinite Set

A set which has an unlimited number of elements is called an Infinite Set.
For example:
$\mathrm{A}=\{1,2,3, \ldots\}$
$B=$ The set of even numbers
$\mathrm{C}=$ The set of stars in the sky

Equal Sets

Two sets are said to be equal if they have the same elements.
For example:

$$
\begin{aligned}
& A=\{a, b, c\} \text { every element in } A \text { belongs to } B \\
& B=\{c, a, b\} \text { every element in } B \text { belongs to } A \\
& A=B
\end{aligned}
$$

The sign of equality $=$ is placed between two equal sets.
Note that the order of listing the elements does not matter.

Equivalent Sets

In the picture, the strings pair each balloon with exactly one child, and each child with exactly one balloon.

Operations on Two Sets

Operations on two sets represent the relationships among them.

Intersection of Two Sets

Consider the following sets.
$\mathrm{A}=\{1,3,5,7,9\}$
B $=\{0,3,6,9\}$
The union of sets A and B is defined as the set of all elements that belong to A or B.
The intersection of sets A and B is defined as the set of all elements that belong to both A and B. In the Venn Diagram given below the shaded region represents the set which consists of the numbers that belong to both A and B.

It is $\{3,9\}$, and is called the intersection of \mathbf{A} and B.
To refer to this set, we write the intersection of A and B as:
$A \cap B$.

We say, The intersection of A and B.
Thus $\mathrm{A} \cap \mathrm{B}=\{1,3,5,7,9\} \cap\{0,3,6,9\}$
$=\{3,9\}$

Union of Two Sets

Consider the following sets:
$\mathrm{A}=\{1,3,5,7,9\}$
$B=\{0,3,6,9$,

The above diagram is a Venn Diagram of A $\cup B$.
The shaded region in the diagram represents the sets, consisting of all the elements which belong to at least one of the sets A and B.
Sets can also be represented pictorially by Venn Diagrams.
The region labelled \mathbf{A} represents all elements belonging to the set \mathbf{A}. The region outside \mathbf{A} represents all elements not belonging to \mathbf{A} and represented as \mathbf{A}^{\prime}.

This set contains all the members of A together with all the members of B, and is called a union of A and B.

To refer to this set, we write $\mathbf{A} \cup \mathbf{B}$ and we say the union of \mathbf{A} and \mathbf{B}.
Thus $A \cup B=\{1,3,5,7,9\} \cup\{0,3,6,9$,

$$
=\{0,1,3,5,6,7,9,\}
$$

Notice that in order to list the members of the union, we name each element only once.
Union is a binary operation. The word binary implies two. The operation of union pairs any two sets into a unique (one and only one) third set.

Difference of Two Sets

Consider:

$$
\begin{aligned}
& A=\{1,3,5,7,9\} \\
& B=\{0,3,6,9\}
\end{aligned}
$$

The shaded portion represents the set which consists of the numbers which belong to set A and which do not belong to B. It is $\{1,5,7\}$, and is called the difference of set A and B. To refer to this set, we write:
A - B or A \B
We say: The difference of A and B
Thus $A \backslash B=\{1,3,5,7,9\} \backslash\{0,3,6,9\}=\{1,5,7\}$

Disjoint sets

Consider the following sets:
$\mathrm{A}=\{1,3,5,7,9\}$
$B=\{0,2,4,6,8\}$

$$
\begin{aligned}
A \cap B & =\{1,3,5,7,9\}\{0,2,4,6,8\} \\
& =\{\quad \text { or } \varnothing
\end{aligned}
$$

A and B have no common elements, and therefore their intersection is an empty set.
$\{A \cap B=\varnothing\}$

Non-empty sets like $\{1,3,5,7,9\}$ and $\{0,2,4,6,8\}$, which have no members in common are called disjoint sets.

Overlapping Sets

Consider the following sets:
$\mathrm{A}=\{1,2,3,4\}$
$\mathrm{B}=\{3,4,5,6\}$
$A \cap B=\{3,4\}$
$A \subset B$ and $B \subset A$
$\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$
Then the two sets are said to be overlapping.
Note that overlapping sets have at least one member common and at least one member uncommon between them and none is an improper sub-set of the other.

Universal Set

When a given set is the 'overall set', to which all the objects in a discussion belong, the given set is called the 'universal set' of the discussion. In any discussion, it is important to know what the universal set is.
The universal set is represented by: ' U '
$\mathrm{U}=$ The set of whole numbers $=\{0,1,2, \ldots\}$
$U=$ The set of natural numbers $=\{1,2,3, \ldots\}$

Complementary Set

Consider the following sets:
$\mathrm{U}=\{1,2,3, \ldots 10\}$
$\mathrm{A}=\{1,2,3\}$
The difference of \cup and A is called the complement of A .
$\mathrm{U}-\mathrm{A}=\{1,2,3 \ldots 10\} \backslash\{1,2,3\}=\{4,5 \ldots 10\}$
We write: $\mathrm{U}-\mathrm{A}=\mathrm{A}^{\prime}$.
We say A^{\prime} is complement of A .
The complement of any set A contains all the elements that belong to U, but do not belong to A.
Consider the following sets:
$U=\{1,2,3,4,5,6\}, A=\{2,4,6\}, B=\{2,3,5\}$.

To find the complement of A and B.

$$
\begin{aligned}
\mathrm{A}^{\prime} & =\mathrm{U}-\mathrm{A} \\
& =\{1,2,3,4,5,6\}-\{2,4,6\} \\
& =\{1,3,5\} \\
\mathrm{B}^{\prime} & =\mathrm{U}-\mathrm{B} \\
& =\{1,2,3,4,5,6\}-\{2,3,5\} \\
& =\{1,4,6\}
\end{aligned}
$$

Union and Intersection of three sets

The operations of union and intersection between three sets can be performed in the same way as for two sets; consider the sets: $\mathrm{A}=\{1,2\}, \mathrm{B}=\{2,3\}$, and $\mathrm{C}=\{3,4\}$
(i) To find $\mathrm{A} \cup(B \cup C)$

First find $(B \cup C)$ and then $A \cup(B \cup C)$

1. $\mathrm{B} \cup \mathrm{C}$

$$
\begin{aligned}
& =\{2,3\} \cup\{3,4\} \\
& =\{2,3,4\}
\end{aligned}
$$

2. $A \cup(B \cup C)=\{1,2\} \cup\{2,3,4\}$
$=\{1,2,3,4\}$
(ii) To find $(A \cup B) \cup C$
3. $(A \cup B)=\{1,2\} \cup\{2,3\}$

$$
=\{1,2,3\}
$$

2. $(A \cup B) \cup C=\{1,2,3\} \cup\{3,4\}=\{1,2,3,4\}$
(iii) To find $A \cap(B \cap C)$
3. $(B \cap C)=\{2,3\} \cap\{3,4\}$

$$
=\{3\}
$$

2. $A \cap(B \cap C)=\{1,2\} \cap\{3\}$

$$
=\{ \} \text { or } \varnothing
$$

(iv) To find $(A \cap B) \cap C$

1. $(A \cap B)=\{1,2\} \cap\{2,3\}$

$$
=\{2\}
$$

2. $(A \cap B) \cap C=\{2\} \cap\{3,4\}$

$$
=\{ \} \text { or } \varnothing
$$

(v) To find $A \cup(B \cap C)$

1. $(B \cap C)=\{3\}$
2. $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=\{1,2\} \cup\{3\}$

$$
=\{1,2,3\}
$$

In the same way other unions and intersections of three sets can be found.

Fundamental Properties of Union and Intersection of three sets

1. Associative Property of Union

For any 3 sets A, B, C, the union of A, B, C can be made in any order, the resultant set will be the same.

$$
\begin{aligned}
& A \cup(B \cup C)=(A \cup B) \cup C=A \cup B \cup C \\
& A=\{1,2\}, B=\{2,3\}, C
\end{aligned}=\{3,4\}, ~ \begin{aligned}
\text { Left Hand Side }(L H S) & =A \cup(B \cup C) \\
& =\{1,2\} \cup\{2,3,4\} \\
& =\{1,2,3,4\}
\end{aligned}
$$

Right Hand Side $(R H S)=(A \cup B) \cup C$

$$
\begin{aligned}
& =\{1,2,3\} \cup\{3,4\} \\
& =\{1,2,3,4\}
\end{aligned}
$$

LHS = RHS

2. Associative Property of Intersection

For any 3 sets A, B, C, the intersection of A, B, C can be made in any order, the resultant set will be the same

$A \cap(B \cap C)$	$=(A \cap B) \cap C$
$\{1,2\} \cap\{3\}$	$=\{2\} \cap\{3,4\}$
$\}$	$=\{ \}$
LHS	$=$ RHS

3. Distributive Property of Union over Intersection

For any 3 sets A, B, C
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$\{1,2\} \cup\{3\}=\{1,2,3\} \cap\{1,2,3,4\}$
$\{1,2,3\}=\{1,2,3\}$
LHS $=$ RHS
4. Distributive Property of Intersection over Union

For any 3 sets A, B, C
$A \cap(B \cup C) \quad=(A \cap B) \cup(A \cap C)$
$\{1,2\} \cap\{2,3,4\}=\{2\} \cup\{\quad\}$
$\{2\} \quad=\{2\}$
LHS = RHS

UNIT

Rational Numbers (pages 16-29)

2

Rational Numbers

Positive integers are called natural numbers or counting numbers.
We have learnt earlier that the sum of two natural numbers is always a natural number. Also, when a natural number is subtracted from another natural number, the result is not always a natural number. It could be a whole number or a negative integer.
Now let us see what happens when a natural number is divided by another natural number.
When 4 is divided by 2 , the result is 2 but when 3 is divided by 4 we get $3 / 4$ which does not belong to any of the number systems that we have already discussed. The number $3 / 4$ is called a rational number .
$2 / 3,-5 / 6,0,4,-2$, etc. are all rational numbers.
So we can define a rational number as any number that can be expressed in the form of a / b, where a and b are integers and b is not equal to 0 .
Positive integers, negative integers, zero and common fractions all belong to the system of rational numbers.
Rational numbers can be expressed as a quotient of integers in a number of ways.
For example:
2 can be written as $2,4 / 2,8 / 4,-12 /-6$, etc.
To determine which of any two rational numbers is greater, we can find a common denominator for the numbers and then compare them.
The fraction with the greater numerator will be the greater number.
To find out which is greater, $9 / 2$ or $13 / 5$
Solution: \quad Finding the LCM of 2 and 5.
It is 10 .
Changing the fractions with the new denominator
$45 / 10$ and $26 / 10$.
Therefore, $45 / 10$ is the greater rational number.

