New Get Ahead MATHEMATICS

Bilingual Teaching Guide

Parveen Arif Ali

Contents

Page
Introduction IV
Unit 1: Sets 02
Unit 2: Whole Numbers 05
Unit 3: Factors and Multiples 08
Unit 4: Integers 09
Unit 5: Simplification 14
Unit 6: Ratio and Proportion 15
Unit 7: Financial Arithmetic 18
Unit 8: Introduction to Algebra 23
Unit 9: Linear Equations 28
Unit 10: Geometry 31
Unit 11: Perimeter and Area 37
Unit 12: Three Dimensional Solids 41
Unit 13: Information Handling 43

Introduction

Get Ahead Mathematics is a series of eight books from levels one to eight. The accompanying Teaching Guides contain guidelines for the teachers. The Teaching Guides, for Books 2 to 5 , contain answers to the mathematical problems in the books. The teachers should devise means and ways of reaching out to the students so that they have a thorough knowledge of the subject without getting bored.
The teachers must use their discretion in teaching a topic in a way they find appropriate, depending on the intelligence level as well as the academic standard of the class.
Encourage the students to relate examples to real things. Don't rush.
Allow time to respond to questions and discuss particular concepts.
Come well prepared to the class. Read the introduction to the topic to be taught in the pupils' book. Prepare charts if necessary. Practice diagrams to be drawn on the blackboard. Collect material relevant to the topic. Prepare short questions, homework, tests and assignments.
Before starting the lesson make a quick survey of the previous knowledge of the students, by asking them questions pertaining to the topic. Explain the concepts with worked examples on the board. The students should be encouraged to work independently, with useful suggestions from the teacher. Exercises at the end of each lesson should be divided between class work and homework. The lesson should conclude with a review of the concept that has been developed or with the work that has been discussed or accomplished.
Blackboard work is an important aspect of teaching mathematics. However, too much time should not be spent on it as the students lose interest. Charts can also be used to explain some concepts, as visual material helps students make mental pictures which are learnt quickly and can be recalled instantly.
Most of the work will be done in the exercise books. These should be carefully and neatly presented so that the processes can easily be seen.
The above guidelines for teachers will enable them to teach effectively and develop an interest in the subject.
These suggestions can only supplement and support the professional judgement of the teacher. In no way can they serve as a substitute for it. It is hoped that your interest in the subject together with the features of the book will provide students with more zest to learn mathematics and excel in the subject.

تحارف

Get Ahead Mathematics
 اسا

 6 اطْْ ليّ ،و ريضّ (ا) بِ . ج
زياه

 هرچظر، بو گی-

UNIT

Sets (pages 1-5)

Discuss the use of collective nouns such as a pack of cards, a team of players, etc in our day-to-day lives. Words such as pack, flock, team, group, etc are used to denote a collection of objects.
Explain that the word set is used in mathematics to describe a collection of objects.
A set is a well-defined collection of objects.
The phrase well-defined means that a set must have some specific property so that we can easily identify whether an object belongs to the given set or not. A book, for example, does not belong to a tea set, and a ball does not belong to a set of playing cards. So we can say that a tea set and a set of playing cards are well-defined sets.
Write a set of vowels of the English alphabet on the blackboard.
Explain that it is a well-defined set because we know that specific letters are being referred to: a, e, i, o, u.
Now consider the example of a set of interesting books in the library.
It is not a set because the term interesting is not clearly defined by any fixed standards.
A book may be interesting to one person but boring to another. Thus, this is not well defined and hence it is not a set.
Explain that in a well-defined set, the objects are not repeated.

Elements of a set

The objects of a set are called members or elements of a set. All the elements of a set are enclosed in brackets \{ \} and separated by commas e.g. a set of vowels of the English alphabet; $\mathrm{A}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$.
The elements of a set are said to belong to the set. Write the symbol for belongs to on the board, i.e.
Write a set of even numbers on the board. $B=\{0,2,4,6,8\}$.
Ask does 1 belong to this set?
Explain that 1 is not an even number so it does not belong to the set of even numbers. Write the symbol for does not belong to i.e \in

Methods of writing sets

Explain that sets are described or written in two ways. These are:

1. Tabular form

In this form, all elements of the set are listed,
$\mathrm{A}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$ (a set of vowels).

2. Descriptive form

In this form, the elements of the set are not listed, but a specific property satisfied by the elements of the set is given,
A $=$ \{the vowels of the English alphabet $\}$.
Write some standard sets on the board and explain their properties.

Types of sets

Sets can be differentiated into three types depending on the number of elements they have.

1. Finite sets

A set that has a limited number of elements is called a finite set, e.g. $\mathrm{A}=\{1,2,3,4\}$. Set A has 4 elements.

2. Infinite sets

A set that has an unlimited number of elements is called an infinite set, e.g. $A=\{0$, $2,4,6,8, \ldots\}$.
This set is an infinite set because it contains endless even numbers.

3. Empty sets

It is a set that has no members.
Ask the pupils if they can list the elements of the following set: The set of cats with two tails.
Explain that the set does not have elements which can be listed. Such a set is known as an empty set or a null set
An empty set is denoted by $\}$ or the Greek letter phi i.e ϕ
Write the set, $\mathrm{A}=\{0\}$, on the board.
Ask is this an empty set?
Explain that it is not an empty set because it contains the element ' 0 '.

Subsets

Consider the following sets.
$\mathrm{A}=\{1,2,3,4,5,6,7\}$
B $=\{2,4,5\}$

Definition

B is a subset of A
if every element of B
is also an element of A .
The shaded regions shows the members of A which are common to B.
Because every member of B is also a member of A, B is a subset of A.
We write: $\mathrm{B} \subseteq \mathrm{A}$
We say: B is a subset of A.
Consider a third set C.
$C=\{0,1,7\}$
C is not a sub set of A because $O \notin A$
We write $C \not \subset A$

Proper Subset

Consider the following sets.
$\mathrm{A}=\{1,2,3,4\}$
$B=\{2,3\}$
B is a subset of A.
A contains (at least one element that is not in B) 2 other members that are not in B.
We write: $\mathrm{B} \subseteq \mathrm{A}$.
We say: B is a proper subset of A.
Since A has more members than B, we say that A is the super set of B.
We write: $\mathrm{A} \supset \mathrm{B}$.

Improper Subset

Consider the following sets:
$\mathrm{A}=\{1,2,3\}$
$B=\{2,3,1\}$
B is a subset of A, and A has no element which is not an element of B, then B is called an improper subset of A.
Note that two equal sets are improper subsets of each other. We can write $\mathrm{B} \subseteq \mathrm{A}$ and $\mathrm{A} \subseteq \mathrm{B}$.
We say: B is an improper subset of A and A is an improper subset of B.
$A \subseteq A$ when every member of A is also a member of A. It is evident that every set is an improper subset of itself.

(ages 6-11) Whole Numbers

Natural numbers and whole numbers

- Set of natural numbers is denoted as

$$
N=\{1,2,3,4,5, \ldots . .\} .
$$

- Whole numbers are the natural number including 0.
- The set of whole numbers is denoted as

$$
\mathrm{W}=\{0,1,2,3,4,5, \ldots .\}
$$

- N and W are infinite sets.
- N is a proper subset of W i.e. $\mathrm{N} \subset \mathrm{W}$
- W is a super set of $\mathrm{N} \mathrm{W} \supseteq \mathrm{N}$

As natural numbers, whole number can be displayed are number line

| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\longrightarrow

Comparison between whole numbers

We use the following symbols for comparison between two whole numbers.
$>$ greater than
$<$ less than
$=$ equal to
\geq greater than or equal to
\leq less than or equal to
It should be remembered that 0 is the smallest number on whole number line the numbers are increasing towards right. Any number to the left of the number is less than the number.

$$
\begin{array}{ll}
9<10 & (9 \text { is to the left of } 10) \\
1279 & (12 \text { is to the right of } 9)
\end{array}
$$

Topic 2: Addition and subtraction of whole numbers
The closure property of whole numbers states that if a and b are whole number then $\mathrm{a}+\mathrm{b}$ is also a whole number.

