New Get Ahead

5

MATHEMATICS

Bilingual Teaching Guide

Parveen Arif Ali

Contents

Introduction IV
Unit 1: Numbers

- Lesson 1: Numbers up to One Billion 2
- Lesson 2: Addition and Subtraction of Bigger Numbers 4
- Lesson 3: Multiplication and Division 6
- Lesson 4: Rules of Divisibility 10
- Lesson 5: BODMAS Rules 14
Unit 2: HCF and LCM
- Lesson 1: Factors 18
- Lesson 2: Highest Common Fraction (HCF) 22
- Lesson 3: Multiples 26
- Lesson 4: Lowest Common Multiple (LCM) 30
Unit 3: Fractions
- Lesson 1: Conversion of Fractions 34
- Lesson 2: Four Operations Involving Fractions 36
- Lesson 3: BOADMAS Rules 42

Unit 4: Decimal and Percentages

- Lesson 1: Conversion of Decimal Numbers 46
- Lesson 2: Addiction and Subtraction of Decimal 50
- Lesson 3: Multiplication of Decimal Number 52
- Lesson 4: Division of Decimal Numbers 54
- Lesson 5: Decimal Expressions Involving Brackets 58
- Lesson 6: Percentages 60
Unit 5: Distance, Time and Temperature
- Lesson 1: Length 64
- Lesson 2: Addition and Subtraction of Length 66
- Lesson 3: Conversion of Units of Time 68
- Lesson 4: Addition and Subtraction of Units of Time 70
- Lesson 5: Calendar 74
- Lesson 6: Temperature 76
Unit 6: Unitary Method
- Lesson 1: Unitary Method 80
- Lesson 2: Average 82
- Lesson 3: Direct and Inverse Proportion 84

Unit 7: Geometry

- Lesson 1: Lines 88
- Lesson 2: Angles 90
- Lesson 3: Triangles 92
- Lesson 4: Quadrilaterals 94
Unit 8: Perimeter and Area
- Lesson 1: Perimeter 96
- Lesson 2: Area 98
- Lesson 3: Volume 100
Unit 9: Information Handling
- Lesson 1: Graphs. 104
- Lesson 2: Data Handling 106
Answer 110

Introduction

Get Ahead Mathematics is a series of eight books from levels one to eight. The accompanying Teaching Guides contain guidelines for the teachers. The Teaching Guides, for Books 2 to 5 , contain answers to the mathematical problems in the books. The teachers should devise means and ways of reaching out to the students so that they have a thorough knowledge of the subject without getting bored.
The teachers must use their discretion in teaching a topic in a way they find appropriate, depending on the intelligence level as well as the academic standard of the class.
Encourage the students to relate examples to real things. Don't rush.
Allow time to respond to questions and discuss particular concepts.
Come well prepared to the class. Read the introduction to the topic to be taught in the pupils' book. Prepare charts if necessary. Practice diagrams to be drawn on the blackboard. Collect material relevant to the topic. Prepare short questions, homework, tests and assignments.
Before starting the lesson make a quick survey of the previous knowledge of the students, by asking them questions pertaining to the topic. Explain the concepts with worked examples on the board. The students should be encouraged to work independently, with useful suggestions from the teacher. Exercises at the end of each lesson should be divided between class work and homework. The lesson should conclude with a review of the concept that has been developed or with the work that has been discussed or accomplished.
Blackboard work is an important aspect of teaching mathematics. However, too much time should not be spent on it as the students lose interest. Charts can also be used to explain some concepts, as visual material helps students make mental pictures which are learnt quickly and can be recalled instantly.
Most of the work will be done in the exercise books. These should be carefully and neatly presented so that the processes can easily be seen.
The above guidelines for teachers will enable them to teach effectively and develop an interest in the subject.
These suggestions can only supplement and support the professional judgement of the teacher. In no way can they serve as a substitute for it. It is hoped that your interest in the subject together with the features of the book will provide students with more zest to learn mathematics and excel in the subject.

تقارف

E: G

Numbers and

1 Number Operations

Overview:

This unit comprises on numbers up to one billion. It guides to write numbers in numerals and in words. It also provides practice of addition and subtraction of numbers of arbitrary size. It provides ability to multiply and divide numbers up to 6 digits with 2 -digit and 3 -digit numbers. It helps to identify divisibility rules for $2,3,4$, 5, 6, 9 and 10. It introduces BODMAS rules and its application.

Lesson 1: Numbers up to One Billion

Objectives

Enable students to read and write numbers up to 10 digits.

Students' Learning Outcomes

Students will be able to:

- read numbers up to one billion and write them in numerals and words
- identify the place value of specific digits in a 10 -digit number

Start

Write biggest 9-digit number on the board i.e. 999, 999, 999. Ask the students to read the number, then ask what will be the next number? Remind them that by adding 1 we can have the next number. Ask them to find the number and keep it to themselves.

Main

Make a place value table till billion on the board.

B	HM	TM	M	HTH	TTH	TH	H	T	U
1	0	0	0	0	0	0	0	0	0

Now ask, whether they have same number by adding 1 to 999, 999, 999. Tell them numbers have shifted to one digit towards left and has become a 10 -digit number that is one billion.

 سّن خْمب 1 ：ايكس اربتك اعراو
－eصمر

طلمج ط اصلاتِتع ما

تخ⿰豸㔾⿰亻⿱丶⿻工二又

ركزى نظط

Write the following or any ten digit numbers on the board.
(4), 3 (2) $5,987,013$
4, (8) 10,8 (9) 3,125

Ask few students to read them aloud and all of them will copy and write the numbers in words in their notebooks. Now encircle two digits in each number and ask the place value of encircled digit. Guide them to write the numbers in a place value table. It will make their task easier.
Tell them that commas should be placed between each set of place values.

Plenary

Ask students to do exercise on page 11 and 12 of the book.
Extended Activity: Make groups of 6 students and ask each group to make a colourful place value chart till billion on an A4 paper to hang in the classroom. That would always help them in writing big numbers in words.

Lesson 2: Addition and Subtraction of Bigger Numbers

Objective

Enable students to add and subtract bigger numbers

Students' Learning Outcomes

Students will be able to:

- add and subtract numbers of arbitrary size up to 10 digits
- perform operations with carrying and borrowing methods

Start

Ask student to hang their colourful place value charts on different walls of classroom. Tell them while dealing with bigger numbers, they can take help from these charts.

Main

Tell them that addition and subtraction of numbers up to 10 -digits follow the same rules as done before. Solve the following example on the board.

4, (8) 10,8 (9)3,125 \quad (4), 3(2) 5,987,013

 - الU

طاصل كر0

طلبك 6 اصلاتِتِ تعلم

 ك ك ا كا

مكزى

$111_{1}^{1}{ }^{1} 1_{1}^{1}{ }^{1} 1$
$4,592,865,403$
$+\quad 13,214,598$
$4,606,080,001$

Plenary

Ask them to solve question $(\mathrm{a}-\mathrm{c})$ from page 13 and 14 as class work
Extended Activity: Divide the class in 4 groups. Assign the following task to each group.
Group 1: Add the greatest 9-digit number to the greatest 6-digit number.
Group 2: Add the greatest 8 -digit number to the smallest 7 -digit number.
Group 3: Subtract smallest 5-digit number from greatest 5-digit number.
Group 4: Subtract smallest 7-digit number from greatest 8-digit number.

Lesson 3: Multiplication and Division

Objectives

Enable them to multiply and divide bigger numbers

Students' Learning Outcomes

Student will be able to:

- multiply numbers up to 6 digits by 2 -digit and 3 -digit numbers
- divide numbers up to 6 digits by 2 -digit and 3 -digit numbers

Start

Ask the students, can they multiply 42695 by 28 mentally? The answer would be definitely 'no'. Tell them that multiplying a number with 2 or 3 digit numbers involves more than one step.

 گرو 2: سب ع \%

$$
\text { سبق نم } 3 \text { : ض ب اورتّتيم }
$$

-

طلجُ . طلبـك حاصلا تِتعم

ابترائي

Main

Multiplication

Solve the following example on the board explaining each step to the students.

$$
\begin{aligned}
& \begin{array}{r}
428,935 \\
\times 632
\end{array} \longrightarrow \text { multiplicand } \times 2 \\
& \hline 857870
\end{aligned} \longrightarrow \text { multiplicand } \times 30
$$

s
Tell them that there is an interesting fact about multiplication, when we multiply a number with powers of 10 s (i.e. $10,100,1000, \ldots$), we simply need to multiply the numbers and add as many zeros as appear in the sum. Tell them that this is a basic skill of maths. Write the following examples on the board.
$45 \times 10=450$ add on one 0
$45 \times 100=4500$ add on two 0 s
$45 \times 1000=45000$ add on three 0 s
Ask them to do Q $1(\mathrm{a}-\mathrm{d})$ on page 16 and $(\mathrm{a}-\mathrm{c})$ on page 18.
Division
Now ask the students to divided the following number in their notebook as the recall of previous learning.
$55568 \div 5$.
Emphasise them to learn the tables and revise them frequently.
Solve example 1 on page 19 explaining each step clearly. Ask them to solve questions $(\mathrm{a}-\mathrm{d})$ from page 19.