Order of rational numbers

There is a difference between rational numbers and integers in the sense that there is a higher and a lower integer for any given integer. However, a rational number does not have a next higher or previous lower number.
$\frac{\mathrm{a}+\mathrm{b}}{2}$ is the formula for calculating the number in the middle of two said rational numbers such as a and b.
Follow the example given in book.

Representing rational numbers on the number line

We divide the number line into as many parts as indicated by the denominator of the fraction.
Each part then represents one part of the fraction.
To represent $2 / 5$ on the number line we must divide each segment into 5 equal parts. Each part will then represent $1 / 5.2 / 5$ will be the second mark lying to the right of the zero.

Irrational Numbers

Look at the decimal expression:
0.535533555333

The digits after the decimal point are first one 5 and one 3 , then two 5 's and two 3 's, and so on. It is neither terminating nor repeating. We know then, that it does not represent a rational number.
We can say that: Irrational Numbers are numbers represented by non-terminating, nonrepeating numerals e.g. $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc. are irrational numbers. The positive square root of a counting number that is not a perfect square is an irrational number.
Rational numbers can be represented on a number Iine. Construct the number line with integers as follows:

Dividing the segment between each pair of consecutive integers into equal parts we get rational numbers.

Operation on rational numbers

Addition

Adding rational numbers with a common denominator is easy.
If a, b, and c are integers and c is not equal to 0 then
$a / c+b / c=\frac{a+b}{c}$.
We can extend this rule to rational numbers with unequal denominators.
For example $3 / 4+2 / 5$
The LCM is 20 .
Renaming the fractions:

$$
\begin{aligned}
& 15 / 20+8 / 20 \\
& =23 / 20 .
\end{aligned}
$$

Note that the sum of a rational number is also a rational number.
Adding three or more rational numbers:
When we add three or more rational numbers, the order in which we add does not affect the result.

Add $1 / 2,2 / 3,3 / 4$.
$(1 / 2+2 / 3)+3 / 4$
The LCM is 12 .
Renaming the fractions:

$$
\begin{aligned}
& (6 / 12+8 / 12)+9 / 12 \\
& =(14 / 12)+9 / 12 \\
& =23 / 12 .
\end{aligned}
$$

By changing the order of the fractions:
$1 / 2+(2 / 3+3 / 4)$
$=6 / 12+(8 / 12+9 / 12)$
$=6 / 12+17 / 12$
$=23 / 12$.
We see that the result is the same in both cases.

Additive inverse

For any rational number a / b, there is a number $-a / b$ such that $a / b+(-a / b)=0$.
We say that $-\mathrm{a} / \mathrm{b}$ is the additive inverse of a / b.

Similarly a / b is the additive inverse of $-a / b$.
For integers we have seen that $5-2=5+(-2)$.
Here -2 is the additive inverse of 2 .

Subtraction

Subtracting 2 from 5 is the same as adding the additive inverse of 2 with 5 . As each rational number has an additive inverse, the concept of subtraction of integers can also be extended to rational numbers.
The difference of rational numbers is also a rational number.
Subtract $1 / 2$ from 3/4.
Solution: 3/4-1/2
The LCM is 4 .
Renaming the fractions:
3/4-2/4
$=1 / 4$.
To subtract three rational numbers:

$$
3 / 4,1 / 3,1 / 2
$$

$$
\text { Solution: }(3 / 4-1 / 3)-1 / 2
$$

The LCM is 12 .
Renaming the fractions:

$$
\begin{aligned}
& (9 / 12-4 / 12)-6 / 12 \\
& =5 / 12-6 / 12 \\
& =-1 / 12
\end{aligned}
$$

Changing the order of the fractions:

$$
\begin{array}{ll}
3 / 4-(1 / 3-1 / 2) \\
\text { Solution: } & 3 / 4-(2 / 6-3 / 6) \\
& 3 / 4-(-1 / 6) \\
& 3 / 4+1 / 6 \\
& \mathrm{LCM} \text { is } 24 \\
& 18 / 24+4 / 24 \\
& 22 / 24=11 / 12
\end{array}
$$

Note that by changing the order of subtraction of the numbers we do not get the same result.

Multiplication

The product of two rational numbers is also a rational number.
For any two rational numbers a / b and c / d :
$\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{a} \times \mathrm{c}}{\mathrm{b} \times \mathrm{d}}=\frac{\mathrm{ac}}{\mathrm{bd}}$
$\mathrm{ac} / \mathrm{bd}$ is a rational number.
For example:
$2 / 5 \times 3 / 4$
Solution: $2 / 5 \times 3 / 4$

$$
=3 / 10 \text {. }
$$

If we change the order of the rational numbers, the product is the same.
$3 / 4 \times 2 / 5$
Solution: $3 / 4 \times 2 / 5$

$$
=3 / 10 \text {. }
$$

The same is the case when we multiply three or more rational numbers.
Multiply $-5 / 8 \times 4 / 15 \times-3 / 4$.
We can multiply them in different orders
$(-5 / 8 \times 4 / 15) \times-3 / 4 \quad$ or $\quad-5 / 8 \times(4 / 15 \times-3 / 4)$
Solution: $-1 / 6 \times-3 / 4$
$-5 / 8 \times-1 / 5$
$=1 / 8$.
$=1 / 8$.

We can see that the order of the rational numbers does not affect the product.

Multiplicative identity

The product of 1 and any rational number is equal to the same rational number.
1 is called the multiplicative identity for rational numbers.

Division

The dividend is multiplied by the multiplicative inverse of the divisor for dividing one rational number by another.

Divide $2 / 7$ by $4 / 3$
Solution: $2 / 7 \div 4 / 3$

$$
\begin{aligned}
& =2 / 7 \times 3 / 4 \\
& =6 / 28 .
\end{aligned}
$$

Properties of rational numbers

The explanation and examples pertaining to rational numbers discussed above can be summarised as the properties of rational numbers. These are:

1. Commutative property of addition of rational numbers.

The order of adding rational numbers does not affect the result.
2. Associative property of addition of rational numbers.

The order of grouping of rational numbers does not affect the result.
3. Commutative property of multiplication of rational numbers.

The order of multiplication of rational numbers does not affect the product.
4. Associative property of multiplication of rational numbers.

The grouping of rational numbers does not affect the product.
5 Distributive property of multiplication over addition and subtraction.
Multiplication is distributed over addition and subtraction.

Non-recurring or terminating decimals

To write a rational number as a decimal we can divide the numerator by the denominator.
Express the rational number $1 / 2$ as a decimal.
Solution: To express the rational number as a decimal we can express the denominator as a power of 10 .
Such as:

$$
1 / 2=\frac{1 \times 5}{2 \times 5}=\frac{5}{10}=0.5
$$

or We can divide 1 by 2 .
Since 1 is less than 2 , we cannot perform division so we take 1 as 10 tenths.
$1 / 2=\frac{10 \text { tenths }}{2}=5$ tenths $=0.5$
We can see that the process of division has ended and there is no remainder.
Such a decimal is called a terminating decimal.

Recurring decimal or non-terminating decimal

Now express the following rational number by division:

$$
1 / 3
$$

Solution: 1 divided by 3 .

$$
1 / 3=0.333 \ldots
$$

We can see that the process of division is never ending. The remainder is not a zero. Such a decimal is called a non-terminating decimal.
All terminating and non-terminating decimal represent rational numbers that can be written in the form n / d where n is an integer and d is a positive integer.

UNIT

3

Decimals (pages 30-35)

Decimals

The decimal numbers system in based on power of 10 . As we move from the left to the right, each place value of the digits is divided by 10 . The decimal is denoted by a point (.)

Decimal number on a number line.

Changing a decimal fraction to a common fraction

To change a decimal fraction into a common fraction, write the decimal fraction as common fraction whose denominator is a power of ten, by counting the number of decimal places right of the decimal point.
Write the common fraction obtained in its simplest form.

Example

Change 0.3 into a common fraction.
Writing the denominator as 10 , because there is one digit left of the decimal point, it becomes $3 / 10$.
$1.5=1 \frac{5}{10}$, changing it into an improper fraction it becomes $15 / 10$, reducing it to its lowest terms it becomes $3 / 2$.

Non-recurring or terminating decimals

To write a rational number as a decimal we can divide the numerator by the denominator.
Express the rational number $1 / 2$ as a decimal.
Solution: To express the rational number as a decimal we can express the denominator as a power of 10 .
Such as:
or $\quad 1 / 2=\frac{1 \times 5}{2 \times 5}=\frac{5}{10}=0.5$

We can divide 1 by 2 .
Since 1 is less than 2 , we cannot perform division so we take 1 as 10 tenths.
$1 / 2=\frac{10 \text { tenths }}{2}=5$ tenths $=0.5$
We can see that the process of division has ended and there is no remainder.
Such a decimal is called a terminating decimal .