For example

$$
\mathrm{W}=\text { set of whole numbers }
$$

$$
5+3=8 \in \mathrm{~W}
$$

Whole numbers also satisfy the number properties as natural numbers do. They can be given as commutative law under addition.
We know that $3+6=6+3=9$
Using a number line of whole numbers we proceed as

We observe that changing the order of a number does not change the result. This is Commutative low of addition.

Commutative low is not valid for subtraction
Associative law under addition.
Take three number 7, 8, 11 and write than as following

$$
7+8+1=(7+8)+11=26
$$

Also $7+8+1=7+(8+11=26$

$$
\therefore(7+8)+11=7+(8+11)
$$

This shows that order of grouping numbers in addition does not change.
Additive identity: \mathbf{O} in the additive identity because adding \mathbf{O} is the additive identity because adding \mathbf{O} to a number does not change a number $2+0=0+2=2$.

- Multiplication of whole number

If two whole numbers are multiplied together the result is a whole number.
$5 \in W$ and $7 \in W$
$5 \times 7=35 \in W$

- Division of whole number

If two whole numbers are dividing each others the result is a whole number $15 \in \mathrm{~W}, 3 \in \mathrm{~W}$
$15 \div 3=5 \in W$

- Multiplicative identity:

1 is the multiplicative identity because multiplying with I does not change a number
$4 \times 1=1 \times 4=4$

- Commutative and associative laws under multiplicative are valid for whole numbers
- Distributive law of multiplication over additive is valid for whole numbers.

UNIT

Factors and Multiples

(pages 12-20)

3

Refer to page 16, 17, and 18 of textbook for explanation of methods of factorisation. HCF is the highest common factor of a set of numbers.

Refer to page 13 and 19 to explain the method of finding multiples.
LCM is the lowest common multiple of a given set of number
Daily life application of LMC and HCF

- to divide things in smaller portions (HCF)
- to arrange something in rows or groups (HCF)
- to find the largest grouping of two or more numbers (HCF)
- to find the time of repeating events (LCM)
- to solve addition and subtraction of fractions

Introduction to Integers

When a whole number is added to or multiplied by another whole number, the result is also a whole number. But it is not always so in the case of subtraction. When a whole number is subtracted from another whole number, which is smaller than the former, the result is not a whole number.
Example: 5-7, 3-5,
On the number line, when we subtract 7 from 5, we get:

$5-7=-2$
In the same way, we can obtain a set of integers which bear a negative sign. These are called negative integers.
The set of whole numbers together with the set of negative integers is known as the set of integers.

$$
\leftrightarrow----,-3,-2,-1,0,+1,+2,+3,---\rightarrow
$$

Zero is neither positive nor negative.
Concept of smaller and greater integers
Any integer lying to the right of another integer, on the number line, is greater.
Example: $1>0,2>1, \ldots \ldots$

$$
-1<0,-2<-1, \ldots \ldots
$$

Any integer lying to the left of another integer, on the number line, is smaller.

The number line

When we count or measure, we use real numbers. These numbers can be pictured as points on a line, called a number line.

To construct a number line

Choose a starting point on a line and label it $\mathbf{0}$ (zero). This point is called the origin. The origin separates the line into two horizontal sides, the positive side and the negative side. If the line is horizontal, the side to the right of the origin is taken to be the positive side and the side to the left as the negative side.

Mark off equal units of distance on both sides of the origin. On the positive side, pair the end points with positive integers $+1,+2,+3,+4, \ldots$ and so on.
On the negative side, pair the end points with negative integers $-1,-2,-3,-4, \ldots$ and so on.

The positive integers, the negative integers and zero make up the set of integers.
The positive integers and zero are often called whole numbers.
Any number that is either a positive number, a negative number or zero is called a real number.
When we see the pairing of points on a number line, the paired points are at the same distance from the origin but on the opposite sides of it.
Each number in a pair such as +7 and -7 is called the opposite of the other number.

Order of integers

On a horizontal number line, the numbers increase from left to right and decrease from right to left.
The symbols of inequality are used to show the order of pairs of real numbers.
< means less than
$>$ means greater than
By studying a number line we can see that -5 is less than -2 and 0 is greater than -5 .
$-5<-2$ and $0>-5$
$+5>-5$ and $3>0$

Absolute value of numbers

In any pair of non-zero opposites, such as -5 and +5 , one number is negative and the other is positive. The positive number of any pair of non-zero real numbers is called the absolute value of each number in the pair.
The absolute value of a number 'a' is denoted by \mid a| e.g. $|-5|=5$ and $|+5|=5$.
Notice that the absolute value of a real number \mathbf{a} is \mathbf{a} if \mathbf{a} is non-negative and also if \mathbf{a} is negative.
The absolute value of 0 is defined as 0 itself.
$|0|=0$.

Addition of integers

We already know how to add two positive numbers. We can use a horizontal number line to help us find the the sum of any two real numbers.
For example to find the sum of -2 and -5 , draw a number line. Starting at the origin
move the pencil along the number line 2 units to the left. Then from that position move the pencil 5 units to the left. Moves to the left represent negative numbers. Together, the two moves amount to a move of 7 units to the left from the origin. Thus: $-2+(-5)=-7$.

The expression $-(2+5)$ represents the opposite of the sum of 2 and 5 .
Since $2+5=7$

$$
-(2+5)=-7
$$

The expression $-2+(-5)$ represents the sum of the opposite of 2 and the opposite of 5 . Using the number line we know that $-2+(-5)=-7$.
It follows that $-(2+5)=-2+(-5)$.
Using the property of the opposite of a sum and the familiar addition facts for positive numbers, we can compute sums of any real numbers without thinking of a number line.

To simplify $\quad-8+(-3)$
Solution $\quad-8+(-3)=-(8+3)$

$$
=-11
$$

Subtraction of integers

Write the following examples of the subtraction of 2:

$$
\begin{aligned}
& 3-2=1 \\
& 4-2=2 \\
& 5-2=3
\end{aligned}
$$

Now write examples of the addition of -2 :

$$
\begin{aligned}
& 3+(-2)=1 \\
& 4+(-2)=2 \\
& 5+(-2)=3
\end{aligned}
$$

Comparing the entries in the two columns shows that subtracting 2 gives the same result as adding the opposite of 2 .
This suggests the following definition of subtraction for all real numbers.
The difference $a-b$ is equal to the sum of $a+(-b)$.
That is to subtract b, add the opposite of b.
To simplify $\quad 12-3$
Solution $\quad 12+(-3)$
$12-3=9$.

Multiplication of integers

When we multiply any given real number by 1 , the product is identical to the given number.
Example:

$$
\begin{aligned}
& 3 \times 1=3 \\
& 1 \times 3=3
\end{aligned}
$$

When we multiply any given real number by 0 , the product is 0 :
Example:

$$
\begin{aligned}
& 3 \times 0=0 \\
& 0 \times 3=0
\end{aligned}
$$

When we multiply any given real number by -1 , the product is the opposite of that number.
Example:

$$
3 \times-1=-3
$$

Rules for multiplication of positive and negative numbers

1. The product of a positive and a negative number is a negative number.
2. The product of two positive or two negative numbers is a positive number.

Division of integers

Before going on to division of integers, the terms 'reciprocal' or 'multiplicative inverse' must be explained.
Two numbers whose product is 1 are called reciprocals or multiplicative inverses of each other.