Plenary

Write few jumbled up sums of multiplication and division on the board. Divide the class into 2 groups. One group will solve multiplication sums, other group will solve division sums.
Extended Activity: Write few numbers on the board and ask students to multiply it with 10,100 and 1000 . This task can be given as homework.

$$
\begin{aligned}
\begin{array}{r}
428,935 \\
\times 632
\end{array} & \longrightarrow \text { multiplicand } \times 2 \\
\hline 857870 & \longrightarrow \text { multiplicand } \times 30 \\
12868050 & \longrightarrow \text { multiplicand } \times 600 \\
257361000 & \longrightarrow \text { product }
\end{aligned}
$$

 نيارى مبارت بـ

Lesson 4: Rules of Divisibility

Objectives

Enable them to:

- identify divisibility rule for $2,3,4,5,6,9$, and 10
- use divisibility test for $2,3,4,5,6,9$, and 10

Students' Learning Outcomes

Student will be able to:

- identify the numbers divisible by $2,3,4,5,6,7$, and 10
- apply divisibility rules to the given numbers

Start

Teacher should start with the key term i.e. 'divisible'. Ask the students what they understand with this word. Write their knowledge on the board. Then wipe out the incorrect information, explain to them that divisible means which can be divided completely by a number. The number which divides is a 'divisor'.

Main

Tell them if we want to find the divisors of large numbers, there are some simple and quick tests by which we can find out whether a number is divisible by a certain number or not.

Test for divisibility by 2

Check whether the number is even or odd. If the number is even, it is divisible by 2 . If it is odd, it is not divisible by 2 . For example, 234 is divisible by 2 but 335 is not.

Test for divisibility by 3

Add up all the digits of the number. If the sum is a number that is exactly divisible by 3 , then the number is divisible by 3 . For example, 342 is divisible by 3 because the sum of $3+4+2$ is 9 which is exactly divisible by 3 . 134 is not divisible by 3 as $1+3+4=8$ which is not exactly divisible by 3 .

$$
\begin{aligned}
& \text { طـ، }
\end{aligned}
$$

طلمب6 حاصلا تِتع

,

$$
2
$$

$$
\begin{aligned}
& 3
\end{aligned}
$$

Test for divisibility by 4

If in a number, the digits in the tens and units place are 00 or are exactly divisible by 4 , then that number is exactly divisible by 4 . For example, 2,300 is divisible by 4.2348 is divisible by 4 as the numbers in the tens and units place are completely divisible by 4. The numbers 3,450 and 1,234 are not divisible by 4 as the last two digits are not 00 or not divisible by 4 .

Test for divisibility by 5

If the digit in the units place of a number is 5 or 0 then the number is divisible by 5 , for example 25 and 250 are divisible by 5 , while 234 is not divisible by 5 .

Test for divisibility by 6

If the sum of the digits of an even number is exactly divisible by 3 , then it is exactly divisible by 6 . For example 24 is divisible by 2 as well as 3 , therefore, 24 is divisible by 6. 38 is divisible by 2 but not by 3 so 38 is not divisible by 6 . 45 is divisible by 3 but not by 2 so it is not divisible by 6 .

Test for divisibility by 9

Add up all the digits of the number. If the sum is a number that is divisible by 9 then that number is divisible by 9 . For example 693 is divisible by 9 because the sum of the digits $6+9+3$ is 18 which is divisible by 9 . 1,234 is not divisible by 9 because the sum of its digits $1+2+3+4$ is 10 which is not divisible by 9 .
Test for divisibility by $\mathbf{1 0}$
Any number which has a 0 in the unit place, for example 380, 230, 400, is divisible by 10. 2345 is not divisible by 10 .

Plenary

Tell them that a number can have many divisors. Write a number on the board which is divisible by $2,3,5,6$, and 10 . For example, 695520.
Extended Activity: Divide the class in two groups. Ask one group to make a list of 6 number divisible by $3,5,9$, and other group will make a list of numbers divisible by 2 , 4,6 and 10 .

$$
\begin{aligned}
& 6
\end{aligned}
$$

$$
\begin{aligned}
& 10
\end{aligned}
$$

طصل كروه

-695520

Lesson 5: BODMAS Rules

Objective

Enable them to:

- recognise BODMAS rules
- verify distributive laws

Students' Learning Outcomes

Student will be able to:

- apply BODMAS rules to combined operations
- verify distributive laws of multiplication over addition and subtraction

Start

Introduce parenthesis () by telling them that it is a type of a bracket. Tell students that maths operations tell us whether add, subtract, multiply or divide while parenthesis tell us that operations in the parenthesis has to be done first.

Main

Write an expression on the board as following.
$5+6 \times 3$
Write 33 as answer and ask who agrees? Write 23 as answer and ask who agrees? Ask them can be there two answers in math? At this point tell them about BODMAS rules. BODMAS explains the order of operations, we should follow to solve an expression involving multiple operations.
Explain that we follow the order as given below.
B: bracket
O: order
D: division
M: multiplication
A: addition
S: subtract

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ابتر| ات~~ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ركزک نٌ } \\
& \text { ورج ; } \\
& 5+6 \times 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { لورُا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بك : وحألڭ خط } \\
& \text { او: } \\
& \text { ور: تی: } \\
& \text { ابيم: غرب } \\
& \text { 己 } \\
& \text { ايّل: تز تي }
\end{aligned}
$$

Tell them that operations given in bracket () should be performed first. Now apply BODMAS on $5+6 \times 3$. To apply the correct order of operations, we write as following.
$5+(6 \times 3)=5+18=23$
We get 23 which is the correct answer. Give them questions (a-d) on page 20 of the text book to solve.
At this stage introduce distributive laws of addition and subtraction.
Let us take three numbers 4,5 and 6 .
Distributive law of multiplication over addition states that
$4 \times(5+6)=(4 \times 5)+(4 \times 6)$
$4 \times 11=20+24$
$44=44$ (law verified)
Distributive law of multiplication over subtractions states that
$4 \times(6-5)=4 \times 6-4 \times 5$
$4 \times 1=24-20$
$4=4$ (law verified)
Give them questions ($\mathrm{a}-\mathrm{d}$) from exercise on page 21. Ask them to be vigilant to solve parenthesis first.

Plenary

Solve few sums on the board with the help of students to give them extensive practice in arithmetic expressions. Reinforce the importance of parenthesis.
Extended Activity: Ask each of them to make a mathematical expression using different operations and parenthesis giving answer equal to 10 .

$$
5+(6 \times 3)=5+18=23
$$

$$
4 \times(5+6)=(4 \times 5)+(4 \times 6)
$$

$$
4 \times 11=20+24
$$

44 44 (اصول 44 تمريتّ)

$4 \times(6-5)=4 \times 6-4 \times 5$
$4 \times 1=24-20$
4

 هص كر0

unit

HCF and LCM (pagese2-4)

Overview

This unit consists of the recall of factors and multiples already taught in previous level. This chapter deals with HCF and LCM of more than two numbers, found by applying different methods.

Lesson 1: Factors

Objectives

Enable students to:

- identify factors and how to find them
- recognize and calculate prime factors

Students' Learning Outcomes

Students will able to:

- calculate the possible factors of a given number
- find prime factors of a number

Start

Ask them to complete the following multiplication grid.

x	1	2	3	4	5	6	7	8	9	10
1					5			8		
2				8					18	
3										
4										
5						30				
6										
7							49			
8	8					48				
9										
10										100

عاوِاْظم اور زواضعافـِ اوت
يونط مجموى جاگْه:

x	1	2	3	4	5	6	7	8	9	10
1					5			8		
2				8					18	
3										
4										
5						30				
6										
7							49			
8	8					48				
9										
10										100

Main

Factors

Draw eight circles on the board. Ask the students to arrange them in different groups so that nothing is left.
On the board draw,
groups of one: O,O,O,O,O,O,O,O (1×8) eight groups
groups of two: OO,OO,OO,OO (2×4) four groups
groups of four: OOOO,OOOO (4×2) two groups
group of eight: OOOOOsOOO (8×1) one group
Explain that every time the circles were arranged, there were none left. So, 1, 2, 4 and 8 are called 'factors' of 8 . We can find the factors of numbers by arranging them in groups. Explain with more examples and show that 1 is a factor of every number. It is interesting to note that every number is a factor of itself.
Ask them to relate their findings with the number multiplication grid.
For example: Take numbers 16 and 24 , and find their all possible factors.
16: $1,2,4,8,16$
24: $1,2,3,4,6,8,12,24$
Common factors: $1,2,4,8$

Prime factors

Write 12 on the board. Find two factors of 12 , which are 3×4.4 again has two factors 2×2. So the factors of 12 are $3 \times 2 \times 2$. Since 2 and 3 are prime numbers, therefore, they are called the 'prime factors' of 12 . Explain that we cannot make any more factors of the prime factors. The method by which we make prime factors is called 'prime factorisation. To find the prime factors of 12 we can proceed as follows.

Prime factors: $2 \times 2 \times 3$

Prime factors: $3 \times 2 \times 2$

Ask the students to make factor trees as shown in the book. Explain that we can make prime factors in many ways, for example the factors of 12 can be 2×6, where the factors of 6 are 2×3. So the prime factors of 12 are $2 \times 2 \times 3$. This shows that

 $1,2,4,8,16 \quad 16:$ $1,2,3,4,6,8,12,24 \quad 24$:

 1جا اج اح

Prime factors: $2 \times 2 \times 3$

Prime factors: $3 \times 2 \times 2$

although we can make factors in different ways the prime factors will always be the same.