Recurring decimal or non-terminating decimal

Now express the following rational number by division.

$$
1 / 3
$$

Solution: 1 divided by 3 .

$$
1 / 3=0.333 \ldots
$$

We can see that the process of division is never ending. The remainder is not a zero. Such a decimal is called a non-terminating decimal.
All terminating and non-terminating decimals represent rational numbers that can be written in the form n / d where n is an integer and d is a positive integer.

Rules to identify a rational number is terminating or not terminating decimal

Terminating decimals have denominator factors of $5,2,5$, or 10 .

Fraction	Decimals	Is denominator a factor of 2?	Is denominator a factor of 5?	Terminating decimals
$1 / 3$	0,3333333	No	No	No
$1 / 8$	0.125	Yes	No	Yes
$1 / 10$	0.1	Yes	Yes	Yes
$1 / 4$	0.07142857	Yes	No	No

From the above observations, we conclude as following.
A fraction is a terminating decimal if its denominator is a factor of 2 or its powers or factor of 5 or its powers.

UNIT

4

Exponents $($ peges 8.58$)$

Coefficient, Base and Exponents

The number 9 can be written as 3×3 or 3^{2}
It is read as three squared and is called a power of 3 .
The numbers 27 and 81 are also powers of 3 .
$27=3 \times 3 \times 3=3^{3}$ (three-cubed)
$81=3 \times 3 \times 3 \times 3=3^{4}$ (three to the fourth power)
In general, if \boldsymbol{a} is any real number and \boldsymbol{n} is any positive integer, the nth power of \boldsymbol{a} is written as $\boldsymbol{a}^{\mathrm{n}}$, and is defined as:
$\boldsymbol{a}^{\mathrm{n}}=a . a \cdot a$------ $\quad n$ factors
where, a is called the base, and the small raised symbol \boldsymbol{n} is called the exponent.
\boldsymbol{n} (exponent)
\boldsymbol{a} (base)
The exponent indicates the number of times the base occurs as a factor.
Example: Express the following using exponents.
$5 \times 5 \times 5 \times 5$
The base is ' 5 '.
The number of times the base occurs as a factor is 4 .
The exponent is 4 .
so $5 \times 5 \times 5 \times 5=5^{4} \quad 4$ (exponent) 5 (base).

Laws of exponents in Rational Number system

These laws have been discussed in the book on pages 36, 37, and 38 .
A short review with examples is given below.

1. Product law

$$
\begin{aligned}
& \left(\frac{4}{5}\right)^{2} \times\left(\frac{4}{5}\right)^{3}=\left(\frac{4}{5}\right)^{2+3} \\
& \left(\frac{2}{5}\right)^{4}\left(\frac{1}{3}\right)^{4}=\left(\frac{2 \times 1}{5 \times 3}\right)^{4}
\end{aligned}
$$

2. Quotient law

$$
\begin{aligned}
& \left(\frac{4}{7}\right)^{6} \div\left(\frac{4}{7}\right)^{2}=\left(\frac{4}{7}\right)^{6-2} \\
& \left(\frac{2}{3}\right)^{3} \div\left(\frac{1}{3}\right)^{3}=\left(\frac{2 / 3}{1 / 3}\right)^{3}
\end{aligned}
$$

variables can be multiplied or divided if exponents are same.
3. Power law

$$
\left\{\left(\frac{2}{5}\right)^{2}\right\}^{4}=\left(\frac{2}{5}\right)^{8}
$$

4. Zero exponent

$$
\left(\frac{1}{3}\right)^{0}=1
$$

Absolute zero signifies the variable does not exist.
5. Exponent to negative integer
$\left(-\frac{5}{9}\right)^{4}$ result will be a positive number if power is an even number.
$\left(-\frac{5}{9}\right)^{3}$ result will be a negative number if power is an odd number.
6. Exponent as -ve integer

$$
\left(\frac{3}{5}\right)^{-3}=\left(\frac{5}{3}\right)^{3}
$$

7. Power of a product
$\left(\frac{4}{5} \times \frac{3}{5}\right)^{4}=\left(\frac{4}{5}\right)^{4} \times\left(\frac{3}{5}\right)^{4}$

Activity:

After the completion of lesson, divide the class in three groups. Ask them to choose their own rational numbers from flash card (provided), and apply the laws on them. They will present their results on chart paper. In the end sheets will be displayed in the class and results will be discussed.

UNIT

\section*{5
 Square roots of positive numbers

 positive numbers}
(pages 39-47)

Perfect Square

Perfect squares are obtained by squaring a whole number.
For example:
$3^{2}=9 \quad 7^{2}=49 \quad 11^{2}=121$
Short cuts to test perfect squares:

Square Roots

We have learnt that subtracting a number is the inverse of adding that number, and that dividing by a non-zero number is the inverse of multiplying by that number. The inverse of squaring a number is finding the 'square root' of that number.
Explain the symbol used to denote the square root of a positive number, which is called the radical sign. Often it is convenient to use the + or - notations with radicals. An expression written beneath the radical sign is called the radicand.
It is interesting to note that zero has only one square root and that is zero itself. The values of certain square roots can be seen at a glance; e.g. the square root of 49 is 7. We may be able to find other square roots by expressing them as a product of square roots familiar to us.

For example:
Find the square root of 144 .
Solution: Factorizing 144

$$
=9 \times 16
$$

The square root of 9 is 3 and that of 16 is 4 .
Therefore, the square root of 144 is $3 \times 4=12$.

To find square roots by prime factors

We keep dividing the number by prime numbers till we get zero as the remainder.
Then by pairing off the factors and selecting one factor from each group we get a set of factors that when multiplied together give us the required square root.

Find the square root of 324 .

Solution: | 2 | 324 | |
| :--- | :--- | ---: |
| 2 | 162 | |
| | 3 | 81 |
| 3 | 27 | |
| 3 | 9 | |
| | 3 | 3 |
| | 1 | |

Grouping two equal factors:
$324=\underline{2 \times 2} \times \underline{3 \times 3} \times \underline{3 \times 3}$
Selecting one factor from each pair we get:
$2 \times 3 \times 3=18$.
The square root of 324 is 18 .

Square root of a fraction

We find the square roots of the numerator and the denominator separately, then write them as a fraction.
Find the square root of $25 / 36$.
Solution: $\sqrt{25 / 36}$
The square root of 25 is 5 and that of 36 is 6 .
Writing the square roots as a fraction, we get $5 / 6$.

The square root of $\mathbf{1 0 0}$ and its powers
Give the pupils a tip to find out the square root of 100 and its powers. Give them the following example:

$$
10,000^{2}=100,000,000
$$

Then tell them to convert two zeros into one:
$1 \underline{00} \underline{00} \underline{00} \underline{00}$
Now, each pair should be reduced to one zero to find out its square root.
Therefore, the square root of $100,000,000$ is 10,000 .

The square root of a decimal number
The square root of 100 and its powers can be shown by finding their prime factors.
Find the square root of 100 .
Solution: The prime factors of 100 are 10×10.
So, the square root of 100 is 10 .
We can use two methods for finding the square root of a decimal number.
First, we convert the decimal into a fraction and then we find the square root.
For example:
Find the square root of 0.16 .
By changing it into a decimal fraction we get:
16/100.
Finding the square root of the numerator and the denominator we get:
4/10.
Changing it back into a decimal number we get:
$4 / 10=0.4$.
A decimal fraction is a perfect square if it can be converted into a perfect square fraction.

Word Problems

Read the word problems carefully and discuss them thoroughly before asking them to solve.

Direct and Inverse

variation

6

Time, Work, and Distance

Relation between work and time
$\left.\begin{array}{ll}\text { More Time } \longrightarrow & \text { More work } \\ \text { Less Time } \longrightarrow & \text { Less work }\end{array}\right]$ direct proportion
Relation between distance and time (keeping speed constant)
$\begin{array}{l}\text { More Time } \longrightarrow \\ \text { Less Time } \longrightarrow\end{array}$ More distance $]$ diress distance proportion
Relation between distance (D), time (T), and speed (S)

$$
\begin{array}{ll}
S & =\frac{D}{T} \\
D & =S \times T \\
T & =\frac{D}{S}
\end{array}
$$

Students can be guided to an easy way to remember the formula. We put these quantities into a triangle.

Proportional division

Proportional division means dividing a given quantity in a specified ratio.
The number in the ratio is considered to be the total number of units that the given quantity is to be divided into. From this we find the quantity per unit.

Divide Rs 5,000 in the ratio 2:3:5.
Solution: The sum of the ratios is $2+3+5=10$.
Quantity per unit is Rs 5,000 divided by 10 .
One unit is equal to Rs 500 .
According to the given ratio:
2 units will be equal to $500 \times 2=$ Rs 1,000 ;
3 units will be equal to $500 \times 3=$ Rs 1,500 ; and
5 units will be equal to $500 \times 5=$ Rs 2,500 .
This is the required proportional division.

This is a simpler method of calculating proportions. Teachers should explain the formula to the pupils so that they can retain it better.
For example:
A's share $=\frac{\text { the ratio of A }}{\text { total ratio }} \times$ total quantity.

Continued ratio

Three quantities of the same kind are said to be in a continued proportion when the ratio of the first to the second is equal to the ratio of the second to the third.
For example:
proportion 1:3=3:9
3 constitutes the second as well as the third terms of the proportion, i.e. the means are the same. In this case, 3 is called the mean proportional between 1 and 9 . Also, the three numbers 1,3 and 9 are said to be in continued proportion. The third quantity is called the third proportional.