3 and $\frac{1}{3}$ are reciprocals because $3 \times \frac{1}{3}=1$.
0 has no reciprocal because the product of 0 and any real number is 0 , not 1 .
The symbol for the reciprocal or multiplicative inverse of a non-zero real number a is $\frac{1}{a}$.
The reciprocal of a product of non-zero real numbers is the product of the reciprocals of the numbers.
That is, for all non-zero real numbers a and b :

$$
\frac{1}{\mathrm{ab}}=\frac{1}{\mathrm{a}} \times \frac{1}{\mathrm{a}}
$$

To divide a by b we multiply a by the reciprocal of b
The quotient is often represented as a fraction:
a divided by $\mathrm{b}=\frac{\mathrm{a}}{\mathrm{b}}$
We can use the definition of division to replace any quotient by a product.

$$
\begin{aligned}
& \frac{21}{7}=21 \times \frac{1}{7}=3 \\
& \frac{21}{-7}=21\left(-\frac{1}{7}\right)=-3 \\
& \frac{-21}{7}=-21 \times \frac{1}{7}=-3 \\
& \frac{-21}{-7}=(-21)\left(-\frac{1}{7}\right)=3
\end{aligned}
$$

Rules for dividing positive and negative integers

1. The quotient of two positive numbers or two negative numbers is positive.
2. The quotient of a positive number and a negative number is negative.

Dividing by zero

Dividing by zero would mean multiplying by the reciprocal of zero. But zero has no reciprocal. Therefore, division by zero has no meaning in the set of real numbers.

UNIT

Simplification ${ }_{(\text {pogese8,3) }}$

5

Kind of bracket and their order

- vinculums / bar
() parentheses
\{ \} braces
[] square brackets
These brackets are used in same order as given above. They always come in pairs, opening and closing brackets. They are used for grouping. They help in providing appropriate order of operation for mathematical expressions.
BODMAS: BODMAS is an acronym used to perform correct order of operation.

B	O	D	M	A	S

It helps to simplify the complicated mathematical expressions.
It is applied as:
Step 1: First simplify the expressions with brackets in the order given below.
Bar \longrightarrow parentheses \longrightarrow braces \longrightarrow square brackets.
Step 2: Follow by Division \longrightarrow Multiplications.
Step 3: Follow by Addition \longrightarrow Subtraction.

Activities:

1. Give the students following expression and ask them to put the brackets, so that the answer becomes $6+3+4 \times 9-8 \times 2$

Ratio and

 Proportion
Ratio

In a class of 6 girls and 24 boys, there are 4 times as many boys as there are girls.
The ratio of the number of boys to the number of girls is 4 to 1 .
We can express a ratio in several ways.
Using a division sign $4 \div 1$
Using a fraction $\frac{4}{1}$
Using a ratio sign $4: 1$
Definition: The ratio of one number to another is the quotient obtained when the first number is divided by the second number.
Finding the ratio of two quantities of the same kind
To find the ratio of two quantities of the same kind, first find the measures in the same units, then divide them.
Example: To find the ratio between the speed of a car and a bus travelling at different speeds.
Speed of bus : Speed of car
60 km per hour : 45 km per hour

$$
=\frac{60}{45}
$$

by reducing it to its lowest terms

$$
=\frac{4}{3}
$$

A ratio is a relation that one quantity bears to another quantity of the same kind with regard to their magnitudes.
The comparison is made by considering what multiple, part or parts the first quantity is of the second.
If we say that the ratio of two quantities is $\mathbf{5}$ is to $\mathbf{6}$ we mean that the magnitude of the two quantities has been compared, that is if one quantity has the magnitude 5, then the other has a magnitude of 6 .
A ratio is an abstract number given by a fraction. The numerator denotes the magnitude of the first quantity and the denominator gives the magnitude of the second quantity.

If the quantities to be compared are in different units then it is essential to express them in the same unit to find their ratio.
e.g. If two sticks of length 2 m and 40 cm are to be compared; then the lengths expressed to the same units are 200 cm and 40 cm respectively and the ratio of their lengths is $200: 40$ i.e. $5: 1$.
The colon inserted between the two quantities denotes the ratio and is read as $\mathbf{5}$ is to $\mathbf{1}$.
A ratio remains unaltered when both the terms are multiplied or divided by the same number.
A ratio should be expressed in its simplest form.
To find the ratio of two quantities of the same kind:
Express the measures in the same unit and then divide them.
The ratio $\frac{9}{6}$ can be expressed in its simplest form as $\frac{3}{2}$.

Proportion

Definition:
A sentence which states the equality of two ratios is called a proportion.
Example: The ratio $4: 6$ is the same as $2: 3$
4:6::2:3
We read it as: 4 is to 6 as 2 is to 3 .
It can also be written as: $\frac{4}{6}=\frac{2}{3}$

Terms of a proportion

In the proportion:
4:6 :: 2:3
4 is the first term, 6 is the second term, 2 is the third term and 3 is the fourth term.
The second and third terms are called the means and the first and fourth terms are called extremes.
In any proportion the product of the means is equal to the product of the extremes.
Example: In the proportion
$5: 20:: 4$: 16
the product of the means is: $20 \times 4=80$
the product of the extremes is: $5 \times 16=80$
We can use the above rule to find a missing term in a proportion.

Example: Find the first proportional in
a : $2:: 3: 6$
product of the means: $2 \times 3=6$
product of the extremes: $\mathrm{a} \times 6$
product of the means $=$ product of the extremes

$$
\begin{aligned}
& 2 \times 3=a \times 6 \\
& a=\frac{2 \times 3}{6}=1
\end{aligned}
$$

Indirect or Inverse Proportion

If two quantities are related in such a way that if the first increases and the second decreases, or vice versa, the quantities are said to vary indirectly or inversely. One such example is that of the number of men needed to complete a piece of work in a certain number of days. More men will complete the work in a fewer number of days.
The variation between men and days will be indirect.
Example: If 3 men can finish a piece of work in 4 days, how many men will do the job in 12 days?
The ratio of men and days is:
men : days
3: 4
$x: 12$
We can figure out the answer in this way: fewer men will take more days to complete the work, and more men will take fewer days, so the proposition is one of inverse variation. If the number of men is increased the work will be done in fewer days.
Thus men : days
34
$\begin{array}{ll}x & 12\end{array}$
Draw arrows in the way shown, to indicate which numbers are to be multiplied:

$$
x: 3=4: 12
$$

$3 \times 4=12 \times x$ (product of means and extremes)
$x=\frac{12}{12}$
$x=1$ man
 \title{
Financial
 \title{
Financial Arithmatic
} Arithmatic
}

Percentage

The word per cent comes from a Latin word per centum meaning out of hundred. It means the ratio of a number to hundred.
The symbol $\%$ is used to denote percentage.
Example: 20% means $\frac{20}{100}$

To express a percentage as a common fraction

$\%$ can be reduced to an equivalent fraction by dividing it by 100 .
Example: Express 12% as a common fraction.

$$
12 \%=\frac{12}{100}=\frac{6}{50}=\frac{3}{25}
$$

To express a percentage as a decimal fraction

When a number is divided by 100 , the decimal point shifts two places to the left.
Example: Express 25% as a decimal fraction.

$$
25 \%=\frac{25}{100}=0.25
$$

Example: Express $2 \frac{1}{2} \%$ as a decimal fraction.

$$
2 \frac{1}{2} \%=2 \frac{1}{2} / 100=\frac{2.5}{100}
$$

Removing the decimal point

$$
2.5=\frac{25}{10}
$$

Expressing it as a decimal fraction.

$$
\frac{25}{10} \times 100=\frac{25}{1000}=0.025
$$

To express a fraction as a percentage multiply it by 100 .
Example: Express $\frac{3}{4}$ as $\mathrm{a} \%$.

$$
\frac{3}{4}=\frac{3}{4} \times 100=\frac{300}{4}=75 \%
$$

To express a decimal fraction as a\%:
Example: Express 0.06 as a\%

$$
0.06 \times 100=6 \%
$$

When a decimal fraction is multiplied by 100 , the decimal point shifts two places to the right.
To find the percentage of a given quantity, write the $\%$ as a fraction and then multiply it by the quantity.
Example: Find 40% of Rs 300.
Writing the percentage as a fraction: $\frac{40}{100}$
Multiply the fraction by the quantity: $\quad \frac{40}{100} \times 300=$ Rs 120
To find the quantity whose percentage is given.
Example: Find the quantity whose 25% is 50 .
Suppose the quantity is x.

$$
\begin{aligned}
& 25 \% \text { of } x=50 \\
& \frac{25}{100} \text { of } x=50 \\
& 25 x=50 \times 100 \\
& x=\frac{50 \times 100}{25}=200
\end{aligned}
$$

The above example can be solved by the unitary method as well.
When the \% is 25 , the quantity is 100 .