Ask them to do Q. 1 on page 26 (a-i) in class.

Plenary

Tell them 1 and the number itself are the factors of every number. Dividing a number by its factor leaves no remainder. Prime factorisation means that factors are only prime numbers. Write some numbers on the board to find prime factors.
Extended Activity: Ask them to break their date of birth in factors. They can take help from grid. Is their date of birth a prime number or a composite number?

Lesson 2: Highest Common Factor (HCF)

Objectives

Enable them to find the highest common factor (HCF) of three numbers.

Students' Learning Outcomes

Students will be able to find HCF of three numbers up to 2 digits using

- prime factorisation method
- division method

Start

Write the factors of 12 and 18 on the board. Factors of 12 are 1, 2, 3, 4, 6, 12. Factors of 18 are $1,2,3,6,9,18$. The common factors for 12 and 18 are $1,2,3$ and 6 . Of these 6 is the highest common factor, therefore, $\mathrm{HCF}=6$.
Explain that the highest common factor means the highest or the biggest number that can divide two or more numbers exactly.
Main
Tell the students that HFC of two or more numbers can be found by prime factorisation method.

$$
\begin{aligned}
& \text { هصر كروه }
\end{aligned}
$$

سّز مُمر2 : عارِ اكظم

جزوْرْبِ بـ

For example, find the HCF of 30 and 45

2	30
3	15
5	5
	1

3	45
3	15
5	5
	1

Therefore, the prime factors of 30 are $2 \times 3 \times 5$ and the prime factors of 45 are $3 \times 3 \times 5$. In this case, 5×3 is the common factor. Therefore the highest common factors (HCF) is $5 \times 3=15$.
Explain the method of finding HCF by prime factorisation using several examples, including the example on page 43 of the book. Ask the students to do the exercise on page 45 Q 1 (a-c).
Solve the example from book page 46 to explain the HCF of three numbers. Ask them to solve ($\mathrm{a}-\mathrm{e}$) from exercise on page 46.
Tell the students that there is another method of finding HCF used for very large numbers, called long division method.
To elaborate further, demonstrate how to find the HCF of 334 and 314. Tell the students to first divide the greater number by the smaller number.

Make the remainder the divisor of the first divisor.

2	30
3	15
5	5
	1

3	45
3	15
5	5
	1

 تئن اعراو -

$$
\text { 314) } \begin{align*}
& 334(1 \tag{ب}\\
& \frac{-314}{20}
\end{align*}
$$

پط

Make the remainder the divisor of the second divisor.

$$
\gamma_{1}
$$

14) $20(1$

$$
\frac{-14}{6} \text { (remainder) }
$$

Make the remainder the divisor of the third divisor.

Make the remainder the divisor of the fourth divisor.

The last divisor is 2 , so the HCF of 334 and 314 is 2.

Explain the method by several examples, including examples 1 and 2 on pages 47-48 of the book, before the students are asked to solve the exercise on page 48.

Plenary

Tell the students that prime numbers always have only two factors, one and the numbers itself. For example factors of 7 are 1×7. Ask them to find the prime factors of $5,9,11$, and 51.
Extended Activity: Ask the students to make a list of ages of their siblings and then find HCF.

Lesson 3: Multiples

Objectives

Enable student to:

- have a concept of multiples of a number
- identify and calculate multiples and common multiples

$$
1 4 \longdiv { 2 0 (1 }
$$

(4)
6) ${ }_{-12}^{14}(2$
(ب)

2) | $6(3$ |
| :--- |
| -6 |
| 0 |

$$
\begin{aligned}
& \text { ك } \\
& \text { طصر كروه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1x7 } 7
\end{aligned}
$$

$$
\begin{aligned}
& \text { سبق نْبر } 3: \text { اصلضرب }
\end{aligned}
$$

Students' Learning Outcomes

Students will be able to:

- find multiples of any number
- find common multiple of four 2-digit numbers

Start

Ask random table from the class and jot down them on the board .
For example:
$8 \times 3=24$
$9 \times 2=18$
$7 \times 5=35$
$2 \times 7=14$

Main

Tell the students that multiples are the numbers which are obtained by multiplying two or more numbers.
Write the following table on the board.
$7 \times 1=7$
$7 \times 2=14$
$7 \times 3=21$
$7 \times 4=28$
$7 \times 5=35$
Tell the students that 7, 14, 21, 28 and 35 are called multiples of 7.
Ask the students to find first 5 multiples of 2, 3, 4 and 6.
Ask them to do exercise on page 30 in the class.
Now tell them to find multiples of 4 and 8 .
Explain them that multiplies of any number are infinite because number are infinite.
$3,6,9,12,(15), 18,21,24,27,30 \ldots$
5,10 , (15), 20, (30), 35, 40.
 تختْ پر ورج ;...

$$
7 \times 1=7
$$

$$
7 \times 2=14
$$

$$
7 \times 3=21
$$

$$
7 \times 4=28
$$

$$
7 \times 5=35
$$

$$
\begin{aligned}
& 3,6,9,12,15,18,21,24,27,30 \ldots \\
& 5,10,15,20,30,35,40
\end{aligned}
$$

Explain that 15 and 30 are multiples of of both 3 and 5 . So 15 and 30 are common multiples of 3 and 5 . Enhance their learning by giving more practice on the board.

Plenary

Ask the students to write 5 multiples of 10 and 20 on a piece of paper and encircle the common multiples.
Ask them to do exercise on page 32.
Extended Activity: Ask them to find multiples of 8 between 1 to 100 .

Lesson 4: LCM (lowest common multiples)

Objectives

Enable students to calculate the least common multiples (LCM) of a set of numbers

Students' Learning Outcomes

Students will be able to:

- find LCM of four numbers up to 2-digits using
- prime factorisation method
- division method

Start

Write the multiples of 3 and 5 on the board. Draw a circle around the common multiples, 15 and 30 . The 'least common multiple' of 3 and 5 is 15 , because 15 is less than 30. Explain with more examples before the students attempt the exercise on page 37 of the book.

Main

Explain that we can find the LCM of two or more numbers by prime factorization as shown in examples 1 and 2 on pages 38 and 39 of the book. To elaborate further, demonstrate how to find the LCM of 20 and 30 . Explain that first we find the prime factors as following.

2	20
2	10
5	5
	1

2	30
3	15
5	5
	1

طصر كروه

سِّ مُمب 4 : وواضعافـِ اون
مثصر

طلبّك طاصلا تِتع

ركزک ثقط

2	20
2	10
5	5
	1

2	30
3	15
5	5
	1

Hence, the prime factors of 20 are $2 \times 2 \times 5$ and the prime factors of 30 are $2 \times 3 \times 5$. Here, 2 and 5 are the common factors and 2 and 3 are the uncommon factors. By multiplying the common and uncommon factors we get, $2 \times 5 \times 2 \times 3=60$. Therefore, $\mathrm{LCM}=60$.
We can also find the LCM by dividing 20 and 30 together by their common multiples,

2	20,30
2	10,15
5	5,15
3	1,3
	$1, \quad 1$

then by multiplying all the factors, $2 \times 2 \times 5 \times 3$, we get the LCM which is 60 . We start the division with the smallest prime number which can divide both the numbers.
The LCM of three and four numbers can also be found by the same method of factorisation as well as division. Explain using several examples, including examples 1 and 2 on pages 40 and 41 of the book before the students proceed to do the exercises on page 41.
Explain that the least common multiple is the smallest number that is a multiple of two or more numbers.

Plenary

Ask the students, is 75 a multiple of 15 ? Guide them to read 15 times table to find the answer.
Extended Activity: Ask to find the LCM of their and their two cousins' ages. They can take guidance from the parents to know the ages.

 ;واضعافـِ اثل بح-

2	20,30
2	10,15
5	5,15
3	1,3
	1,1

 حل كروان ـ
 هاصر كره

 -

unit

3

Fractions (pages 49-64)

Overview

This unit focuses on the conversion of common fraction into other types of fractions. This unit also introduces four operations on fractions and its application in daily life experiences.

Lesson 1: Conversion of Fractions

Objectives

Enable students to:

- convert improper fractions into compound fractions
- reduce fractions into their simplest form

Students' Learning Outcomes

Students will be able to:

- convert improper fraction into compound fraction and vice versa
- reduce the fractions to their simplest or lowest form

Start

Recall the types of fractions studied in the previous level. It includes proper, improper, and compound fractions. Compound fractions are also called mixed fraction.
Compound fraction or mixed fraction are of the form $6 \frac{1}{5}, 2 \frac{2}{3}$ etc. Improper fractions have numerators greater than their denominators, that is $\frac{17}{12}$ or $\frac{25}{21}$

Main

Conversion of improper fraction to compound fraction

Write an improper fraction on the board suppose $\frac{18}{7}$.
Explain them that to convert $\frac{18}{7}$ into compound fraction ie a combination of whole number and proper fraction, we proceed with simple division.

In this division 2 is a whole number and $\frac{4}{7}$ is a proper fraction which can be combined as $2 \frac{4}{7}$ to make a compound fraction.