To convert ratios into continued ratios:

Consider the proportion $2: 3=5: 7$
This can be written as:
$\mathrm{A}: \mathrm{B}=2: 3$
B: C $=5: 7$
To change the ratios into continued ratios; we multiply the first ratio by 5 and the second by 3 to make the second proportional B the same.
$2: 3=10: 15$ (multiplying by 5)
$5: 7=15: 21$ (multiplying by 3)
Now B is the same in both the ratios.

So the continued proportion will be A : B : C.
10: 15: 21
We can divide a given quantity into the given ratio by changing the ratios into continued ratio and then dividing.

Divide Rs 7,000 amongst $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in the following ratios.
A : B $=2: 3$
B: C $=4: 5$
Solution: For changing the ratios into continued ratio, multiply the first ratio by 4 and the second ratio by 3 .
We get $8: 12$, and $12: 15$.
So the continued ratio is:
A : B : C
8:12:15
The sum of the ratios is $8+12+15=35$.
Hence, the shares are:
A's share is $8 / 35 \times 7,000=$ Rs 1,600 ,
B's share is $12 / 35 \times 7,000=$ Rs 2,400 and
C's share is $15 / 35 \times 7,000=$ Rs 3,000 .

7

 \section*{Financial
 \section*{Financial Arithmetic} Arithmetic}
Property Tax

It is the tax, a person has to pay at a certain rate, fixed by the government, for the annual income from a piece of property.

Custom Duty

It is a kind of tax which is charged on goods that are imported from foreign countries.
The rate is different for different items.

Sales Tax

It is a tax that a shopkeeper has to pay on the annual sales of goods that he sells.
All calculations concerning different kinds of taxes can be calculated using the method of solving percentages.
Example:
Property Tax on a house worth Rs 96,000 at the rate of 15%
Property Tax $=\frac{15}{100} \times 96,000$

$$
=\text { Rs } 14,400
$$

Custom Duty on a VCR worth Rs 4500 at the rate of 80%.
Custom duty $=\frac{80}{100} \times 4500$

$$
=\text { Rs 3,600 }
$$

Inland price $=$ Cost + Custom duty
$=4,500+3,600$
$=$ Rs 8,100
A shopkeeper sold goods for Rs 85,500 . Find the sales tax at the rate of 5%.
Amount of sales = Rs 85,500
Sales tax at the rate of $5 \%=\frac{5}{100} \times 85,500=$ Rs 4,275

Zakat

Explain the meaning of Zakat as $2 \frac{1}{2} \%$ of the annual savings of a person's income.
$2 \frac{1}{2} \%=$ Rs 2.50 on every Rs 100 saved.
It is also equal to $1 / 40$ of the total saving as $2.50 / 100=1 / 40$.
To find the amount of Zakat payable on a certain sum.

Example: Find the amount of Zakat payable on Rs 10,000
Zakat $=2 \frac{1}{2} \%$ of 10,000

$$
\begin{aligned}
& =5 / 2 \times 1 / 100 \times 10,000 \\
& =\text { Rs } 250
\end{aligned}
$$

It can also be calculated by multiplying the annual savings by $1 / 40$ or by dividing it by 40 .
e.g. Zakat on Rs 10,000 will be

$$
1 / 40 \times 10,000=\text { Rs } 250
$$

To find the annual savings when the amount of Zakat is given.
Example: Find the amount on which Rs 550 is paid as Zakat.
When Zakat is Rs 2.50 the actual amount is 100

$"$	$"$	1	$"$	$"$	$100 / 2.50$
$"$	$"$	550	$"$	$"$	$(100 / 2.50) \times 550=$ Rs 22,000

or we can find the savings by multiplying the Zakat by 40 :
Savings $=100 / 2.50 \times 550$
since $100 / 2.50=40 / 1$
savings $=(40 / 1) \times 550=$ Rs 22,000

UNIT

Algebraic Expressions

8

Algebraic expressions

A variable is a symbol that is used to represent one or more numbers.
$a, b, c \ldots \ldots$ are variables.
To solve problems using algebra, we must often translate word phrases of numbers into numerical or variable expressions.
An algebraic expression is a combination of numbers and variables connected by one or more symbols such as + or - .

Coefficient, base, exponents

In the expression: $2 a^{3}, 2$ is called the coefficient, \mathbf{a} is the base and 3 is the exponent.

Polynomial expressions

An algebraic expression having one or more variables whose exponents are positive integers, is called a polynomial expression.
For examples:

$$
8 x, 8 x+9,8 x^{2}+2 x+1
$$

A monomial is considered a polynomial of one term, which is an expression that is either a numeral, a variable, or a product of a numeral and one or more variables. A numeral such as 7 , is called a constant monomial or a constant.
For examples:

- Monomial expressions have one term.

$$
7, a, 3 c, 8 x^{2} y
$$

- Binomial expressions have two terms:

$$
4 x+9,6 b^{2}-7 a
$$

- Trinomial expressions have three terms:

$$
x^{2}-3 x-2,5 b^{2}+3 a b-a^{2}
$$

Degree of polynomials

The degree of a monomial in a variable is the number of times that variable occurs as a factor in the monomial.
$3 x y^{2} z^{3}$ is of degree 1 in $x, 2$ in y and 3 in z.
The degree of any non-zero constant monomial is $\mathbf{0}$ (It has no degree).
The degree of a polynomial is the greatest of the degrees of its terms.
$4 x^{3}+5 x^{2}+7$.
The greatest degree of the variable x is 3 . So the degree of the polynomial is 3 .

Ascending and descending order

It is often helpful to rearrange the terms of a polynomial so that their degrees in a particular variable are in either increasing or decreasing order.

Consider the expression:
$-4 x^{3}+3 x^{2}+3 x^{5}$
The lowest power of x is 2 , and the highest power of x is 5 .
To arrange the terms in ascending order we start from the lowest power i.e. $3 x^{2}-4 x^{3}+3 x^{5}$. To arrange the terms in descending order we start from the highest power i.e. $3 x^{5}-4 x^{3}+3 x^{2}$.

Exponential expressions

The number 9 can be written as:
3×3 or 3^{2} and is called a power of 3 (It is read as: $\mathbf{3}$ to the second power or three squared).
The numbers 27 and 81 are also powers of 3 .
27 can be written as $3 \times 3 \times 3$ or 3^{3} (It is read as: three to the third power or three-cubed).
In the expression a^{3}, a is called the base and 3 is called the exponent.
The exponent indicates the number of times the base occurs as a factor.

Operations with polynomials

Addition of algebraic expressions

The terms that have the same variables and exponents are called like terms. The coefficients of like terms may be different.
e.g. $a, 2 a, 3 a$

The terms that have different variables and exponents are called unlike terms, even if their coefficients are the same.
e.g. $2 a, 2 a^{2}, 2 a^{3}$

Note: Only like terms can be added or subtracted.
To add two polynomials, we write the sum and simplify by adding like terms.
For example:
$2 x+5 x=7 x$.
$2 a+3 b$ and $2 b+a$.
Write in a vertical form:
$2 a+3 b$
$\underline{a+2 b}$
$3 a+5 b$

Addition of positive and negative terms

$$
3 a-6 a+9 a-4 a
$$

First, group the terms with similar signs.
$3 a+9 a-6 a-4 a$
Then, add like terms.

$$
12 a-10 a=2 a \text {. }
$$

Addition of mixed expressions

Mixed expressions can be added by associating the like terms horizontally or vertically.
Add: $5 x^{2} y+3 x^{2}-8+4 x^{2} y+2 x^{2}+9$.
Solution: (i) Associating the terms horizontally:

$$
\begin{aligned}
& 5 x^{2} y+4 x^{2} y+3 x^{2}+2 x^{2}-8+9 \\
& 9 x^{2} y+5 x^{2}+1
\end{aligned}
$$

(ii) Associating the terms vertically:

$$
\begin{aligned}
& 5 x^{2} y+3 x^{2}-8 \\
& 4 x^{2} y+2 x^{2}+9 \\
& \hline 9 x^{2} y+5 x^{2}+1 \\
& \hline
\end{aligned}
$$

Subtraction of algebraic expressions

Subtracting polynomials is very much like subtracting real numbers. To subtract a number, you add the opposite of that number.
To subtract a polynomial, you add the opposite of each term of the polynomial that you are subtracting and then simplify.

Subtract: $-5 a^{2}+2 a b+3 b^{2}-4$ from $7 a^{2}+6 a b-b^{2}-9$.
Solution:
(i) Associating the terms horizontally:

$$
\begin{aligned}
& \left(7 a^{2}+6 a b-b^{2}-9\right)-\left(-5 a^{2}+2 a b+3 b^{2}-4\right) \\
& =7 a^{2}+6 a b-b^{2}-9+5 a^{2}-2 a b-3 b^{2}+4 \\
& =(7+5) a^{2}+(6-2) a b+(-1-3) b^{2}+(-9+4) \\
& =12 a^{2}+4 a b-4 b^{2}-5 .
\end{aligned}
$$

(ii) Associating the terms vertically:

$$
\begin{aligned}
& 7 a^{2}+6 a b-b^{2}-9 \\
&-5 a^{2}+2 a b+3 b^{2}-4 \\
&+\quad-\quad-\quad+ \\
& \hline 12 a^{2}+4 a b-4 b^{2}-5 \text { (changing to the opposite) } \\
& \hline
\end{aligned}
$$

Multiplication of polynomials

When we multiply two monomials, we use the rule of exponents along with the commutative and associative properties for multiplication.
(i) Multiply $2 x^{2}$ by 3 .

Solution: $2 x^{2} \times 3=6 x^{2}$.
(ii) Multiply $-5 x^{2}$ by -3 .