"	"	1,	"	"	$\frac{25}{100}$	
"	"	50,	"	"	$\frac{25}{100}$	$\times 50$
					200	

Profit, Loss, and Discount

We often buy things from various shops. Shopkeepers buy these things either directly from manufacturers or from wholesale dealers. The price at which they buy the goods is called cost price. The price at which the shopkeeper sells the goods is called selling price. If the selling price of something is greater than the cost price, the shopkeeper has earned a profit. If the selling price is less than the cost price, then the shopkeeper suffers a loss.
Profit or gain $=$ selling price - cost price
Loss $=$ cost price - selling price
(a) To find the gain per cent, we first find the gain.

Example: An article was bought for Rs 120 and sold for Rs 150. Find the gain per cent.
Cost price = Rs 120
Selling price $=$ Rs 150
Gain $=$ selling price - cost price

$$
=150-120=\text { Rs } 30
$$

Gain \% is calculated on the cost price
Gain\% $=\frac{\text { gain }}{\text { cost price }} \times 100$

$$
=\frac{30}{120} \times 100
$$

Thus gain $=25 \%$
(b) To find the loss per cent, we first find the loss.

Loss $=$ cost price - selling price.
Loss $\%=\frac{\text { loss }}{\text { cost price }} \times 100$
Example: Find the loss \% when a machine bought for Rs 1500 is sold at Rs 1000.
Cost price = Rs 1500
Selling price = Rs 1000
Loss $\quad=$ cost price - selling price

$$
=\text { Rs } 1500-1000=\text { Rs } 500
$$

loss \%

$$
\begin{aligned}
& =\frac{\text { loss }}{\text { cost price }} \times 100 \\
& =\frac{500}{1500} \times 100=33 \frac{1}{3} \%
\end{aligned}
$$

(c) To find gain and selling price when cost price and gain per cent are given:

Example: To find the gain and selling price of an article when the cost price is Rs 120 and gain is 10%.
gain is calculated on cost price

$$
\begin{aligned}
\text { gain } \quad & =\frac{\text { gain } \%}{100} \times \text { cost price } \\
& =\frac{10}{100} \times 120=\text { Rs } 12
\end{aligned}
$$

Selling price $=$ cost price + gain

$$
\begin{aligned}
& =120+12 \\
& =\text { Rs } 132
\end{aligned}
$$

Thus gain = Rs 12
Selling price $=$ Rs 132
(d) To find loss and selling price when loss per cent and cost price are given:

Example: The cost price of an article is Rs 200, and loss is 5\%. Find the loss and selling price of the article.
Loss is calculated on cost price
loss $\quad=$ loss $\% / 100 \times$ cost price

$$
=\frac{5}{100} \times 200=\text { Rs } 10
$$

selling price $=$ cost price - loss

$$
=200-10=\text { Rs } 190
$$

Thus loss = Rs 10
selling price $=$ Rs 190
Revise the formulae for finding gain, loss, gain \%, loss \% and selling price before proceeding to do the exercise.

Commission

A person who helps other people to buy and sell things is called an agent.
He or she charges a fee for his or her services, which is called commission.
The commission is calculated as a percentage of the sum for which an article is sold or bought.
To find the commission on a sale of goods.
Example: Find the commission at 5% on a sale of goods for Rs 2500 .
selling price $=$ Rs 2500
commission $=5 \%$
On Rs 100 the commission is Rs 5

$$
\begin{array}{lllll}
& " & 1 & " & " \\
\hline & " & \frac{5}{100} \\
" & " & 2500 & " & \frac{5}{100} \times 2500
\end{array}
$$

Commission = Rs 125

Discount

Discount is the reduction in price of articles bought, which is calculated as a percentage of the marked price.
To find the discount percentage

Example: Find the discount per cent on an article whose price was reduced from Rs 500 to Rs 450.
Original price $=$ Rs 500
Reduced price $=$ Rs 450
Discount = original price - reduced price

$$
=500-450=\text { Rs } 50
$$

Discount on Rs 500 is Rs 50

$$
\begin{array}{lll}
" & 1 & \frac{50}{500} \\
" & & 100= \\
& \frac{50}{500} \times 100=10 \%
\end{array}
$$

To find the discount and reduced price of an article.
Example: The marked price of an article is Rs 250 . The discount on it is 10%.
Find the discount and the reduced price of the article:
Original price $=$ Rs 250
Discount $=10 \%$
Discount on Rs 100 is Rs 10

$$
\begin{array}{lll}
" & 1 & " \frac{10}{100} \\
" & 25 & " \frac{10}{100} \times 250
\end{array}
$$

Discount = Rs 25
Reduced price $=$ original price - discount

$$
=\text { Rs } 250-25=\text { Rs } 225
$$

Property Tax

Tax is a percentage of the total income from a house, shop, or other property, which is payable to the government annually.
To find the property tax.
Example: The annual rent of a house is Rs 60,000 . Find the property tax payable at a tax rate of 10%.
Property tax $=10 \%$ of Rs 60,000

$$
=\frac{10}{100} \times 60,000=\text { Rs } 6,000
$$

(pages 47-54) Introduction to
Algebra

Algebra

Arithmetic generalization

We use letters of the alphabet for number properties to simplify expressions in Algebra; for example, a, b, c, x, y, z, etc.
The rules used in adding and multiplying real numbers are based on several properties.

Basic Arithmetic Properties

The following statements are accepted as facts:

1. Every pair of real numbers has a unique sum that is also a real number.
2. Every pair of real numbers has a unique product that is also a real number.
3. When we add two real numbers, we get the same sum, no matter what order we use in adding them.
4. When we multiply two real numbers we get the same product no matter what order we use in multiplying them.

Algebraic sentences

The group of words The sum of five and three is eight forms a word sentence.
When we translate this sentence into the numerical statement
$5+3=8$, = the equality symbol stands for the phrase is equal to.

Symbols meanings

$=$ is equal to
\neq is not equal to
$<$ is less than
$>$ is greater than
\leq is less than or equal to
\geq is greater than or equal to
A number sentence consists of two number phrases called the members of the sentence with a symbol between them.
If the symbol is $=$, then the sentence is an equation. If the verb is any of the other symbols in the table above, the sentence is an 'inequality'.
For example, $\underbrace{8-2}<5$ the verb

the two members is an inequality

Kinds of mathematical sentences

1. True sentences

A solution of a number sentence in one variable, is a value for the variable that makes the sentence a true statement.
For example: $a+2=5$
If we put 3 for \boldsymbol{a} it becomes a true sentence, but the sentence is not true if $a=2$, became $2+2=4$ and not 5 .
We say that 3 is a solution of or satisfies the given equation.
In the same way:

$$
\begin{array}{ll}
2+2=2 \times 2 & 4 \div 2=4-2 \\
2 \times 3=3 \times 2 & \frac{5}{3} \times \frac{5}{3}=1
\end{array}
$$

2. False Sentences

Sentences which do not give a correct relationship between the members are called false sentences.

$$
\text { For example: } \begin{array}{ll}
5+2=4 & 8-5=2 \\
& 3 \times 7=14 \\
& 4<2
\end{array}
$$

3. Open Sentences

A number sentence may contain one or more variables. It is then sometimes called an open sentence.
For example, $5 x-1=9$
If we replace the variable by a number, we can obtain either a true or a false sentence.
Replace x by 1,2,3.

$$
\begin{aligned}
& 5 x-1=9 \\
& 5(1)-1=9 \text { (false) } \\
& 5(2)-1=9 \text { (true) } \\
& 5(3)-1=9 \text { (false) }
\end{aligned}
$$

In order to find the solution to an open sentence, we must find a value for the variable that makes the sentence a true statement.