طلمبكونيرواجب كوركمركبكور بي تبا,

طلمبك طاصلا تٌتعِم

--

 $\frac{25}{21}$ 女 $\frac{17}{12}$ ك

$$
\text { 7) } \begin{gathered}
2 \\
18 \\
\frac{-14}{4} \\
\hline
\end{gathered}
$$.

Give them few examples on the board.

$$
\begin{aligned}
\frac{17}{3} & =5 \frac{2}{3} \\
\frac{27}{4} & =6 \frac{3}{4} \\
\frac{39}{5} & =7 \frac{4}{5}
\end{aligned}
$$

Conversion of a compound fraction into improper fraction
Explain that how a compound fraction is converted into improper fraction.
Write $8 \frac{7}{10}$ on the board and convert it into improper fraction. Explain that to get the improper fraction, first multiply 8 by 10 and add 7 to product, i.e. $(8 \times 10)+7=87$. This will be the numerator of the fraction. The denominator will remain unchanged. So the required fraction is $\frac{87}{10}$. Give them few examples to solve. Solve Q 2 and 3 on page 49 of the text book.

Conversion of a fraction into its simplest form

Recall that they have learnt how to write equivalent fractions in the previous class. Tell them that we find a common factor for the numerator and the denominator of the fraction. Then we divide them both by the common factor by crossing them out or by cancelling them. For example, to reduce $\frac{20}{40}$, the common factor of 20 and 40 is 5 , therefore, divide $\frac{20}{40}$ by 5 which gives us $\frac{4}{8}$. The common factor of 4 and 8 is 2 , dividing $\frac{4}{8}$ by 2 we get $\frac{2}{4}$. The common factor of 2 and 4 is 2 , dividing $\frac{2}{4}$ by 2 we get $\frac{1}{2}$. Hence, the simplest form of $\frac{20}{40}$ is $\frac{1}{2}$. Ask them to solve $\mathrm{Q}(\mathrm{a}-\mathrm{h})$ on page 52 as class work.

Plenary

Ask them to write 3 fractions of their choice and covert them into the simplest form.
Extended Activity: Assign them flash cards with only one proper improper, or compound fractions on it. Ask them to convert the fraction in other form.

Lesson 2: Four Operation Involving Fraction

Objectives

Enable student to:

- add and subtract fractions
- multiply and divide fractions

$$
\begin{aligned}
\frac{17}{3} & =5 \frac{2}{3} \\
\frac{27}{4} & =6 \frac{3}{4} \\
\frac{39}{5} & =7 \frac{4}{5}
\end{aligned}
$$

ركبكرك نير واجب كر بي تبارل
تختِ پ

 طصر كروه

Students' Learning Outcomes

Students will be able to:

- add and subtract two or more fractions with different denominator
- multiply a fraction by a whole number
- multiply a fraction by another fraction
- divide a fraction by a whole number
- divide a fraction by another faction
- solve real life problems

Start

Recall the addition and subtraction of fraction with same denominator. Revise the concept of equivalent fractions also.

Main

Addition and subtraction of fractions

Ask the students to add $\frac{1}{3}+\frac{2}{5}$. Tell them these fractions do not have same denominator, so we proceed as follows.

$$
\begin{aligned}
& \frac{1 \times 5}{3 \times 5}+\frac{2 \times 3}{5 \times 3} \\
= & \frac{5}{15}+\frac{6}{15} \quad \text { (making the denominators same i.e 15) } \\
= & \frac{11}{15} \quad \text { (add as you did in previous level) }
\end{aligned}
$$

Three unlike fractions can be added in the same way.
For example: $\frac{5}{7}+\frac{1}{2}+\frac{3}{14}$

$$
\begin{aligned}
& \frac{5 \times 2}{7 \times 2}+\frac{1 \times 7}{2 \times 7}+\frac{3 \times 1}{14 \times 1} \\
= & \frac{10}{14}+\frac{7}{14}+\frac{3}{14} \\
= & \frac{10+7+3}{14}=\frac{20}{14}=\frac{10}{7}=1 \frac{3}{7}
\end{aligned}
$$

Tell them subtraction of fractions follow the same method.

كيال

طبّ ع

$$
\frac{1 \times 5}{3 \times 5}+\frac{2 \times 3}{5 \times 3}-\sum \frac{1}{1}
$$

(:

$$
\begin{aligned}
& \frac{5}{7}+\frac{1}{2}+\frac{3}{14} \\
& \frac{5 \times 2}{7 \times 2}+\frac{1 \times 7}{2 \times 7}+\frac{3 \times 1}{14 \times 1} \\
= & \frac{10}{14}+\frac{7}{14}+\frac{3}{14} \\
= & \frac{10+7+3}{14}=\frac{20}{14}=\frac{10}{7}=1 \frac{3}{7}
\end{aligned}
$$

Now, consider the following example for subtraction.

$$
\begin{aligned}
& \frac{6}{7}-\frac{3}{5} \\
= & \frac{6 \times 5}{7 \times 5}-\frac{3 \times 7}{5 \times 7} \quad \text { (making the denominators same) } \\
= & \frac{30}{35}-\frac{21}{35}=\frac{9}{35}
\end{aligned}
$$

Three unlike fractions can be subtracted in the same way.
Ask them to do Q. $1(\mathrm{a}, \mathrm{b}, \mathrm{c}$) and Q. $2(\mathrm{a}, \mathrm{b}, \mathrm{c}$) from page 54 in the books.

Multiplying common fractions by whole numbers

To multiply common fractions by whole numbers, for example, $\frac{3}{5} \times 3$, we multiply the numerator of the fraction by the whole number,
i.e. $\frac{3}{5} \times 3=\frac{9}{5}$.

If the answer is an improper fraction we have to change it into a compound fraction. Therefore, in this case $\frac{9}{5}$ is changed to $1 \frac{4}{5}$.

Multiplying a fractions by another fraction

To multiply a fraction by another fraction, we follow the same steps as in the previous example.

For example, for $3 \frac{2}{3} \times \frac{5}{7}$, first change the compound fraction into an improper fraction, i.e. $3 \frac{2}{3}=\frac{11}{3}$. Then, multiply the numerator by the numerator and denominator with the denominator. $\frac{5}{7} \times \frac{11}{3}=\frac{55}{21}$. Since $\frac{55}{21}$ is an improper fraction, therefore, change it to a compound fraction, i.e. $2 \frac{13}{21}$.
Another method is to write the compound fraction in its expanded form and then multiply by the whole number. For example:
$3 \times 4 \frac{3}{5}$
$=3\left(4+\frac{3}{5}\right)$
$=(3 \times 4)+3 \times\left(\frac{3}{5}\right)$
$=12+\frac{9}{5}$
$=12+1 \frac{4}{5}$
$=13 \frac{4}{5}$

$$
\frac{6}{7}-\frac{3}{5}
$$

$$
\begin{aligned}
\text { (比 } & =\frac{6 \times 5}{7 \times 5}-\frac{3 \times 7}{5 \times 7} \\
& =\frac{30}{35}-\frac{21}{35}=\frac{9}{35}
\end{aligned}
$$

كام كور كَ لور
 $\frac{3}{5} \times 3=\frac{9}{5}:$ ج
اكرجواب تير واجب كـ لالزا، النصرتِ طال يّ

 $3 \frac{2}{3} \times \frac{5}{7}$ ث

有

$$
\begin{aligned}
& 3 \times 4 \frac{3}{5} \\
& =3\left(4+\frac{3}{5}\right) \\
& =(3 \times 4)+3 \times\left(\frac{3}{5}\right) \\
& =12+\frac{9}{5} \\
& =12+1 \frac{4}{5} \\
& =13 \frac{4}{5}
\end{aligned}
$$

Dividing a fraction by a whole number
To divide a common fraction with a whole number. For example $\frac{4}{5} \div 2$, we first take reciprocal of 2 i.e $\frac{1}{2}, \div$ sign is changed with ' x ' sign and proceed as following.

$$
\begin{aligned}
& =\frac{4}{5} \div 2 \\
& =\frac{4^{2}}{5} \times \frac{1}{2} \\
& =\frac{2}{5}
\end{aligned}
$$

If the answer is an improper fraction, we change it into compound form.

Dividing a fraction by another fraction

To divide a fraction by another fraction first we take reciprocal of the second fraction and then multiply both the fractions, as we did before.

$$
\begin{aligned}
& \frac{2}{5} \div \frac{6}{25} \\
= & \frac{z^{1}}{5_{1}} \times \frac{25^{5}}{6^{3}} \\
= & \frac{1 \times 5}{1 \times 3} \\
= & \frac{5}{3}=1 \frac{2}{3}
\end{aligned}
$$

Word problems can be solved after working out which operation has to be used.

Plenary

Select and right few sums of addition, subtraction, multiplication and division from page 64 of the book on the board and call students to solve them.
Extended Activity: Ask them to make two columns on a coloured chart paper.
Ask them to write ten fractions of their own choice in one column, and write their respective reciprocals in other column.

Lesson 3: BODMAS Rules

Objectives

Enable students to:

- perform combined mathematical operations involving fraction
- Apply BODMAS rules to for operations in involving fractions
كم كَ لورسـع عرو ستّتشم كارى

$$
\begin{aligned}
& \frac{2}{5} \div \frac{6}{25} \\
& \text { - كّ } \\
& =\frac{2^{1}}{5_{1}} \times \frac{25^{5}}{6^{3}} \\
& =\frac{1 \times 5}{1 \times 3} \\
& =\frac{5}{3}=1 \frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { طصر كروه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سّوّ نْمْ 3: بووواس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 病 } \\
& =\frac{4}{5} \div 2 \\
& =\frac{4^{2}}{5} \times \frac{1}{2} \\
& =\frac{2}{5}
\end{aligned}
$$

Students' Learning Outcomes

Students will be able to use BODMAS rules to perform four basic operations involving fractions.