Solution: $-5 x^{2} \times-3=+15 x^{2}$.

Multiplying polynomials

When we multiply two powers having the same base, we add the exponents.
(i) $x^{2} \times x^{5}=x^{2+5}=x^{7}$.
(ii) $3 x^{3} y^{4} \times-7 x y^{5}$
$=(3 \times-7)\left(x^{3} \times x\right)\left(y^{4} \times y^{5}\right)$
$=(-21)\left(x^{3+1}\right)\left(y^{4+5}\right)$
$=-21 x^{4} y^{9}$.

Multiplying a polynomial by a monomial

We use the distributive property and the rules of exponents to multiply.
Multiply $3 a^{2}-4 a+3$ by $4 a$.
We can multiply horizontally or vertically.
(i) $4 a\left(3 a^{2}-4 a+3\right) \quad$ (multiplying horizontally)
$=12 a^{3}-16 a^{2}+12 a$
(ii) $3 a^{2}-4 a+3$

$$
\times 4 a
$$ (multiplying vertically)

$$
12 a^{3}-16 a^{2}+12 a
$$

Multiplying two polynomials

We can use the distributive property of multiplication to multiply two polynomials.
Multiply $4 x+3$ by $3 x+4$.
(i) Multiplying horizontally:

$$
\begin{aligned}
& (4 x+3)(3 x+4) \\
= & 4 x(3 x+4)+3(3 x+4) \\
= & 12 x^{2}+16 x+9 x+12 \\
= & 12 x^{2}+25 x+12
\end{aligned}
$$

(ii) Multiplying vertically:

$$
\begin{aligned}
& \begin{array}{l}
4 x+3 \\
3 x+4
\end{array} \\
& \begin{array}{r}
12 x^{2}+9 x \\
+16 x+12 \\
\hline 12 x^{2}+25 x+12 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Algebraic Identities

$$
\begin{aligned}
&(x+a)(x+b)=x^{2}+(a+b) x+a b \\
&(a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2} \\
&(a-b)^{2}=(a-b)(a-b)=a^{2}-2 a b+b^{2} \\
& a^{2}-b^{2}=(a-b)(a+b)
\end{aligned}
$$

The above identities are verified on page 74 and 75 of the book

Factorisation of algebraic expression

To Factorise an Expression which is a Perfect Square

Factorise: $81 x^{2}+90 x y+25 y^{2}$

$$
\begin{aligned}
& 81 x^{2}+90 x y+25 y^{2} \\
= & (9) x^{2}+2(9) x(5 y)+(5 y)^{2} \\
& (9 x+5 x)^{2}=(9 x+5 y)(9 x+5 y)
\end{aligned}
$$

is the factorisation.
Factorise:

$$
\begin{aligned}
& 36 a^{2}-84 a b+49 b^{2} \\
& 36 a^{2}-84 a b+49 b^{2} \\
& (6 a)^{2}-2(6 a)(7 b)+(7 b)^{2} \\
& (6 a-7 b)^{2}=(6 a-7 b)(6 a-7 b) \\
& \text { is the factorisation. }
\end{aligned}
$$

Factorisation of Expressions of the Type $a^{2}-b^{2}$
We can use the symmetric property of equality to write the statement $(a+b)(a-b)$
$=a^{2}-b^{2}$ in a form useful for factorising the difference of two squares.
$a^{2}-b^{2}=(a+b)(a-b)$.
Factorise: $16 a^{2}-25 b^{2}$.

$$
16 a^{2}-25 b^{2}
$$

$=(4 a)^{2}-(5 b)^{2}$
$=(4 a+5 b)(4 a-5 b)$ is the factorisation.

In expressions that have common factors we first take out the common factors and then factorise the expression

Factorise: $49 a^{3} b-9 a b^{3}$
common factors are: $a b$
$=49 a^{3} b-9 a b^{3}$
$=a b\left(49 a^{2}-9 b^{2}\right)$
$=a b\left\{(7 a)^{2}-(3 b) 2\right\}$
$=a b(7 a+3 b)(7 a-3 b)$ is the factorisation.

Factorisation of Expressions of the Type $a x^{2}+b x+c$
Trinomials can be factorised as a product of the form $(x+a)(x+b)$ where \boldsymbol{a} and \boldsymbol{b} are either positive or negative.
Look at these products:

$$
(x+3)(x+4)=x^{2}+7 x+12
$$

sum of $3 \& 4 \quad$ product of $3 \& 4$

$$
(x-3)(x-4)=x^{2}-7 x+12
$$

sum of $-3 \&-4 \quad$ product of $-3 \&-4$
We can see that:
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Linear Equations (pages 7 -8.8)

9

Solution of linear equations

Equations

A polynomial equation has polynomials on both sides and where both the sides have an equality sign in the middle.

A simple linear equation

An equation is formed by placing an is equal to sign between two numerical variable expressions called the sides of the equation. In an equation, the sign of equality between the sides shows that the two sides are equal.
e.g. $x-5=7$.

An equation in which the exponent of the variable is 1 is called a linear equation.

Equivalent equations

Equations having the same solution are called equivalent equations.

Transforming equations

To solve an equation we usually try to change or transform it into a simple equivalent equation, whose solution can be seen at a glance. This transformation into a simple equivalent equation can be done by substitution, addition, or subtraction.

Addition and subtraction properties of an equality

1. If the same number is added to equal numbers, the sums are equal.
2. If the same number is subtracted from equal numbers, the differences are equal.

We can use these properties to solve some equations.
Solve $x-5=7$.
$x-5+5=7+5$ (5 is added to both sides)
$x=12$.
Solve $x+10=20$.
$x+10-10=20-10$ (10 is subtracted from both sides)
$x=10$.
Because errors may occur in transforming equations, we should check our work by substituting the value of the variable found, so as to show that the transformed equation satisfies the original equation.

$$
\begin{aligned}
& x+8=3 . \\
& x+8-8=3-8 \\
& x=-5 .
\end{aligned}
$$

Substituting the value of $x=-5$ in the given equation:

$$
\begin{aligned}
& x+8=3 . \\
& -5+8=3 \\
& 3=3 .
\end{aligned}
$$

Multiplication and division properties of an equality

1. If equal numbers are multiplied by the same number, the products are equal.
2. If equal numbers are divided by the same non-zero number, the quotients are equal.

Transformation by multiplication

Multiply each side of a given equation by the same non-zero real number.

$$
x / 2=14
$$

Multiplying both sides by 2 :
$(x / 2)(2)=(14)(2)$
$x=28$.

Transformation by division

Divide each side of a given equation by the same non-zero real number.
e.g. $2 x=10$.

Dividing both sides by 2 :

$$
\begin{aligned}
& 2 x / 2=10 / 2 \\
& x=5 .
\end{aligned}
$$

Using several transformations to solve an equation

We know that subtraction is the inverse of addition and that division is the inverse of multiplication. In transforming equations, we often use inverse operations.

Solve $4 y+43=19$.
Solution: $4 y+43=19$
Subtracting 43 from each side:
$4 y+43-43=19-43$
$4 y=-24$
Dividing each side by 4 :
$4 y / 4=-24 / 4$
$y=-6$.
To check:

Substituting the value of $y=-6$ in the given equation:
$4 y+43=19$
(4) $(-6)+43=19$
$-24+43=19$
$19=19$
The following steps are usually helpful when we are solving an equation in which all the variables are on the same side.

1. Simplify each side of the equation.
2. If there are indicated additions or subtractions, use the inverse operations to undo them.
3. If there are indicated multiplications or divisions, use the inverse operations to undo them.

Solving word problems

Follow the steps given below for solving word problems involving linear equations:

1. Read the problem carefully a few times. Decide what numbers are asked for and what information is given. Making a sketch may be helpful.
2. Choose a variable and use it with the given facts to represent the number(s) described in the problem.
3. Reread the problems. Then write an open sentence that represents the relationship amongst the numbers in the problem.
4. Solve the open sentence and find the required numbers.
5. Check your results with the words of the problem. Give the answer.

Fundamentals of
 Geometry

Congruent and similar figures:

Studying about figures and comparing their shapes, size and angles we come to know interesting facts about them.

Comparing figures

(i) Congruent figures
(ii) Similar figures

Same size
symbol for congruency
same shape

Congruent figures

Congruent shapes have same size and same angles. If they are placed upon each other, they exactly fit each other.

Similar figures

Similar shapes are the figures which have same shape but not the same size. They have equal corresponding angles, but their sides are in proportion to each other.

Congruent triangles

There are four tests to work out the congruency of two triangles.

1. SSS : all side of two triangles are equal
2. SAS : two sides and including angles
3. ASA : two angles and one side in equal
4. RHS : hypotenuse and one side of a right angled triangle are equal.

Explain these conditions with the help of example given on page 90. Further activity can be done by attempting the questions in the exercise 10.3

Similar triangles

There are three conditions for similarity between triangles given on page 89 of textbook.

Circle

Some examples, how circles are used in real life:
Camera lenses, tyres, ferris wheels, steering wheels, elliptical, buttons, cakes, pizzas and pies are examples of circles.

Geometric tools:

Geometric tools are used to draw geometric figures. The most important and basic geometric tools are:

1. Straight ruler to draw straight lines
2. Compass to draw arcs and circles.
3. Protractor to construct and measure angles.