Algebraic expressions

Like terms

Terms that have the same variable are called like terms. They may, or may not, have different coefficients.

Example: $2 a, 3 a$, and $5 a$ are like terms. Like terms can be combined to give a single term, for example, $2 a+3 a$ - a gives a single term $4 a$.

Unlike terms

Terms which have different variables are called 'unlike terms'.
They may, or may not, have different coefficients.

Degrees in a term

The degree of a monomial in a variable is the number of times that variable occurs as a factor, in the monomial.
For example: The degree of $2 x^{2}$ is 2 .
The degree of $x^{\oplus} y^{\text {® }}$ is $3 .[1+2]$
The degree of $5 x^{8} y^{8}$ is 5 . $[2+3]$

Monomial, binomial, and trinomials

Expressions are divided into three categories according to the number of terms in them.

Monomial

It is an expression having one term only, for example, $4 a, 3 a^{2}, 5 b, 6 c$, etc.

Binomial

It is an expression having two terms, for example, $4 a+2 b, 6 a^{2}+5 b^{2}, 3 x-5 y$.

Trinomial

It is an expression having three terms, for example, $3 a+5 b-3 c, a^{2}+b^{2}+c^{2}$, etc.

Addition of algebraic expression

Rules for signs in addition

The sum of two positive numbers will be a positive number.
The sum of two negative numbers will be a negative number.
The sum of a positive and a negative number will be the difference of the numbers and the sign will be that of the greater number.
To add polynomials, we write the polynomials, and simplify by adding like terms.

1. Horizontal Method

For example, add $2 x, 3 x, 7 x$ (like terms): $2 x+3 x+7 x=12 x$
For example, find the sum of: $2 x-3 y$ and $5 x+7 y$
Arrange the like terms: $2 x+5 x-3 y+7 y$
Add the like terms: $7 x+4 y$

2. Vertical method

When adding expressions, the like terms can be written vertically, one below the other. For example, add $2 x-3 y$ and $5 x+7 y$

$$
\begin{aligned}
& 2 x-3 y \\
& 5 x+7 y \\
& 7 x-4 y
\end{aligned}
$$

When like terms are added, the powers of the terms are not added. Only the coefficients are added.
For example, add $x^{2}+2 x+1$ and $2 x^{2}-5 x+7$

$$
\begin{gathered}
x^{2}+2 x+1 \\
2 x^{2}-5 x+7 \\
3 x^{2}-3 x+8
\end{gathered}
$$

Subtraction of algebraic expressions

For all real numbers a and b, the difference $a-b$ is defined by:

$$
a-b=a+(-b)
$$

1. Horizontal Method

[To subtract b, add the opposite of b]
For example, simplify: 12 - (-3) Simplify: $-7-1$

$$
\begin{aligned}
& 12+3=15=-7+(-1) \\
& =-8
\end{aligned}
$$

Simplify: $\quad-4-(-10)$

$$
\begin{aligned}
& =-4+10 \\
& =6
\end{aligned}
$$

Simplify: $\quad 12-8-7+4$

Group the positive terms and negative terms

$$
\begin{aligned}
& =(12+4)-(8+7) \\
& =16-15=1
\end{aligned}
$$

Certain sums are usually replaced by differences:
Simplify:

$$
\begin{aligned}
& 9+(-2 x) \\
& =9-2 x
\end{aligned}
$$

2. Vertical Method

The example below shows the fact that adding and subtracting the same number are 'opposite' in effect.
Subtract $5 x-3 y$ from $8 x+2 y$:

$$
\begin{aligned}
& 8 x+2 y \\
& 5 x-3 y \\
& -+ \\
& \hline 3 x+5 y \\
& \hline
\end{aligned}
$$

UNIT

9

Linear Equations ${ }_{(\text {pogs } 85.5\rangle)}$

Linear Expression

An expression such as $3 x=6$ contains only one variable x, and has only one solution over the integers, 2 .

Linear equation in one variable

An equation with one variable which involves linear expression is called a linear equation in one variable.

For example: $x+3=9$

$$
\begin{aligned}
& 2 x+5=5 \\
& 8-2 x=4 \\
& \frac{x}{3}=5 \\
& \frac{2}{5} x-3=8
\end{aligned}
$$

Solving an equation

To solve equations using addition or subtraction, we should know the addition and subtraction properties of equality.
If the same number is added to equal numbers, the sums are equal.
If the same number is subtracted from equal numbers, the differences are equal.

Linear Expression

An expression such as $3 x=6$ contains only one variable x, and has only one solution over the integers, 2 .

Linear equation in one variable

An equation with one variable which involves linear expression is called a 'linear equation in one variable.
For example: $x+3=9$

$$
\begin{aligned}
& 2 x+5=5 \\
& 8-2 x=4 \\
& x / 3=5 \\
& 2 / 5 x-3=8
\end{aligned}
$$

Solving an Equation

To solve equations using addition or subtraction, we should know the addition and subtraction properties of equality.

If the same number is added to equal numbers, the sums are equal.
If the same number is subtracted from equal numbers, the differences are equal.

Addition property of an equality

If a, b, and c are real numbers and $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{c}$ and $\mathrm{c}+\mathrm{a}=\mathrm{c}+\mathrm{b}$.

Subtraction property of an equality

If a, b, and c are real numbers and $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{c}$.
We can use these properties to solve some equations.
For example: $x-5=7$

$$
\begin{aligned}
& x-5+5=7+5 \text { (adding } 5 \text { to both sides) } \\
& x=12
\end{aligned}
$$

For example: $a+8=3$

$$
\begin{aligned}
& a+8-8=3-8 \text { (subtracting } 8 \text { from both sides) } \\
& a=-5
\end{aligned}
$$

On the diagram, if we start at 4 and follow one arrow after another, we end back at 4 . Similarly if we start at 9 , we end at 9 .

We call addition of a given number and subtraction of the same number inverse operations.

Compare the diagrams:

If we want to subtract $4 x$ from $6 x$, we add $-4 x$ to $6 x$.
$6 x+(-4 x)=2 x$
In other words we change the sign of the term to be subtracted. We can use the horizontal and vertical method for subtraction as well.
For example, subtract $5 x+3 y$ from $8 x-2 y$. the result is $3 x+5 y$

(pages 58-77) Geometry

Linear Segment

Basic geometric concepts

'Plane'

A plane is a flat surface that extends forever in all directions.
A point is any position on the plane.

A plane is named by any three of its points.
For example, XYZ is a plane.
A line segment

A line segment connects two points that are called end points.
For example, AB is a line segment. It has two end points A and B . A line segment is written as AB .
A line: A line has no end-points.

It extends forever in opposite directions. A line is written as: AB A ray: A ray is part of a line, with only one end point.

It is written as: AB

Intersecting Lines: Some lines intersect or meet at a point. The point where they intersect is called the point of intersection.

Lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at point \mathbf{O}.

If there is no point of intersection between two lines, they are said to be parallel lines.

$\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel lines.
Parallel lines are written as: $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
We say $\overleftrightarrow{\mathrm{AB}}$ is parallel to $\overleftrightarrow{\mathrm{CD}}$.

Angles: An angle is formed by two rays having a common end-point called the vertex. An angle is named with the vertex in the middle.

$\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$ are the arms of the angle.
Point B is the vertex of the angle.
We write an angle as: $\angle \mathrm{ABC}, \angle \mathrm{CBA}$ or $\angle \mathrm{B}$.

Measuring angles

The basic unit of measuring an angle is the degree (0).
A protractor is used to measure angles.
To read a protractor
Place the mid-point of the base of the protractor and the zero angle on one ray of the angle. The measure of the angle is read on the outside scale.

$\angle A B C=120^{\circ}$.

How to construct an angle of a given measure:

Steps:

1. Draw a ray $\overleftrightarrow{O Y}$ with a ruler.
2. Place the mid-point of the protractor at O , such that the 0° mark coincides with $\overleftrightarrow{\mathrm{OY}}$
3. Mark a point \mathbf{X} along the protractor edge at the given degree of measure of the angle.
4. Remove the protractor and join X to $\mathrm{O} . \angle \mathrm{XOY}$ is the given angle.