Start

Write the following expression on the board and ask them to solve it.
$\frac{4}{5} \times \frac{5}{8}+\frac{8}{5}$
Expect different answers from the students as the order of operation may not be clear to them.

Mian

At this stage recall and discuss BODMAS rules to be applied to perform the operation in correct order. Tell them BODMAS rules can be applied to fractions also.
Solve example 1 on page 63 of the book in the class. Emphasise to calculate the expressions in bracket first. Solve example 2 from page 64 for further practice.

Plenary

Ask them to solve questions $(a-c)$ on page 64.
Extended Activity: Ask each student to make two sums with fractions having multiple operations and apply BODMAS rules to solve them in correct order.

مكزى نظط

 فصل كروه:

$$
\begin{aligned}
& \text { ابتخاتي }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4}{5} \times \frac{5}{8}+\frac{8}{5}
\end{aligned}
$$

Decimals and percentage

Overview

This unit consists of the conversion of decimal numbers into common fraction and vice versa. This unit also caters with the four basic operations involving decimal numbers. It covers the application of BODMAS rules over decimal numbers.
Moreover, this unit provides basic concept of percentages and its conversion into decimal and common fraction.

Lesson 1: Conversion of Decimal Numbers

Objectives

Enable students to:

- convert common fractions to decimals and vice versa
- recognise like and unlike decimals

Students' Learning Outcomes

Students will be able to:

- identify like and unlike decimals
- convert common fraction to decimal fraction
- convert decimal fraction to common fraction

Start

Take an A4 sheet and divide it into two parts. Ask students how much is each part. They will say that it is half or $\frac{1}{2}$ of the paper. Now ask them to covert $\frac{1}{2}$ in to decimals as they have done in pervious class by changing the denominator into 10 .
$\frac{1}{2}=\frac{5}{10}=0.5$
Main

Like and unlike decimal fractions

Tell them that decimal numbers having same number of decimal places are called like decimals.
The decimal numbers which have different number of decimal places are known as unlike decimals. For example: 4.27 and 0.58 are like fractions, while 3.172 and 6.10 are unlike decimals.

طاصلاتِتع م :

ابترايتي:

$$
\begin{aligned}
& \text { مكزك نقط : } \\
& \text { ايكِّبی اوركنّف كمر }
\end{aligned}
$$

Recall the concept of decimal fraction, explaining them that there are different cases of conversion of decimals and common fractions, into each other.
Changing common fractions with different denominators into decimal fractions To change common fractions with different denominators into decimal fractions, we have to change the common fraction into an equivalent fraction so that the denominator is a multiple of 10 , for example, to change $\frac{1}{5}$ into a decimal fraction, change the denominator 5 into a multiple of 10 , by multiplying it by 20 .
We also have to multiply the numerator by 20 so the fraction becomes $\frac{1 \times 20}{5 \times 20}=\frac{20}{100}=0.2$ Note: A compound fraction can also be changed to a decimal fraction in the same way, for example to change $3 \frac{3}{4}$ to a decimal fraction:
$3+\frac{3}{4}=3+\frac{3 \times 25}{4 \times 25}=3+\frac{75}{100}=3+0.75=3.75$.
Explain the method of changing common fractions into decimal fractions by several examples.

Changing common fractions into decimal fractions by division

Explain that some fractions which are in their simplest form and have denominators that cannot be changed into multiples of 10 , can be changed into decimal fractions by dividing the numerator by the denominator as explained in the following example.
To change $\frac{2}{3}$ into a decimal fraction, write the fraction as for division $3 \longdiv { 2 }$.
As 2 cannot be divided by 3 , we add a decimal point in the quotient above 2 and write a zero in the units column of the dividend.
$3 \begin{aligned} & \begin{array}{c}0.666 \\ \frac{-18}{20}\end{array} \text { (add a zero) } \\ & \frac{-18}{20} \text { (add a zero) } \\ & \frac{-18}{2} \text { (add a zero) } \\ &\left.\frac{\text { (remainder) }}{} \begin{array}{ll} & \end{array}\right)\end{aligned}$
Explain that in the above example, each time we have 2 as a remainder, we make it a 20 by adding a zero. This process can go on and on, but in the above case, we divide three times to get the nearest possible decimal fraction.

Changing decimal fraction to common fraction

To reduce a decimal fraction to its simplest common fraction, we have to change it to a common fraction and then divide it. For example, to change 0.4 into its simplest form, first change it into a common fraction, ie. $0.4=\frac{4}{10}$. Cancelling by the common factor 2 , we can reduce $\frac{4}{10}$ to its simplest form, which is $\frac{2}{5}$.

 10

$$
3+\frac{3}{4}=3+\frac{3 \times 25}{4 \times 25}=3+\frac{75}{100}=3+0.75=3.75 \text {. }
$$

 \%
3) . .

$$
3 \begin{aligned}
& \begin{aligned}
& \frac{0.666}{20} \\
& \frac{-18}{20} \text { (add a zero) } \\
& \frac{-18}{20} \\
& \frac{-18}{2} \text { (add a zero) } \\
&- \text { (remainder) }
\end{aligned} \text { zero) } \\
& \frac{1}{2} \\
& \hline
\end{aligned}
$$

Plenary

Write few question from page 66, 67, 68, 69, 70 and 72 on the board. Divide class in suitable number of groups and assign 2 questions to each group. Ask them to solve the question on the board, so the other students can also take the advantage.
Extended Activity: Give the activity as home work. Ask them to divide their toys in 3 groups and express each group in common fraction and in decimal fraction.
For example number of dolls are 3 out of 10 toys.
common fraction $=\frac{3}{10}$
decimal fraction $=0.3$

Lesson 2: Addition and subtraction of decimals number

Objective

Enable students to add and subtract decimal numbers

Students' Learning Outcomes

Student will be able to:

- add decimal numbers up to 3 decimal places
- subtract decimal numbers up to 3 decimal places

Start

Recall the previous learning by writing the following sum on the board.
$45.123+10.671$

Main

Start the lesson by recalling that addition and subtraction of decimal numbers are done in the same manner as numbers without decimals. Only we have to be vigilant to align the decimal point of each number.

Solve examples given on page 73 on the board.

 $\frac{3}{10}:$ 6

:
 هاصلاتِتِ م

-

ابترايّي:

$45.123+10.671$
ركزى نٌط :

Plenary

Ask them to solve question $1(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $2(\mathrm{a}, \mathrm{b}, \mathrm{c})$ on page 74 of the book.
Extended Activity: Give them a word problem to solve.

Lesson 3: Multiplication of decimal numbers

Objective

Enable students to multiply decimal numbers.

Students learning outcomes

Students will be able to:

- multiply decimals by a whole number
- multiply two decimal numbers
- multiply a decimal by power of 10

Start

Recall that multiplication of decimals number are same as multiplying two whole numbers. We only need to put the decimal point on its correct place.

Main

1. Multiplying decimal fractions by whole numbers

To multiply a decimal fraction by a whole number, we multiply in the same way as we multiply two whole numbers. But, we must remember to put the decimal point in its correct place. For example, to multiply 4.7 by 9 , write the numbers in vertical form
4.7 (one decimal place)
$\stackrel{\times 9}{42.3}$ (one decimal place)
We put the decimal point in the answer by counting the number of decimal places in the decimal fraction.

2. Multiplying two decimal fractions

We multiply two decimal fractions in the same way as we multiply two whole numbers. But we count the number of decimal places in both the fractions and then add them to put the decimal point that many number of places in the answer counting from the right. For example, to multiply 9.7 by 8.6, write the numbers in vertical form:
9.7 (one decimal place)
$\times 8.6$ (one decimal place)
$\underline{7760}$
83.42 (two decimal places from right)

 سبّ
ven

طاصلاتِتعملم :

-

گزث

 كو
4.7

2ـورواوشارى كور كا

$$
9.7 \text { (one decimal place) } \quad \text { نرب, }
$$

$\times 8.6$ (one decimal place)
83.42 (two decimal places from right)

3. Multiplying a decimal number by 10,100 , and 1000 .

Use the rule that when we multiply a decimal with 10,100 or 1000 , the decimal moves one, two and three places to the right respectively. Solve two examples from page 75 on the board.

Plenary

Write a number on the board. For example 45.928

Ask them to multiply the number with 10,1000 , and 1000 . Share the result with the whole class.
Extended Activity: Ask the students, if we multiply a decimal number by 1000, the decimal point will move towards right or left? Ask them where does the decimal point of a whole number lie?

Lesson 4: Division of decimal numbers

Objective

Enable them to divide decimal numbers.