Geometry deals with the lines, shape and position of the figures that follow some rules. Practical geometry is about the methods to apply these rules. Unit 11 provides the methods of deciding line segments and construction of triangles and quadric laterals. Students should be given ample practice through examples from the book and daily life evidences.

unit Circumference, Surface

Circumference of a circle

In circles having different radii, the ratio between the circumference and diameter is same. This ratio is denoted by $\pi=\frac{22}{7}=3.1428$ approx.

$$
\begin{aligned}
& \pi=\frac{\operatorname{around}}{\text { across }}=\frac{C}{D} \\
& C=\pi D \\
& C=\pi \times 2 R \quad \text { since } D=2 R \\
& C=2 \pi R
\end{aligned}
$$

Area of a circle:
To derive the formula for Area of a circle, students can be involved in the following activity.
Draw a circle and then draw concentric circles inside the circle.

Perimeter of each circle is the circumference of the circle and can be shown as a straight line Draw the circumference of each circle as a straight line one upon the other. In the end we get a right angle triangle
Area of circle $=$ area of right angled triangle
Area of circle $=\frac{1}{2} \times$ base r height

$$
\begin{aligned}
& =\frac{1}{2} \times \not 2 \pi \mathrm{R} \times \mathrm{R} \\
& =\pi \mathrm{R}^{2}
\end{aligned}
$$

Surface area and volume of cylinder

Activity:

Divide the class in 4 groups. The rectangular cutout length should be equal to the circumferences of the two circle cutouts. The width of the rectangle can be any measurement as the height of the cylinder.

Ask them to make a cylinder with the help of the cutouts and glue.

Help the students to recall the surface area of circles and curved surface. Surface area of cylinder = surface area of two circles and curved surface

$$
\begin{aligned}
& =\quad \pi r^{2}+\pi r^{2}+2 \pi r h \\
& =2 \pi r^{2}+2 \pi r h \\
& =2 \pi r(r+h)
\end{aligned}
$$

Now ask each group to find surface area according to the measurements given to them.
Volume of a cylinder $=\pi r^{2} h$

Information Handling

13

Pie chart

Diagrams and graphs help in giving us an overall view of the data under consideration. They present the facts in the form of pictures by which data or information can easily be compared. One kind of chart called the pie chart is constructed by dividing a circle into different sectors. Each sector corresponds to the percentage of a category of data under consideration. The angle of each sector is proportional to the number the sector represents.
To obtain the sectors in a pie chart we need to find the angles at the center of the circle. Since the total area of the circle corresponds to the total number of degrees in the circle, i.e. 360 , we can find the angle of the circle by dividing each item by the total number of items and multiplying by 360°.

To draw a pie chart

First find out the angles of each sector. Then draw the radius of the circle and with the help of a protractor, draw the required angle. Using the arm of the angle drawn, draw the next angle corresponding to the next sector and so on. Fill till all the sectors have been represented. Write the item in the sector it represents. Colour each sector in a different shade. Example:
Draw a pie chart to represent the monthly expenditure of a family.

House rent $=30 \%$	$=\frac{30}{100} \times 360^{\circ}=108^{\circ}$
Food	$=50 \%$
Education	$=10 \%$
$\frac{50}{100} \times 360^{\circ}=180^{\circ}$	
Health	$=\frac{10}{100} \times 360^{\circ}=36^{\circ}$
Savings	$=8 \%$
	$=\frac{2}{100} \times 360^{\circ}=7.2^{\circ}$
	$=\frac{2}{100} \times 360^{\circ}=28.8^{\circ}$

Adding all the items: $\quad=\quad 100 \%$

draw the first sector

draw the second sector (iv)

(c)
36°
draw the third sector (v)

(c)
36°
then, draw the last two sectors (vi)

اعراو وشثاركا انردانج (Information Handling)
5
تصاوير اور كراف زيرِّ معلوات 6

$$
\begin{aligned}
& 30 / 100 \times 360^{\circ}=108^{\circ}=30 \%=\text { ك } \\
& 50 / 100 \times 360^{\circ}=180^{\circ}=50 \%=\text { خراك } \\
& 10 / 100 \times 360^{\circ}=36^{\circ}=10 \%=\text { تهيم } \\
& 2 / 100 \times 360^{\circ}=7.2^{\circ}=2 \%=\text { م } \\
& 8 / 100 \times 360^{\circ}=28.8^{\circ}=8 \%=\text { \% }
\end{aligned}
$$

(i)

(c)
(i)

(c)
(i)

(ii)

(iii)

Ruler

Compass

$$
\begin{aligned}
& \text { - ك } \\
& 4 y+43=19:{ }^{2} \text { : } \\
& 4 y+43=19:{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 4 y+43-43=19-43 \\
& 4 y=-24 \\
& \text { ، } \\
& 4 y / 4=-24 / 4 \\
& y=-6 \\
& \text { ج } \\
& \text {, وى ،ووَّ سـاوات يّ } \\
& 4 y+43=19 \\
& \text { (4) }(-6)+43=19 \\
& -24+43=19 \\
& 19=19
\end{aligned}
$$

 ست بي بول

2- اكر كبه
3- اگركين
عاركّ مساكّل

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

 $x+8=3$:

$$
x+8-8=3-8
$$

$$
x=-5
$$

$$
x+8=3
$$

$$
-5+8=3
$$

$3=3$

$$
\begin{aligned}
& \text { ثساوات ك م }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 官 }
\end{aligned}
$$

$$
\begin{aligned}
& x / 2=14 \text { بثراً }
\end{aligned}
$$

$$
\begin{aligned}
& (x / 2)(2)=(14)(2) \\
& x=28
\end{aligned}
$$

$$
\begin{aligned}
& \text { رونو } \\
& 2 x / 2=10 / 2 \\
& x=5
\end{aligned}
$$

(Equations) هساوات

نثان بو-
سارهخ مُماوات

$$
x-5=7 \text { : بثراً }
$$

بساويانْ دساوات

هساوات كوتبر... كرنا

مساوات كَ بحّ اورتز تِن كا خصوصيات

 شث
(5 وزوْ (5

$$
x-5+5=7+5
$$

$x=12$
بثراً

$$
\begin{aligned}
& \text { (10) } x+10-10=20-10 \\
& x=10
\end{aligned}
$$

$$
\begin{aligned}
& \text { نم } \\
& \text { (} 3 a^{2}-4 a+3 \\
& 4 a\left(3 a^{2}-4 a+3\right) \\
& \text { (أنقّ طور برُزبر وينا) = } \\
& 3 a^{2}-4 a+3 \\
& \times \quad 4 \\
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& (4 x+3)(3 x+4) \\
& =4 x(3 x+4)+3(3 x+4) \\
& =12 x^{2}+16 x+9 x+12 \\
& =12 x^{2}+25 x+12 \\
& \text { (ii) } \\
& 4 x+3 \\
& \times \frac{3 x+4}{12 x^{2}+9 x} \\
& +\frac{16 x+12}{12 x^{2}+25 x+12}
\end{aligned}
$$

مثرأ

$$
7 a^{2}+6 a b-b^{2}-9
$$

$$
-5 a^{2}+2 a b+3 b^{2}-4
$$

$$
\frac{+\quad-\quad-\quad+}{12 \mathrm{a}^{2}+4 \mathrm{ab}-4 \mathrm{~b}^{2}-5}
$$

(
كثر رتّ اظهاريّ كانزب

 $2 x^{2} \times 3=6 x^{2} \quad: \quad V^{0}$ -$-5 x^{2} \times-3=+15 x^{2}$

كثير رُّى اظهاريول كونربك كنا

$$
\begin{gathered}
x^{2} \times x^{5}=x^{2}+5=x^{7} \quad \text { (i) } \\
3 x^{3} y^{4} x-7 x y^{5} \text { (ii) } \\
=(-21)\left(x^{3+1}\right)\left(y^{4+5}\right) \\
=-21 x^{4} y^{9}
\end{gathered}
$$

$$
\begin{align*}
& \left(7 \mathrm{a}^{2}+6 \mathrm{ab}-\mathrm{b}^{2}-9\right)-\left(-5 \mathrm{a}^{2}+2 \mathrm{ab}+3 \mathrm{~b}^{2}-4\right) \tag{i}\\
& 5 \mathrm{a}^{2}-2 \mathrm{ab}-3 \mathrm{~b}^{2}+4+7 \mathrm{a}^{2}+6 \mathrm{ab}-\mathrm{b}^{2}-9 \\
& =(7+5) a^{2}+(6-2) a b+(-1-3) b^{2}+(-9+4) \\
& =12 \mathrm{a}^{2}+4 \mathrm{ab}-4 \mathrm{~b}^{2}-5
\end{align*}
$$

$$
2 a+3 b
$$

$$
\frac{a+2 b}{3 a+5 b}
$$

خبَ

$$
3 a-6 a+9 a-4 a \text { بث }
$$

$$
3 a+9 a-6 a-4 a
$$

اب ايكِبيّ روّ مكو.

$$
12 a-10 a=2 a
$$

$$
5 x^{2} y+4 x^{2} y+3 x^{2}+2 x^{2}-8+9
$$

$$
9 x^{2} y+5 x^{2}+1
$$

$$
5 x^{2} y+3 x^{2}-8
$$

$$
\frac{4 x^{2} y+2 x^{2}+9}{9 x^{2} y+5 x^{2}+1}
$$

البُق انظرايسكتز يت

$$
\begin{aligned}
& 5 x^{2} y+3 x^{2}-8+4 x^{2} y+2 x^{2}+9-\text { مثراً }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (i) } \downarrow
\end{aligned}
$$

 $4 x^{3}+5 x^{2}+7:$: ثرث
متني x 6 سبب معورى اور زول تُتيب
 إمهروك تيب يّ

$$
-4 x^{3}+3 x^{2}+3 x^{5}
$$

$$
3 x^{2}-4 x^{3}+3 x^{5}
$$

;" $3 x^{5}-4 x^{3}+3 x^{2}$

قتنما انظار
عر
 -
27 ك ك , اظطهار ي
 الجبى اظهبار ليو ك كتع
 a, $2 a, 3 a$ 化
 2a, $2 a^{2}, 2 a^{3}$ ث