Constrction of angles

Kinds of Angles

We can use the corner of a page to classify angles:

(more than 90°)

(less than 90°)

Congruent angles

Angles with the same measure are called congruent angles.

We write it as: $\angle \mathrm{ABC} \cong \angle \mathrm{XYZ}$
The symbol \cong means equal in all respects.

Construction of congruent angles

Follow the steps of construction as given in the pupil's book.

To bisect an angle

Follow the steps of construction given in the pupil's book.
To draw angles of given measurement using only a compass and a ruler
Follow the steps of construction as given in the pupil's book.
Explain that the arc makes an angle of 60°.

The arc drawn from the 60° arc makes another angle of 60°. Bisecting an \angle of 60° make two angles of 30° each.

Bisecting an angle between 60° and 120° makes an angle of 90° (right angle).

Bisecting the right angle make two angles of 45° each.
To construct an angle of 135°
Explain: $180^{\circ}-45^{\circ}=135^{\circ}$
Draw an angle of 45° from the opposite end of the line and count the degrees from the 0° end.

To construct an angle of 150°

Explain: $180^{\circ}-30^{\circ}=150^{\circ}$
Construct an angle of 30° at the opposite end and count the degrees from the 0° end.

Sum of angles at a point

When two lines intersect four angles are formed. The angles opposite each other are called vertical angles.

If we measure the angles using a protractor, we will find that $\angle^{1}=\angle^{3}$ and $\angle^{2}=\angle^{4}$ When we add all the measure of the angles, we will see that the sum will be 360° which is equal to four right angles.

If two lines intersect to form a right angle, then the vertical angles will all be right angles and the sum of all the angles will be equal to 360° (four right angles).
$90^{\circ}+90^{\circ}+90^{\circ}+90^{\circ}=360^{\circ}$

Construction of triangles

Triangles

A triangle is a figure formed by three line segments joining three points not on the same line. Each segment is called the side of the triangle. Each of the three points is a vertex of the triangle.

Types of triangles

Equilateral triangle: It has three equal sides.
Isosceles triangle: It has two equal sides.
Scalene triangle: It has three unequal sides.
Right-angled triangle: It has one right angle. The side opposite the right angle is called hypotenuse.
Acute-angled triangle: It has one acute angle.
Obtuse-angled triangle: It has one obtuse angle.
Construction of triangles
Follow the steps of construction in the pupil's book to construct different kinds of triangles.

Circles

A circle consists of points which are equidistant from the centre.

Definitions

Circumference is the circular line around the circle.
The radius is the line segment from the centre to the circle.
A chord is the line segment which has its end points on the circle.
The diameter is the chord which passes through the centre of the circle.
A sector is a part of a circle of given radius and angle.
Construction of a sector of a circle and to construct a circle of a given radius
Follow the steps of construction in the pupil's book.

(pages 78-84) Perimeter and Area

11

Area

In the figure the region bounded by the polygon is called its area.

The measurement that tells us how much of the plane is covered by a given polygonal region, is called the area of the polygon. It is the number of square units required to cover the region.

If one small square is 1 metre long and 1 metre wide what is the area of the above figures?
(a) 10 sqm
(b) 12 sqm
(c) It is difficult to calculate

We need to know how many square metres are needed to cover the above figures.
To find the area, we follow a formula for each shape.

Area of a square

To find the area of a square multiply the length of one side by itself.
Area $=$ side \times side $=$ side 2
Example: Find the area of a square of side 5 cm .
Area of a square $=$ side $^{2}=5^{2}=25 \mathrm{~cm}^{2}$

Area of a rectangle

To find the area of a rectangle, multiply the length by the width.
Example: Find the area of a rectangle if its length is 8 cm and with is 5 cm .
Area of rectangle $=$ length \times width $=8 \times 5=40 \mathrm{~cm}^{2}$

Area of the four walls of a room

(a) When the room is rectangular

The area of the two opposite walls will be equal and can be calculated by the formula:
Area of 2 walls $=2$ length \times height
Area of 2 walls $=2$ breadth \times height
Area of the 4 walls $=2 \times b+2 b \times h$

$$
=2(+b) \times h
$$

\therefore the area of the 4 walls $=2$ (length + breadth) $\times h$

(b) When the room is square

As the length and breadth of a square room are equal:
Area of the 4 walls $=4 \times$ side \times height

Area of a parallelogram

The region bounded by the parallelogram shown below has been cut into two parts, labelled ' 1 ' and ' 2 '.

We can slide region 1 to the right until the two parts form a rectangular region. Since the area of the rectangle is $b \times a$ square units, the area of the parallelogram is also $b \times$ a square units.

Area of a triangle

Triangle 1 and 2 are duplicates of each other. Triangle 1 has been moved in the plane so that the two triangles together form a parallelogram.
The area of the paralleogram is $b \times a$ square units, then the area of each triangle will be $\frac{1}{2} \times b \times a$ square units. If one side of a triangle is chosen as the base, then the segment perpendicular to the base is the corresponding altitude.

The area of the triangle is: $=\frac{1}{2} \times$ base \times altitude $=\frac{1}{2} \times b \times a$

Area of a right-angled triangle

Since the height of a right-angled triangle is perpendicular to the base the formula for finding the area will be:
$\frac{1}{2} \times$ base \times perpendicular

Area of a Trapezium

Look at the trapezium ABCD.

a is the altitude (perpendicular height).
b_{1} is the measure of the lower base.
b_{2} is the measure of the upper base.
$\overline{\mathrm{AC}}$ is the diagonal joining the opposite vertices.
Area of $\triangle A B C=\frac{1}{2} \times a \times b_{1}$
Area of $\triangle \mathrm{ACD}=\frac{1}{2} \times \mathrm{a} \times \mathrm{b}_{2}$
Adding the areas of the two triangles.

$$
\begin{aligned}
& \Delta A B C+\Delta A C D=\frac{1}{2} \times a \times b_{1}+\frac{1}{2} \times a \times b_{2} \\
& \quad=\frac{1}{2} \times a\left(b_{1}+b_{2}\right)
\end{aligned}
$$

e.g. Find the area of a trapezium whose bases are 13 cm and 27 cm and its altitude is 20 cm .

$$
\begin{aligned}
& \mathrm{b}_{1}=13 \mathrm{~cm} \\
& \mathrm{~b}_{2}=27 \mathrm{~cm} \\
& \mathrm{a}=20 \mathrm{~cm}
\end{aligned}
$$

Area of the trapezium $=\frac{1}{2} \times a\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \times 20(13+27) \\
& =\frac{1}{2} \times 20 \times 40 \\
& =400 \mathrm{~cm}^{2}
\end{aligned}
$$

Solids

Volume of a cube and cuboid

Cubes and cuboids are three-dimensional figures i.e. they have three measures: length, breadth, and height. Volume is always measured in cubic units e.g. cubic cm , cubic m , etc.

Cube

A cube has all its sides equal.
To find the volume of a cube multiply the sides three times.

Cuboid

A cuboid has length, breadth, and height.
To find the volume of a cuboid.
Multiply the length, breadth and height.

Volume

Solid figures are formed from polygons. They have faces, edges and vertices.

The space that solid figures occupy is called volume. Since solid figures have length, width and height, we use cubic units to measure their volume. The number of cubic units needed to make or fill a solid figure is called the 'volume' of the figure.