Students' Learning Outcomes

Student will be able to:

- divide a decimal number by a whole number
- divide a decimal number by a decimal number
- divide a decimal number by 10,100 , and 1000

Start

Recall that dividing decimal numbers becomes easy if we change decimal fraction in a whole number by shifting the decimal point.

$$
\text { اوثنارى اعراوكى 10، } 100 \text { ي! } 1000 \text { ــ ضبك كرى : }
$$

45.928

$$
\begin{aligned}
& \text { هاصلاتِتِ م : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ابتراتيـ: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تبّلي ،و جاعـ }
\end{aligned}
$$

Main

Discuss the various cases of division as following.

Dividing a decimal fraction by a whole numbers

When dividing a decimal fraction by a whole number we divide in the same way as for whole numbers. The decimal point is placed directly above the decimal point of the decimal fraction in the dividend. For example, to divide 8.92 by 4 .

```
\(4 \longdiv { 8 . 9 2 }\)
    - 8
    9
    8
    12
    \begin{tabular}{l}
-12 \\
\hline
\end{tabular}
    0
```


Dividing a decimal fraction by a decimal fraction

To divide decimal fractions, change the decimal fraction into a whole number by shifting the decimal point or by multiplying it by a power of 10 .
For example, to divide 7.5 by 2.5 , shift the decimal one place to the right so that 2.5 becomes 25 and 7.5 becomes 75 . We can now divide it in the usual way as for whole numbers, i.e.

We must remember that the decimal in the divisor and the dividend must be shifted an equal number of places, for example, to divide 3.55 by $0.5,0.5$ can be made into a whole number by shifting the decimal point one place to the right. Therefore, we can only shift the decimal point of 3.55 one place to the right. So 3.55 becomes 35.5 . Now we can divide in the way we have learnt to divide a decimal fraction by a whole number.
Note: Word problems should be solved by first determining which operation has to be performed.
Dividing a decimal number by 10,100 or 1000
In this case decimal point shifts towards left.
For example:

1. $375.12 \div 10=37.512$
$375.12 \div 100=3.751$

$$
4 \begin{array}{r}
\frac{2.23}{8.92} \\
\frac{8}{9} \\
\frac{8}{12} \\
-\quad 12 \\
\hline-0
\end{array}
$$

$$
25 \begin{array}{r}
3 \\
\begin{array}{r}
75 \\
\frac{-75}{0}
\end{array}
\end{array}
$$

غَم يا, ركنا هֶ

$$
\begin{aligned}
& 375.12 \div 10=37.512 .1 \\
& 375.12 \div 100=3.751
\end{aligned}
$$

2. $351.6 \div 10=35.16$

$$
351.6 \div 100=3.516
$$

$$
351.6 \div 1000=.3516
$$

Plenary

Ask the students to solve questions (a-c) on page 80 and $(\mathrm{a}-\mathrm{c})$ on page 82 of the book. Extended Activity: Ask them to divide Rs. 105.75 among three friends equally. How much each will get?

Lesson 5: Decimal expressions involving brackets

Objective

Enable the students to solve the decimal expressions with bracket.

Students' Learning Outcomes

Students will be able to simplify decimal expressions involving multiple operations.

Start

Recall that brackets are simplified first in any mathematical expression.

Main

Solve the example on page 83 of the book on the board. Ask them to simplify questions (a-d) on page 83 in class.

Plenary

Paste 4 flash cards on the board, having decimal expression with brackets. Call four students at a time to solve them rest of them will check the method then they will get their turn.
Extended Activity: Ask students to write a decimal expression as given below in their note books.

$$
35.15 \times 100+6.25
$$

Now they can put brackets according to their own choice. They can rearrange the numbers also. Find the answer and show it to the teacher next day.

$$
\begin{aligned}
& 351.6 \div 10=35.16 \\
& 351.6 \div 100=3.516 \\
& 351.6 \div 1000=.3516
\end{aligned}
$$

$$
\begin{aligned}
& \text { هص كر0:0: } \\
& \text { طلب }
\end{aligned}
$$

 هاطلاتِتِ

 هص كر

 $35.15 \times 100+6.25$

Lesson 6: Percentages

Objectives

Enable them to recognize percentage as a special kind of fraction.

Students' Learning Outcomes

Students will be able to:

- convert a fraction to percentage
- convert percentage to a fraction
- convert decimal to percentage
- convert percentage to a decimal

Start

Tell the students that percentage is a special fraction which has 100 as its denominator. Symbol \% is used to represent a number as percentage.

Main

Start your lesson by telling them that percentages, fractions and decimals are convertible into each other following only two operations ie multiplication and division.

- To convert a common fraction to percentage we multiply the fraction with 100%

For example, to convert $\frac{2}{5}$ with percentage we do as following
$\frac{2}{5} \times 100 \%=40 \%$

- To convert percentage to common fraction we divide the number by 100

For example
$35 \%=\frac{35}{100}=\frac{7}{20}$

- To convert decimals to percentage we multiply by 100% For example $0.85 \times 100 \%=85 \%$
- To covert percentage to a decimal we divide by 100

For example $45 \%=\frac{45}{100}=0.45$

حاصلا تِتع

-

ركز

$$
\begin{aligned}
& \text { الگّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ثن ل عطور يُ } \\
& \frac{2}{5} \times 100 \%=40 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { رثل ک طور پ؛ } \\
& 35 \%=\frac{35}{100}=\frac{7}{20}
\end{aligned}
$$

$$
\begin{aligned}
& 0.85 \times 100 \%=85 \% \text { \% }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ث } \\
& 45 \%=\frac{45}{100}=0.45
\end{aligned}
$$

Summarise the rules as given below.
$\left.\begin{array}{l}\text { Fraction } \longrightarrow \text { Percentage } \\ \text { Decimal } \longrightarrow \text { Percentage }\end{array}\right] \times 100 \%$

$$
\left.\begin{array}{l}
\text { Percentage } \longrightarrow \text { Fraction } \\
\text { Percentage } \longrightarrow \text { Decimal }
\end{array}\right] \div 100
$$

Plenary

Write each kind of number on the board and ask them to convert into each other. You can make a table as given below.

Common fraction	Percentage	Decimal
$\frac{4}{5}$		
	25%	
		0.75

Word problems 1 and 2 on page 88 can be given as home work
Extended Activity: Ask them to present the rules on a half sheet of A4 paper and display it in the class.

$0, \iint_{6}$
黄

Common fraction	Percentage	Decimal
$\frac{4}{5}$		
	25%	
		0.75

5 Temperature

Overview

This unit is based on the conversion of units of distance, time, and temperature. It also consists of addition and subtraction of the units of above mentioned quantities.
Lesson 1: Length ($\mathrm{km}, \mathrm{m}, \mathrm{cm}$)

Objective

Enable students to convert the bigger units of length into smaller units and vice versa

Students' Learning Outcomes

Student will be able to:

- convert kilometres into metres and vice versa
- convert metres into centimetres and vice versa
- convert centimetres into millimitres and vice versa

Start

Ask the students to measure the length of their desks or tables with straight edge ruler. Share the answer in the class as it should be same for all of them. Emphasise on the unit of measurement.

Main

Tell the students that length of an object is actually the distance between two fixed points. Longer distances are measured in kilometres, for example the distance between two cities. Smaller units like centimetre and millimetres are used to measure small lengths.

Remind them $1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~m}=\frac{1}{1000} \mathrm{~km}$
$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{~cm}=\frac{1}{1000} \mathrm{~m}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$	$1 \mathrm{~mm}=\frac{1}{10} \mathrm{~cm}$

لينط 6 بجوى جا گُه:

:

هاملاتِّتِم

-

ركزك نُط :

$$
\begin{aligned}
& 1
\end{aligned}
$$

Also, to change bigger unit into smaller unit we multiply by 1000,100 and 10 as required, and to change from smaller to bigger units we divide with 1000,1000 or 10 . For example:

$$
\begin{array}{lr}
2 \mathrm{~km}=2 \times 1000=2000 \mathrm{~m} & 350 \mathrm{~m}=\frac{350}{1000}=0.35 \mathrm{~km} \\
15 \mathrm{~m}=15 \times 100=1500 \mathrm{~cm} & 25 \mathrm{~cm}=\frac{25}{100}=0.25 \mathrm{~m} \\
210 \mathrm{~cm}=210 \times 10=2100 \mathrm{~mm} & 15 \mathrm{~mm}=\frac{15}{10}=1.5 \mathrm{~cm}
\end{array}
$$

Ask them to solve Q $1(\mathrm{a}-\mathrm{c})$, $\mathrm{Q} 2(\mathrm{a}-\mathrm{c})$, and $\mathrm{Q} 3(\mathrm{a}-\mathrm{c})$ on pages 90 , 95 , and 96 as classwork.

Plenary

Give them few questions of conversion on the board from km to m, cm to mm and vice versa. Ask them to solve and share the answer in the class.
Extended Activity: Divide the class in 4 group. Ask each group to take an A4 coloured, sheet. Make conversion table and write conversion rules on it. Place them on the softboard in classroom.

Lesson 2: Addition and subtraction of length

Objective

Enable students to add and subtract units of kilometres and metres.

Students Learning Outcome

Students will be able to:

- add units of km and m
- subtract units of km and m

Start

Write the following sum on the board

km	m
10	350
+13	430
23	780

Tell them that they have to add them as ordinary numbers are added. So they will get 23 km 780 m as the result.

ابتر|r
\qquad

$$
\begin{aligned}
& \text { ثهثاً } \\
& 15
\end{aligned}
$$

Tell them that if sum of metres exceeds 1000 we carry 1000 m to km column,making 1 km.
Similarly for subtraction we borrow $1 \mathrm{~km}=1000 \mathrm{~m}$ if needed. Give them ample of examples to understand the method.