ابْ
الجبرى اظهار يـ

مثراً
الجرا ع سوال

عروى تر، نياء اورقوتنما

كثير رُّ اظبار يـ

$$
8 x, 8 x+9,8 x^{2}+2 x+1 \text { بَ }
$$

7, a, 3c, $8 x^{2} y$ بثر

$4 x+9,6 b^{2}-7 \mathrm{a}$ بَ

$$
\begin{aligned}
& x^{2}-3 x-2,5 b^{2}+3 a b-a^{2} \text { 免 } \\
& \text { كثيز رثّ اظهاريون ع ورجات }
\end{aligned}
$$

 ز $21 / 2 \% 610,000=$ $5 / 2 \times 1 / 100 \times 10,000=$ そ $250=$

 ٪و $250=10,000 \times 1 / 40$

جب زكُة 1 رو
 يا يا زكوّة كَ رقّ كو 40 كـ $(100 / 2.50) \times 550=\quad$ ． $100 / 2.50=40 / 1$ $40 / 1 \times 550=\quad$ ．《 $22,000=$

حصولات (Taxes)

جايُيارئكِ
 كمُّ وُيؤُ
 K

$$
\text { بايَيارئَّلْ =96,000 } 15 / 100
$$

\%, 14,400=

 ъ, 3,600 =

$$
3,600+4,500=
$$

ت 8,100 =
 85,000 = $=$;
 چر $4,275=$

$$
5: 7=15: 21(3: \dot{ر})
$$

 البزا 10:15:21
اكرنبتول كولـلّن نبتو

$A: B=2: 3$
B: $\mathrm{C}=4: 5$

$$
3 \text { ـحْب بيمي }
$$

اب ابم طصل كرت بّبل 12 : 8 اور 15 : 12

A:B:C
8:12:15

$$
\text { نبتون كُع ب } 35 \text { = } 15+12+8
$$

اルٌ

$$
\begin{aligned}
& 8 / 35 \times 7,000=\underset{\sharp}{\ell} \text { ر } 1,600 \\
& c_{6} \rightarrow 2 \mathrm{~A} \\
& 12 / 35 \times 7,000=\text { ₹ } 2,400 \text { ر } 6
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}: \mathrm{B}=2: 3 \\
& \text { B:C=5:7 }
\end{aligned}
$$

(Proportional Division) تنا بَاتّ

$2+3+5=10<$ ق

$$
\begin{aligned}
& \text { ؤرى حسابكن }
\end{aligned}
$$

يّتاسب6 حاب كّابك 6

$$
\text { ثشاً } 6 \text { حصـ A } \text { ح }
$$

.

 بثشاً 25/36 6 جذربعلوم بيكيل
 100 كَ جز اور اس كو قوتي
 ثمثاً
 100000000
 ان لي 100,000,000 كا جزر 10,000 بـ

اونثارك اعراوط جزر

$$
\begin{aligned}
& \text { اس لِّ } 100 \text { كبذر } 10 \text { بَ }
\end{aligned}
$$

عبارثّ سـاكّل

جزر (Square Root)

$$
\begin{aligned}
& =9 \times 16
\end{aligned}
$$

 چ倍

2	324
2	162
3	81
3	27
3	9
3	3
	1

$$
324=(2 \times 2) \times(3 \times 3) \times(3 \times 3)
$$

r
324 6 6 بزر 18 بـ
جب ب\% ¢مبا尼

$$
\frac{5^{5}}{5^{3}}=\frac{(5)(5)(5)(5)(5)}{(5)(5)(5)}
$$

;
? بَ ارו,

$$
r=s \sqrt{i} \quad r<s \sqrt{1} \quad r>s \sqrt{1}
$$

$$
a^{r} / a^{S}=a^{r-s}=a^{0}=1 \quad a^{r} / a^{S}=1 / a^{s-r} \quad a^{r} / a^{s}=a^{r-s}
$$

$$
\begin{aligned}
& \text { كَ كَركّ } \\
& \text { 茥 } \\
& (2 / 3)^{4}=(2)(2)(2)(2) /(3)(3)(3)(3) \\
& \text { "ج }
\end{aligned}
$$

$$
\begin{aligned}
& (a / b)^{r}=a^{r} \mid b^{r} \\
& \text { تتيم كنثاتات عَ لِ اصول }
\end{aligned}
$$

 كرا-

$$
\begin{aligned}
& \left(\frac{\mathrm{a}}{\mathrm{~b}}\right)^{\mathrm{r}}\left(\frac{\mathrm{a}}{\mathrm{~b}}\right)^{\mathrm{n}}=\left(\frac{\mathrm{a}}{\mathrm{~b}}\right)^{r+n} \\
& \text { r- }
\end{aligned}
$$

 ثل

$$
\begin{aligned}
& \left\{\left(\frac{4}{5}\right)^{2}\right\}^{3} \\
& =\left(\frac{4}{5}\right)^{2} \times\left(\frac{4}{5}\right)^{2} \times\left(\frac{4}{5}\right)^{2} \\
& =\left(\frac{4}{5}\right)^{2 \times 3}=\left(\frac{4}{5}\right)^{6}
\end{aligned}
$$

$$
\left(a^{r}\right)^{s}=a^{r s}
$$

$$
\begin{aligned}
& \left\{\left(\frac{2}{5}\right)\left(\frac{1}{2}\right)\right\}^{2} \\
& =\left(\frac{2}{5}\right) \times\left(\frac{1}{2}\right) \times\left(\frac{2}{5}\right)\left(\frac{1}{2}\right) \\
& =\left(\frac{2}{5}\right)^{2} \times\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

 r

$$
(\mathrm{ab})^{\mathrm{r}}=\mathrm{a}^{\mathrm{r}} \mathrm{~b}^{\mathrm{r}}
$$

（Exponents）

 الـ آ

اعراو 27 اور 81 بكّ 3 كَوت
$27=3 \times 3 \times 3=3^{3}$（تّن

 ك كا كُ كا

$$
\mathrm{a}^{\mathrm{n}} \quad=a \cdot a \cdot a-----
$$

n factors
a n（ ${ }^{(0)}$ ）
a（ひレا）
وُت نُا ، طام كثّا

$5 \times 5 \times 5 \times 5$
－ 5 じい

$5 \times 5 \times 5 \times 5=5^{4}($（الّ

جبی

$$
\begin{aligned}
& \left(\frac{2}{5}\right)^{3} \times\left(\frac{2}{5}\right)^{2} \text { 亿 } \\
& =\left(\frac{2}{5}\right)^{3+2}
\end{aligned}
$$

 - $\frac{1}{2} \times(2 / 3+2 / 5)$

$$
\begin{aligned}
& (1 / 2 \times 2 / 3)+(1 / 2 \times 2 / 5) \quad \text { : } \\
& =1 / 3+1 / 5 \\
& =8 / 15
\end{aligned}
$$

$$
(1 / 2 \times 1 / 4)-(1 / 2 \times 1 / 3){ }^{\vartheta}
$$

$$
\begin{aligned}
& =(1 / 8-1 / 6) \\
& =-1 / 24
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{3}+\frac{1}{4}=\frac{1}{4}+\frac{2}{3} \\
& \frac{8+3}{12}=\frac{3+8}{12} \\
& \frac{11}{12}=\frac{11}{12}
\end{aligned}
$$

$$
\frac{1}{3}+\left(\frac{1}{3}+\frac{2}{4}\right)=\left(\frac{1}{3}+\frac{1}{3}\right)+\frac{2}{4} \quad \text {. }
$$

$$
\frac{1}{3}+\frac{4+6}{12}=\frac{1+1}{3}+\frac{2}{4}
$$

$$
\frac{1}{3}+\frac{10}{12}=\frac{2}{3}+\frac{2}{4}
$$

$$
\frac{4+10}{12}=\frac{8+6}{12}
$$

$$
\frac{14}{12}=\frac{14}{12}
$$

竍

$$
\begin{aligned}
& \left(\frac{1}{3} \times \frac{2}{3}\right) \times \frac{5}{6}=\frac{1}{3} \times\left(\frac{2}{3}+\frac{5}{6}\right) \\
& \frac{12}{9} \times \frac{5}{6_{3}}=\frac{1}{3} \times \frac{5}{9} \\
& \frac{5}{27}=\frac{5}{27}
\end{aligned}
$$

$$
\begin{aligned}
& 1 / 2 \times 1 / 4=1 / 4 \times 1 / 2 \text { مثم } \\
& 1 / 8=1 / 8
\end{aligned}
$$

نرب

年 ac/bd
مثثلا

$$
2 / 5 \times 3 / 4
$$

\downarrow

$$
=3 / 10
$$

$$
3 / 4 \times 2 / 5
$$

$$
=3 / 10
$$

 ثثاً أ

| $(-5 / 8 \times 4 / 15) \times-3 / 4 \quad$, | $-5 / 8 \times(4 / 15 \times-3 / 4)$ |
| :--- | :--- | :--- |
| $-1 / 6 \times-3 / 4$ | $-5 / 8 \times-1 / 5$ |
| $=1 / 8$ | $=1 / 8$ |

 غربك ثاخت

$$
\begin{aligned}
& \text { 2/7 } \div 4 / 3 \text { : } \\
& =2 / 7 \times 3 / 4 \\
& =6 / 28
\end{aligned}
$$