Volume of a cube

Since the sides of a cube are all equal, its volume can be calculated by the formula:
Volume of a cube $=$ side \times side \times side

$$
=\left(\text { side }^{3}\right) \text { cubic units. }
$$

Example: Find the volume of a cube of side 5 cm .

$$
\mathrm{V}=\left(\text { side }^{3}\right)=5^{3}=125 \text { cubic } \mathrm{cm} \text { or } \mathrm{cm}^{3}
$$

To find the volume of a cuboid:

Since the sides of a cuboid are not equal, to find the volume we multiply the length, and height.
Area of a cuboid $=$ length \times breadth \times height
Example: Find the volume of a cuboid 10 cm long, 6 cm wide and 4 cm high.

$$
\mathrm{V}=l \times b \times h=10 \times 6 \times 4=240 \mathrm{~cm}^{3}
$$

Information

 handlingA graph is a way of representing numerical information or data. it helps us to compare quantities and changes by just glancing at them.
Graphs are interesting as well as time-saving.
To draw a graph we first arrange the data. Then we write out the information in the form of a table. A graph is drawn on a special kind of paper which is squared. On the paper we draw a horizontal line which represents the x-axis. We draw another perpendicular to the x-axis. This is called the y-axis, and we draw bars to represent the data.
Now we select a suitable scale to draw the graph. For example, 100 km is equal to 1 large square on the graph paper.
Then we mark the unchanging or constant quantities on the x-axis and the variables on the y-axis.

Bar graph

Aids in making a bar graph

To construct a bar graph we need coloured pencils for shading and a pen or pencil.

Steps to construct a bar graph

1. Take a sheet of graph paper and draw two lines perpendicular to each other along two thicker lines of the graph paper. The horizontal line is called the x-axis and the vertical line the y-axis. Their starting point of intersection is called the 'origin'.
2. Along the x-axis mark the quantities which are constant or unchanging at equal distances.
3. Choose a suitable scale to mark the heights of the bars along the y-axis.
4. Draw bars of equal width and of corresponding heights to the values on the x-axis. Example: Draw a bar graph to represent the average monthly temperature in Lahore in January, February and March.

MONTH	JAN	FEB	MAR
TEMP	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$

Pie chart

A pie chart is a kind of chart in which the data is represented in the form of a circle. Since the total number of degrees of angles in a circle is 360°, so each sector represents a fraction of 360°.
To find the number, quantity, or amount of a certain item represented on the pie chart we can use the formula:
$\frac{\text { angle of the sector }}{\text { sum of the angles }} \times$ total
For example, find the number of men, women, and children in a village with a population of 3600 .

Number of men $\quad=\frac{140^{\circ} \times 3600}{360}=1400$
Number of women $\quad=\frac{120^{\circ} \times 3600}{360}=1200$
Sum of men and women $=1400+1200=2600$
Number of children:
Total population $=2600$

$$
=3600-2600=1000 \text { children }
$$

We can also find the angle of the sector for the children:

$$
360^{\circ}-\left(140^{\circ}+120^{\circ}\right)=100^{\circ}
$$

The number of children $=\frac{100}{360} \times 3600=1000$

$$
\begin{aligned}
& 1400=140^{\circ} \times 3600 / 360=\text { مرول ك تحراو } \\
& 1200=120^{\circ} \times 3600 / 360=\text { مرول كَ تحراو } \\
& 2600=1400+1200=\text { = مرول اور ورتو ك كَل تحماو } \\
& \text { :يّه كَ تحرار: } \\
& 3600=\text { = } \\
& 3600-2600=1000 \underset{\approx}{\approx}
\end{aligned}
$$

$$
\begin{aligned}
& 360^{\circ}-\left(140^{\circ}+120^{\circ}\right)=100^{\circ}
\end{aligned}
$$

گولاًَ 6

اعراو وتُّاركا انزرانج) Informational Handling)

中

(و)
باركراف
بارگران بنا

بارگران بنا غ ع ،

 x or

كr
的

كمبنا

?

 باكت با با
 كوا

ثـثڭ
قامُت الزاوي بثلث 6 رقج
 1／2× どん
 ڤ.

 22 2 $2 l \times b+2 b \times h=7,56$ $2(l+b) \times h$

(ب) جبك كر:رن عو
相

和

رقبّ (Area)

$$
\text { ايك م نج } 6 \text { رقبُ }
$$

 رتج = فلع

بثلث بنانا
 وارُه

را
تزيف

קك：ع⿰亻⿱丶⿻工二又

-

ثثلث كَ اقسام

$$
\begin{aligned}
& 90^{\circ}+90^{\circ}+90^{\circ}+90^{\circ}=360^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& L^{1}=L^{3}, L^{2}=L^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } \\
& \text {, }
\end{aligned}
$$

6 135°
واضخ كري: 180

$150^{\circ} 6$ 180

" علامت كمطب
تمتّاثل زاو بي بنانا

كوَ تط״״
 وايا

$\angle \mathrm{ABC}=120^{\circ}$

اقراقات

$$
\begin{aligned}
& \text { 和 } \\
& \text { 「 } \\
& \text { زاويول كَ اقصام }
\end{aligned}
$$

苑

زاوهـ

 نظط B زاوي $\angle \mathrm{ABC}, \angle \mathrm{CBA} \backslash \angle \mathrm{B}$ زاوهوِ كَ بّهياكّ

جيوّمرُمرك（Geometry）

ـتستوى
＂——＂

 ．

قطهِ＞＞
 AB －シャロ

ضب كـ زر لعِ تبولي
 $x / 3=10$:
 $x / 3 \times 3=10 \times 3$

$$
x=30
$$

$$
x / 3=10
$$

$$
30 / 3=10
$$

$$
10=10
$$

هـاوات كا برّ $2 x=12: ل$ ل

$$
2 x / 2=12 / 2
$$

$$
x=6
$$

جا جُ ك

$$
2 x=12
$$

$$
2(6)=12
$$

$$
12=12
$$

سساوات كَ تز لّكّ خاصيت

$$
\begin{array}{r}
\text { آركم } 6 x-(-4 x)=2 x
\end{array}
$$

 مساوات كم
 6ملتمت ساوى ،ول Eـ

$$
\begin{aligned}
& \text { أَ } \\
& x-5=7 \\
& \text { خثل ک طور }
\end{aligned}
$$

$$
\begin{aligned}
& x=12 \\
& a+8=3 \quad \text { そ. }
\end{aligned}
$$

$$
\begin{aligned}
& a=-5
\end{aligned}
$$

(Linear Equations) مساوات

$$
\begin{aligned}
& \text { 10-4=6 } \\
& 5 x-1=9 \\
& a+3=3+a
\end{aligned}
$$

$$
\begin{aligned}
x+3 & =9 \quad \text { پ. } \\
2 x+5 & =5 \\
8-2 x & =4 \\
x / 3 & =5 \\
2 / 5 x-3 & =8
\end{aligned}
$$

مساوات
 خصوصيات جانتا عول گ-

 مساوات كَ بكّ كَ ڭاصيت

$$
\begin{aligned}
& -4-(-10) \\
& =-4+10 \\
& =6 \\
& 12-8-7+4 \\
& \text { ق }
\end{aligned}
$$

$$
\begin{aligned}
& =(12+4)-(8+7) \\
& =16-15=1 \\
& \text { كَ } \\
& 9+(-2 x) \\
& \text { ق نيكي: } \\
& =9-2 x
\end{aligned}
$$

r r بمورى p ليّ
 5x-3y كوتز تي بيمي-
$8 x+2 y$
$5 x-3 y$
$-\frac{+}{3 x+5 y}$

 $2 x-3 y$

$$
5 x+7 y
$$

$$
\underline{7 x+4 y}
$$

البج ك اظطهار ليول كَتْ تِ
تام هِقن اعراو a اور

$$
12-(-3)
$$

ق
$12+3=15$
-7-1
$=-7+(-1)$

$$
=-8
$$

$$
\begin{aligned}
& x^{2}+2 x+1 \\
& \frac{2 x^{2}-5 x+7}{3 x^{2}-3 x+8}
\end{aligned}
$$

$$
\begin{aligned}
& 5 x+7 y \text {. } 2 x-3 y \text { او }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r_مّورى P ليّت }
\end{aligned}
$$

رقّ ع ورجات
为

5. $[2+3]$ ¢

يك رتّ ، ور رتّ اور ثين رتّ

كيـ رثّ ورج
 - ${ }^{-2}, 4 a, 3 a a^{2}, 5 b, 6 c$

ورونی ورج
 . ${ }^{2}, 4 a+2 b, 6 a^{2}+5 b^{2}, 3 x-5 y$

س~رتّ ورج
 ${ }_{8}{ }_{2}^{2}, 3 a+5 b-3 c, a^{2}+b^{2}+c^{2}$

البرى اظهار ريو ك.
.