Main

Ask the students to solve Q1 $(\mathrm{a}-\mathrm{e})$ and Q2 $(\mathrm{a}-\mathrm{e})$ on pages 91 and 92 in the class.
Ask the students to peer check their working. Any ambiguity should be resolved by the teacher then and there.

Plenary

Ask them to convert the above found answers in metres.
Extended Activity: Ask students to find the distance between any three main cities of Pakistan with the help of their elders, and share in the class in next period of math.

Lesson 3: Conversion of units of time

Objective

Enable students to convert units of time (hours, minutes and seconds) into each other.

Students Learning Outcome:

Students will be able to:

- convert hours into minutes and vice versa
- convert minutes into seconds and vice versa

Start

Ask the students how many hours do they spend in school everyday. Can they tell this time duration in minutes?

Main

By recalling their previous knowledge, start with the conversion table.
1 hour $=60 \mathrm{mins}$
$1 \mathrm{mins}=60$ secs

户

ركزى نقط :

طصر كروه:

$$
\text { سّق مْم } 3 \text { : وتت ع اكَكَ كَتبـيلى }
$$

بهصى :
 حاصلاتِّتع :

-

ابتراتيّ:

ركزك تُط :

$$
\begin{aligned}
& 1
\end{aligned}
$$

To convert hours to minutes and minutes to seconds we multiply by 60 . Give them the following examples.

2 hours $=2 \times 60=120 \mathrm{mins}$
12 mins $=12 \times 60=720 \mathrm{secs}$
To convert minutes to hours and seconds to minutes we divide with 60 .
Give them some examples.
180 minutes $=180 \div 60=3$ hours.
600 secs $=600 \div 60=10$ mins.
4 hours $30 \mathrm{mins}=(4 \times 60)+30=240+30=270 \mathrm{mins}$
Assign them sums from page 98, 102 and 103 for class work and homework.

Plenary

Ask them to convert their school hours into minutes and seconds.
Extended Activity: Ask them to make a log of their activities on Sunday. Convert each time duration into minutes and figure out the activity which consumes most of the time. This activity can be assigned on weekend.

Lesson 4: Addition and subtraction of units of time

Objective

Enable students to perform addition and subtraction of a units of time.

Students Learning Outcomes

Students will be able to:

- add hours, minutes, and seconds
- subtract hours, minutes, and seconds

Start

Ask them if they play for 2 hours and spend 1 hour 30 minutes in doing home work, how much total time do they spend on the two activities?
 اغين ررج زيل ثشيلي ريّ:
號 $120=2 \times 60=2$
12

送 $3=60 \div$ 180
600

فص كر

:

حاصلاتِتِ تم :

-
-
ابتراسْهِ:
 يّ كتنا رتق گزاراء

Main

Now, tell them same units of time are added together. Discus the following cases with them.

Addition of hours and minutes.

Explain that if total numbers of minutes are greater than 60 then 60 minutes are taken away as one hour. Give them few examples.

	hr
3	\min
3	35
+	4
7	15

	hr
${ }^{1} 2$	\min
2	50
+	1
4	30

$$
\begin{array}{rr}
\min & \mathrm{sec} \\
{ }^{1} 9 & 50 \\
+ & 4 \\
+ & 55 \\
\hline 14 & 45 \\
\hline
\end{array}
$$

Hint: $\quad 50 \mathrm{~min}+30 \mathrm{~min}=80 \mathrm{~min}$
1 hour 20 min

Hint: $\quad 50 \mathrm{sec}+55 \mathrm{sec}$

For subtraction follow the steps given below.
hr min
$9 \quad 43$
$-\frac{2}{7} \quad 21$
$\begin{array}{cc}\mathrm{hr} & \min ^{6}{ }^{6}{ }^{100} 40\end{array}$

$-$| 2 | 50 |
| ---: | ---: |
| 4 | 50 |

Hint: We can not subtract 50 from 40. There fore borrow 60 minutes from hours.
$60+40=100 \mathrm{~min}$
Now subtract: $100-50=50 \mathrm{~min}$
$6-2=4 \mathrm{hr}$
 -

$$
\text { + } 40 \text { + } 100 \text { ثن }
$$

$6-2=4 \mathrm{hr}$

$\min _{8}^{8} 9$	sec
${ }^{90} 30$	
-	4
4	48
4	42

Hint: Borrow 60 seconds from minutes

$$
90-48=42 \mathrm{sec}
$$

Plenary

Give them to solve (a, b) from pages 99,100 , and 104.
Extended Activity: Ask them to watch two of their favourite cartoon programs and to find its time duration. Bring their result next day.

Lesson 5: Calendar

Objective

Enable student to use and interpret a calendar.

Students Learning Outcomes

Students will be able to:

- convert years, months, days, and weeks into each other
- identify the dates and days in a calendar

Start

Ask them some important dates and years related to our country Pakistan. For example 14th August 1947, 23rd March 1940 etc. Discuss the importance of dates, days and years.

Main

Show them a table calendar and explain the method of finding a particular date or day in a calendar. Show them a conversion table as on page 107 in the book.
Solve few examples of conversion of days, weeks, months and years into each other by taking feedback from the students.

بن	كِّنٌ
${ }^{8} 9$	${ }^{90} 30$
-4	48
4	42

年 $90=60+30$
共 $42=90-48$
:

سبق نمب5 :كينغُر
:
 هاملاتِتع م :

 - كيثغربي

ابتزائية:

ركزك نظط :

1. 1 week $=7$ days

4 week $=7 \times 4=28$ days
2. 1 month $=30$ days

3 months $=30 \times 3=90$ days
3. 1 year $=52$ weeks

7 years $=12 \times 7=84$ months
4. 1 year $=52$ weeks

3 years $=52 \times 3156$ weeks
5. 7 days $=1$ week

42 days $=\frac{42^{6}}{7}=6$ weeks
6. 30 days $=1$ month

90 days $=\frac{{ }^{3} 90}{30} 3$ months
7. 12 months $=1$ year

60 months $=\frac{5^{60}}{12}=5$ years
8. 52 weeks $=1$ year

104 weeks $=\frac{104^{2}}{5 z} \quad 2$ years

Plenary

Ask them to solve Q $1(\mathrm{a}-\mathrm{c}) \mathrm{Q} 2(\mathrm{a}-\mathrm{c})$ on page 108 of the book.
Extended Activity: Ask them to make calendar of the month of their birth and paste a star on the date. This activity can be given for homework.

Lesson 6: Temperature

Objective
Enable students to deal with Fahrenheit and Celsius scales of temperature.

Students Learning Outcomes

Students will be able to:

- recognise Fahrenheit and Celsius scale of temperature
- convert Celsius scale to Fahrenheit scale and vise versa
 حاصلاتِتع

$$
\begin{aligned}
& \text { = } 7 \text { ون } 1 \text { - } 1 \\
& 28=4 \times 7=\text { 远 } 4 \\
& 30 \text { = } 30 \text {-2 } \\
& \text { 90=3x30 = } 3 \\
& \text { 远 } 52=\mathrm{J}_{1} \text {-3 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 远 } 52=\text { ル } 1 \text {-4 } \\
& \text { 运 }=3 \times 52=\text { し } 3 \\
& \text { 范 } 1=\text {-5 } \\
& \text { 立 } 6 \frac{42}{7}{ }^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { J } 5=\frac{50}{12}=60 \\
& J L_{1}=\text { 远 } 52,-8 \\
& J_{2}=\dot{\text { ci }} 104 \frac{104}{52} \\
& \text { طصر كره: : }
\end{aligned}
$$

Start

Ask them, do they know what was the temperature of atmosphere when they were coming to school? Do they ever watch weather forecast program on TV in which daily temperature is told? Why is it important to know the temperature of the day?

Main

Tell them that temperature is defined as how hot or cold something is. There are scales to measure the temperature. We will learn about Celsius scale $\left({ }^{\circ} \mathrm{C}\right)$ and Fahrenheit scale $\left({ }^{\circ} \mathrm{F}\right)$. We can covert one type of temperature into other type by following the given steps.
Conversion from Fahrenheit to Celsius scale
We use following formula.

$$
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times \frac{5}{9}
$$

Solve the example given on page 109 on the board.
Conversion from Celsius to Fahrenheit scale
We can do the conversion by using following formula.
${ }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{C} \times \frac{9}{5}\right)+32$
Solve the example given on page 110 on the board,

Plenary

Ask them to do Q 1 and Q 2 on page 110 in the class.
Extended Activity: Ask them the boiling and freezing point of water in Celsius scale and convert it into Fahrenheit scale.

ركزك نُط :

$$
\text { 32+ (} \frac{5}{9} \times \text { " }
$$

6صل كره:

unit

6

Unitary Method (page $111-20]$

Overview

This unit provides the concept of unitary method. It gives knowledge about direct and inverse proportions. It also tells us about how to calculate average value of a given data.

Lesson 1: Unitary Method

Objective

Enable students to apply unitary method to find the values of objects.

Students' Learning Outcomes

Students will be able to:

- describe the concept of unitary method
- calculate the value of many objects of same kind when value of one kind is given

Start

Tell the students that unitary method plays an important role in our daily life. Ask the cost of one toy car if 10 toy cars cost Rs. 100. Now ask cost of 7 toy cars. Appreciate the correct answers.