بثشاً أ 2/4-3/4

$$
=1 / 4
$$

$$
\begin{aligned}
& (9 / 12-4 / 12)-6 / 12 \\
& =5 / 12-6 / 12 \\
& =-1 / 12
\end{aligned}
$$

كورك تيبتبيلك:
$3 / 4-(1 / 3-1 / 2)$
ق : $3 / 4-(2 / 6-3 / 6)$
$3 / 4-(-1 / 6)$
$3 / 4+1 / 6$
الق
$18 / 24+4 / 24$
$22 / 24=11 / 12$

$$
\begin{aligned}
& \text { 3/4, 1/3, } 1 / 2 \text { 位 } \\
& \text { (3/4-1/3)-1/2 : }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{15}{20}+\frac{8}{20} \\
& =\frac{23}{20}
\end{aligned}
$$

 ثثشأ $(1 / 2+2 / 3)+3 / 4$ ان كسوركو منع انراز بيل لكهنا :

$$
(6 / 12+8 / 12)+9 / 12
$$

$$
=(14 / 12)+9 / 12
$$

$$
=23 / 12
$$

$$
1 / 2+(2 / 3+3 / 4)
$$

$$
=6 / 12+(8 / 12+9 / 12)
$$

$$
=6 / 12+17 / 12
$$

$$
=23 / 12
$$

.
a/b $+(-a / b)=0$ كى كُّ نط " - $6-\mathrm{a} / \mathrm{b}<\mathrm{c}$ ب
 - 6

 برحصد

ناطق اعراوك كثيفـ خاميت

ناطقٌ اعراو پِكم

$\mathrm{a} / \mathrm{c}+\mathrm{b} / \mathrm{c}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}$.

ج 6 ز واوهافِ اثل 20 بـ

ناطّ اعراو (Rational Numbers)

2/3, -5/6, 0, 4, -2

،ول اور $0, \mathrm{~b}$ كـ

ك

26/10 45/10 اور 26

ناطّ اعراو كَ رٌتيب

$A \cup(B \cup C)=(A \cup B) \cup C=A \cup B \cup C$
$A=\{1,2\},, B=\{2,3\}, C=\{3,4\} \quad: \mathrm{C} \hbar$
$\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})=(\mathrm{LHS})$!
$\{1,2\} \cup\{2,3,4\}=$
$\{1,2,3,4\}=$
(A
$\{1,2,3\} \cup\{3,4\}=$
$\{1,2,3,4\}=$
LHS $=$ RHS

$\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C} \quad: \mathrm{V}$
$\{1,2\} \cap\{3\}=\{2\} \cap\{3,4\}$
\{ $\}=\{ \}$
LHS $=$ RHS

$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$\{1,2\} \cup\{3\}=\{1,2,3\} \cap\{1,2,3,4\}$
$\{1,2,3\}=\{1,2,3\}$
LHS $=$ RHS

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$\{1,2\} \cap\{2,3,4\}=\{2\} \cup\{ \}$
\{2\}
$=\{2\}$
LHS $=$ RHS

 R $A=\{1,2\}, B=\{2,3\}, C=\{3,4\}$

0
$\mathrm{AU}(\mathrm{B} \cup \mathrm{C})$)
$\{2,3\} \cup\{3,4\}=B \cup C \quad .1$ $\{2,3,4\}=$
$\{1,2,3\} \cup\{3,4\}=\{A \cup B\} \cup C \quad .2$ $\{1,2,3,4\}=$
U
$\{1,2\} \cup\{2,3\}=A \cup B) \quad .1$

$$
\{1,2,3\}=
$$

$\{1,2,3\} \cup\{3,4\}=\{A \cup B\} \cup C \quad .2$
$\{1,2,3,4\}=$
تلاثّ $\mathrm{H} \cap(\mathrm{B} \cap \mathrm{C})$ (iii)
$\{2,3\} \cap\{3,4\}=(B \cap C) \quad .1$

$$
\{3\}=
$$

$\{1,2\} \cap\{3\}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C}) \quad .2$
$\{1,2,3,4,5,6\}-\{2,3,4,5,6\}=$ $\varnothing \backslash\}=$
تثاش $(A \cap B) \cap C$

$$
\begin{equation*}
\{1,2\} \cap\{2,3\}=(A \cap B) \quad .1 \tag{iv}
\end{equation*}
$$

$$
\{2\}=
$$

$\{2\} \cap\{3,4\}=(A \cap B) \cap C \quad .2$ $\varnothing!\{ \}=$
تنالٌ $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})$

$$
\{3\}=(\mathrm{B} \cap \mathrm{C}) \quad .1
$$

$$
\{1,2\} \cup\{3\}=\mathrm{A} \cup(\mathrm{~B} \cap \mathrm{C}) \quad .2
$$

$$
\{1,2,3\}=
$$

$$
\mathrm{U}=\{1,2,3, \ldots 10\}
$$

$$
\mathrm{A}=\{1,2,3\}
$$

U U U

$$
\mathrm{U}-\mathrm{A}=\{1,2,3, \ldots 10\} \backslash(1,2,3)=\{4,5, \ldots 10\}
$$

 ,

معاون بيت نتاثل سِيم

$$
\begin{aligned}
& \mathrm{U}=\{1,2,3,4,5,6\}, \mathrm{A}=(2,4,6), \mathrm{B}=\{2,3,5\} \\
& \text { A اور B } \\
& \begin{aligned}
\mathrm{A}^{\prime} & =\mathrm{U}-\mathrm{A} \\
& =\{1,2,3,4,5,6\}-\{2,4,6\} \\
& =\{1,3,5\} \\
\mathrm{B}^{\prime} & =\mathrm{U}-\mathrm{B} \\
& =\{1,2,3,4,5,6\}-\{2,3,5\} \\
& =\{1,4,6\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \{0,1,2, \ldots\}=\text { = } \\
& \{1,2,3, \ldots\}=\text { قرتّ اعرارك6 بيـ = U }
\end{aligned}
$$

$$
A=\{1,2,3\} \quad: \quad \text { ثل }
$$

$$
B=\{a, b, c\}
$$

A $A \leftrightarrow B \quad$ ات

بـ بورُ سيــ

$$
\begin{aligned}
& \mathrm{A}=\{1,3,5,7,9\} \\
& \mathrm{B}=\{0,2,4,6,8\}
\end{aligned}
$$

$$
\mathrm{A} \cap \mathrm{~B}=\{1,3,5,7,9\} \cap\{0,2,4,6,8\}
$$

$$
=\{ \}\lfloor\varnothing
$$

$$
\mathrm{A} \cap \mathrm{~B}=\varnothing
$$

, وهيـ جوخافْيُن جِ
بتراكبيث (Overlapping Sets)

$$
\begin{aligned}
& A=\{1,2,3,4\} \\
& B=\{3,4,5,6\} \\
& A \subset B=\{3,4\} \\
& A \subset B, \mid, B \subset A \\
& A \nsubseteq B, \\
& B \not \subset A
\end{aligned}
$$

 سيـنّين بوت -

مساوك سيــ

$$
\begin{aligned}
& \text { ث } \\
& -\underbrace{}_{-} \\
& \mathrm{A}=\mathrm{B}
\end{aligned}
$$

ماثّل سيت

 -طابتت ب-

$$
\begin{aligned}
& \text { A }=\{1,2,3,4\} \quad: \mathrm{J} \\
& \downarrow \downarrow \downarrow \downarrow \\
& \mathrm{~B}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { يايكـ ع ايكسك مطابت بـ }
\end{aligned}
$$

$$
\begin{aligned}
& A=\{1,2\} \quad: ~ ل \hbar \\
& \downarrow \downarrow \\
& B=\{x, y, z\}
\end{aligned}
$$

 ان سيت ع واو
$A \backslash B \backslash A-B$

$A \backslash B=\{1,3,5,7,9\} \backslash\{0,3,6,9\} \mid$ $=\{1,5,7\}$

سيؤل كا
كـ

$$
\begin{aligned}
& \text { A }=\{1,2,3\} \quad: \quad \text { مثراً } \\
& B=\{a, b, c, \ldots z\} \\
& \text { C= }
\end{aligned}
$$

,

$$
\begin{aligned}
& A=\{1,2,3, \ldots\} \quad: ل \dot{H}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C= آسان پر تارول } 6
\end{aligned}
$$

$$
\begin{aligned}
& A \cap B
\end{aligned}
$$

 $\{1,3,5,7,9\} \cap\{0,3,6,9\} A \cap B=\mid \dot{\text { l }}$ $\{3,9\}=$

ووسيوّل 6 اتصال (Union of two sets)

$\mathrm{A}=\{1,3,5,79\}$
$B=\{0,3,6,9\}$

ان بيت ع هوا
$\mathrm{A} \cup \mathrm{B}$
 $\{1,3,5,7,9\} \cup\{0,3,6,9\}=A \cup B \quad$ |in

$$
\{0,1,3,5,6,7,9\}=
$$

 ووسيوّلكاز

 شل:
 (الْ

جرولم

 -

ورسّيُول پرَّم
 , Intersection of two sets) (تسيوّ 6 تقاط

$$
\begin{aligned}
& \text {, ررج ;يل } \\
& A=\{1,3,5,7,9\} \\
& B=\{0,3,6,9\}
\end{aligned}
$$

نثان زره هص. كr

سهرط（Sets）

$$
\begin{aligned}
& A=\{1,2,3\} \\
& A=\{A, B, C, D\}
\end{aligned}
$$

سيـ عـ اجزا يا اركان

－年

$$
\begin{aligned}
& \text { 中も }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بم كَّ بِّ : } \\
& \text { 5 } 5 \notin \mathrm{~A} \text { : }
\end{aligned}
$$

Teacher's Notes

Teacher's Notes

Teacher's Notes