, ,"

الجرا يل ،م رونف يا نثنات

$$
\begin{aligned}
& \text { رثل : }
\end{aligned}
$$

 تتيزات a, b, c موجور بيل -

اضهار
$-\frac{1}{2}$

بيسان روّم

 a
نيّ بيسان روّم

ا－اتِّق عِ

ーとかけ

$$
\begin{array}{cl}
2+2=2 \times 2 & 4 \div 2=4-2 \\
2 \times 3=3 \times 2 & 5 / 3 \times 3 / 5=1
\end{array}
$$

$$
\begin{array}{rrr}
5+2=4 & 8-5=2 \\
3 \times 7=14 & 4<2 \\
5+3>10 & &
\end{array}
$$

r كمِّ جمـِ

$$
5 x-1=9 \text { ثل عل }
$$

$$
5 x-1=9
$$

$$
\begin{equation*}
5(1)-1=9 \tag{bib}
\end{equation*}
$$

$$
5(2)-1=9 \text { (ردرّت) }
$$

$$
\begin{equation*}
5(3)-1=9 \tag{bib}
\end{equation*}
$$

ابكما (Algebra)

بنيارى حابإضوصيات

جبج

6ط

¢
<र彑U! <

For example, $\underbrace{8-2}<5$ the verb

رونو اركان ساريإنّين بي -

$$
\text { اصل تيت = } 250 \text { روپ }
$$

رطايت = 10\%

100

$$
1
$$

$$
\text { رطايت = } 25 \text { روپ }
$$

جانيّاركا كصول
كصول كَ ק

 $10 / 100 \times 60,000=$ پ $6000=$

جرّول كَ زو

$$
\text { (5/100) } 25000 \text { رو پ } 2500
$$

$$
\text { كيثن ب = } 125 \text { رو }
$$

ركابت
 ركا تيت فَ مدمعلامكنا
 إل تِّت = 500 رو
كم كَ ،ونَّ يّت = 450 رو

$$
450-500=\text { ¢ } 50
$$

$10 \%=(50 / 500) \times 100=$ = 100

 نن 6 ناب تيّت تن

$$
(10 / 100) \times 120=\neq 12
$$

تيت زُونت = تيّت زير + نٌ

$$
12+120=
$$

$$
\text { پ } 132=
$$

$$
\begin{equation*}
\text { يّت زوخت = } 132 \text { روپ } \tag{,}
\end{equation*}
$$

 نتصان = نتصان \% \times تيّت
$(5 / 100) \times 200=10$ پ $ر$

$10-200=$ = 190
ا ال

$$
\text { تيّت زوخت = } 190 \text { روپ }
$$

(الف)

$$
(30 / 120) \times 100=
$$

منا

$$
\begin{aligned}
& \text { تيت خزي = } 1500 \text { رو }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تيّت زير - تيّت زوخت = نتصان } \\
& \text { } \% \text { ر } 500=1000-1500
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{500}{1500} \times 100=33 \frac{1}{3} \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { نصان = تيُت زي - يُيت زونت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تيت زير = } 120 \text { رو } \\
& \text { تيّت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { گر } 30=120-150
\end{aligned}
$$

$$
\begin{aligned}
& \text { نتصان = تيّت }
\end{aligned}
$$

$$
0.06 \times 100=6 \%
$$

فـ صرك بطور كر كمناـ 40/100
زن سِي كـ تقار x بـ-

$$
x \leqslant 25 \%=50
$$

$$
\begin{aligned}
& \frac{25}{100} \text { of } x=50 \\
& 25 x=50 \times 100 \\
& x=\frac{50 \times 100}{25}=200
\end{aligned}
$$

جب فَ صم 25 بوتو مقرار ب 100
$200=$

(Financial Arthimetic) مرطيّ

 20/100

 $12 \%=12 / 100=6 / 50=3 / 25$

 $25 \%=25 / 100=0.25$
.

$$
2 \frac{1}{2} \%=2 \frac{1}{2} / 100=\frac{2.5}{100}
$$

$$
\begin{aligned}
& 2.5=25 / 10 \\
& \text { الوكا } \\
& \frac{25}{10 \times 100}=\frac{25}{1000}=0.025
\end{aligned}
$$

$$
\begin{aligned}
& 3 / 4=(3 / 4) \times 100=300 / 4=75 \%
\end{aligned}
$$

$$
a=\frac{2 \times 3}{6}=1
$$

 $\begin{array}{rlr}\text { זرقى } & : & 3 \\ 4 & : & 3\end{array}$ 12 : x
 تا,

$$
\begin{aligned}
& \text { آع ح : آرى } \\
& 3 \rightarrow 4 \\
& x \rightarrow 12
\end{aligned}
$$

$$
\begin{aligned}
& x: 3=4: 12
\end{aligned}
$$

$$
\begin{aligned}
& x=12 / 12 \\
& \text { x }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تناسب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4:5 :: 2:3 }
\end{aligned}
$$

 $80=20 \times 4$ ب 40 بط

 a: 2::3:6

تسبت اورنّاسب(Ratio and Proportion)

4ㄷ

 تريف :كَ مركك وנת

$$
=60 / 45
$$

$=4 / 3$

 ثャث

$$
8+(-3)=-(8+3) \text { (}
$$

$$
=-11
$$

$$
3-2=1
$$

$4-2=2$
$5-2=3$

$$
\begin{aligned}
& 3+(-2)=1 \\
& 4+(-2)=2 \\
& 5+(-2)=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& -2+(-5)=-7 \text { : 乙 }
\end{aligned}
$$

$$
\begin{aligned}
& 2+5=7 \text { \% } \\
& -(2+5)=-7
\end{aligned}
$$

$$
\begin{aligned}
& \text { آ }
\end{aligned}
$$

فاصِ پُنرآ ت بی-

صٌ ٌ اعراو كَ گّثتب

 > 6 مطلب > 6
 $-5<-2$ راور $0>-5$
$+5>-5 \quad 3>0$
اعراورك مطنت قّمت

$5-7=-2$

$$
\leftrightarrow----,-3,-2,-1,0,+1,+2,+3,--\cdots
$$

چُوـُ اور برُ صُحَّ اعراوط تصور

$1>0,2>1, \ldots \ldots \ldots . . \quad: ~ ل \hbar$

$$
-1<0,-2<-1, \ldots
$$

عروى خط
 جـ،

عروى خط بنانا
 ,

مندرج ز...

$$
\begin{aligned}
& A=\{1,2,3,4\} \\
& B=\{2,3\}
\end{aligned}
$$

- 6 , 6 A, B

$$
\mathrm{B} \subset \mathrm{~A} \quad: \quad \text { : كم }
$$

$$
\text { A } \quad \text { B } \quad: \quad \text { كم }
$$

بكاءرْ: زيليـي

$$
\mathrm{A}=\{1,2,3\}
$$

$$
B=\{2,3,1\}
$$

A A, B واضْ ربّ $B \subseteq A$ اور $A \subseteq B$
آم كثّ بَ. ك ج A A A A A

:

$$
\mathrm{A}=\{1,2,3,4,5,6,7\}
$$

$$
B=\{2,4,5\}
$$

تريف
A, B

B

$\underbrace{\text { : }}_{\text {: }}$

سِّ

1- انثرا.ق مر ليّ

A =

سيّ كَ اقسام

1- تّ

2- لا لتّا

3- خال بيت

ناموجور يا خالى سيت

سيّ (Set)

 ان سيث -

سيـط كم علافت

سيت

 . $\mathrm{B}=\{0,2,4,6,8\}$.