Main

Tell the students that to find the values for one or more than one objects, unitary method is used by applying the operations of multiplication and division.
Ask the students a simple question involving the unitary method. For example, if one ball costs Rs 5, how much will 10 balls cost?
Write the statement:
1 ball costs Rs 5
10 balls cost Rs $5 \times 10=$ Rs 50
اكَكَ

$$
\begin{aligned}
& \text { 6اروهط } 6
\end{aligned}
$$

-

ابتراتُهـ:

$$
\begin{aligned}
& \text { طلط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ریّ بواب } \\
& \text { مكزك نقط : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { : }
\end{aligned}
$$

Explain that unitary means 'one'. It is a method which we apply if we want to find the value of more than one thing when we are given the value of only one. For finding the values we multiply or divide.
Write, if 10 balls cost Rs 40, how much will 1 ball cost?
Write the statement:
10 balls cost Rs 40
1 ball costs Rs $40 \div 10=$ Rs 4
Explain that if we want to find the value of one thing when we are given the value of more things, we have to divide.
Explain the examples on pages 111,112 , and 113 of the book. Discuss the word problems with the students before they proceed to solve them.

Plenary

Ask them to solve Q (1-3) on page 112. Reinforce that to find the cost of one, we divide and to find the cost of many, we multiply.
Extended Activity: Ask them to develop two questions of unitary method of their own.

Lesson 2: Average

Objective
Enable them to understand the concept of average of a given set of numbers.

Students' Learning Outcome

Students will be able to calculate the average of some given numbers.

Start

Put 12, pencils on the table and call 4 students. Distribute the pencils in such away that each of them have equal number of pencils. Each of them will get 3 pencils. 12 pencils can be distributed among 4 students in the groups of maximum 3 pencils each.

 جلم
10

 طصل كروه:

اضافَ مرگى :

سبق ثمبر 2 : اوسط

طاملاتِتِ تملم :

ابتراتيّ:
12

Main

Draw five boxes on the board. Draw 2 circles in the first box, 1 in the second, 3 in the third, 5 in the fourth and 4 in the fifth.
Ask the students to count the total number of circles in the boxes, which is 15 .
Now ask them to put an equal number of circles in the five boxes, which will be 3 for each box.
Explain that there is an average of 3 circles per box.
To be able to find an average we use an easy method.
First, we add up all the given numbers, then we divide their sum by the total number of given quantities.
In the above example, we first add $2+1+3+5+4=15$. We, then, divide 15 circles by the total number of boxes, which is 5 , i.e. $15 \div 5=3$. Hence, 3 is the average number of circles per box.
Discuss the word problems with the students before they proceed to solve them.

Plenary

Ask them to complete the table on page 116.
Extended activity: Give them a word problem to solve. If Atif has Rs. 10, Bilal has Rs. 15, and Anum has Rs. 8 . What will be the average amount with each child?

Lesson 3: Direct and Inverse Proportions

Objective

Enable students to understand the concept of ratio, direct proportion and inverse proportion.

Students Learning Outcome

Students will be able to:

- find the ratio between two quantities
- identify and solve direct proportion and inverse proportion between two quantities

 $-15 / 5=3<$

طصل كر0:

طاملاتِتِعملم :

Start

Teacher will start with the prior knowledge students have for this topic, like they will be knowing to compare the quantities.

Main

Ratio

Tell them that ratio is a comparison of two quantities. We use a symbols ':' to represent ratio. Solve few examples on the board
ratio between 25 books and 30 copies is
books : copies
20 : 30
2 : 3 (simplified from)
ratio between 6 kg of tomatoes and 15 kg of potatoes
tomatoes : potatoes
$6 \mathrm{~kg}: 15 \mathrm{~kg}$
$2 \mathrm{~kg} \quad: \quad 5 \mathrm{~kg}$

Direct and inverse proportion

Tell them that if 5 children eat 10 buscuits, then 10 children will eat 20 biscuits. This statements shows that when number of children increases, the quantity of buscuits also increases. When one quantity increases and the other quantity also increases, this type of relationship is called direct proportion.

Now take another example:
There is a box of 15 chocolates. It is divided among 3 children Each will get 5 chocolates.
If it is divided among 5 children, each child will get 3 chocolates only. This type of relation where one quantity is increased other decreases is called an inverse proportion.
Solve the examples on page 119 and 120 on the board.

Plenary

Write five different statements on the board and ask them, are they direct or inverse proportions?
Extended Activity: Ask them to do word problems on page 120.

ثنّليق كريّ-

$$
20 \text { كتّابو اور } 30 \text { كبيول ك ورديان نسبت }
$$

. براهِ راست اور معكوّ تناسب

اب ابي اور ثشل لي :

هاصر كرده:

Geometry (pags 21.1 .46

Overview

This unit comprises on more knowledge about lines, angles, triangles, and quadrilaterals.

Lesson 1: Lines

Objective

Enable students to deal with vertical and horizontal lines.

Students' Learning Outcome

Students will be able to recognise vertical and horizontal lines.

Start

Ask them to draw direction arrows as given. Tell them that horizontal lines go from left to right and vice versa. Verticals lines go from top to bottom vice versa.

Main

Vertical and horizontal lines

Draw an upright ladder standing against a brick wall on the board. Explain that the poles of the ladder are standing vertically against the wall. These are called 'vertical lines'. The rungs of the ladder are in the same direction as the ground. In fact, they are parallel to the ground. Such lines are called 'horizontal lines'. Point out the door and the window of the classroom, indicate the horizontal and vertical lines. Ask the students to look for other horizontal and vertical lines in the room. Draw the four directions on the board and show the students that a vertical line always lies in the north-south direction whereas a horizontal line lies in the east-west direction.

Plenary

Give them exercise on page 125-126 to solve in class.

b)
 حاصلاتِ تعلم:

ابتراسي:
 كووى خط اوپ

ركزى نُط :
انقّ اوركمورى خطوط

Extended Activity: Name 5 thing in the classroom with vertical and horizontal lines.

Lesson 2: Angles

Objective

Enable students to draw different types of angles with the help of protractor.

Students' Learning Outcomes

Students will be able to:

- draw a right angle and a straight angle
- draw reflex angles of different measurements
- describe complimentary, supplementary, and adjacent angles

Start

Draw two rays starting from a common end point to make an angle. Explain that two rays starting from a common end point but extending in different directions make an 'angle'. Draw different angles on the board.

Main

Right Angle

Draw a point 'A' on the board. From 'A' draw a horizontal and a vertical ray. Explain that the angle, which is formed by joining the horizontal and vertical ray, is called a 'right angle'. Show the students, examples of right angles in the classroom.

Tell them that:

- an angle of 180° is called a straight angle and it is represented as a straight line.

طاصلاتِتعم :

$$
\begin{aligned}
& \text { קکزك تُط, : } \\
& \text { قاكُم زاوي }
\end{aligned}
$$

$$
\begin{aligned}
& 180
\end{aligned}
$$

- an angle more than 180°, but less than 360° is called a reflex angle.

Reflex angle

- two angles are called adjacent angles if they have same vertex.

Adjacent angles
$<\mathrm{AOB}$ and $<\mathrm{BOC}$ are adjacent angles.

- if the sum of two angles is 90°, they are called complementary angles.
- if the sum of two angles is 180°, they are supplementary angles.

Solve example 1 and 2 on page 131 on the board.
Explain the steps of construction of angles from page 134, 135.

Plenary

Ask them to construct a reflex angle following the steps told in class.
Extended Activity: Ask them to make different types of angles by pasting toothpicks on a sheet of paper.

Lesson 3: Triangles

Objective

Enable students to define and recognize triangles with respect to their sides and angles.

Student's Learning Outcomes

Students will be able to construct equilateral, isosceles and scalers triangles.

Start

Ask the students the properties of scalene, isosceles, and equilateral triangles.

AOB> اور AOC> تصصل زاوي بول-

طاصلا تٌتعِم :

سبّ ثمْ 3 : بثّلـث
:

حاصلاتِ تعمّ :

ابتّ|

Main

Now with the help of examples 1, 2, and 3 on pages 138 and 139 guide them to draw three types of triangles. Discuss the construction of right angled, obtuse angled, and acute angled triangles with the help of example on pages 140 and 141.

Plenary

Solve question from exercise on page 141.
Extended Activity: Write triangular shape objects they see in the classroom.

Lesson 4: Quadrilateral

Objectives

Enable students to recognise quadrilaterals.

Students' Learning Objectives

Students will be able to:

- recognise, square, rectangle, parallelogram, trapezium and kite
- construct squares and rectangles with given sides

Start

Ask them to draw different type of 4 sided shapes.

Main

Introduce the word quadrilateral and tell that they are four sided geometrical figures. Now introduce different type of quadrilaterals like square, rectangle, parallelogram, rhombus, trapezium, and kite with their special features.
Discuss with the students that how we can construct a square and a rectangle with the help of protractor and a ruler.
Explain the steps of construction given on page 145 and 146 for the construction of a square and a rectangle.

Plenary

Ask them to do Q (a-c) on page 146 is the class.
Extended Activity: Ask them to make a pattern with a square, rectangle, trapezium and triangle.

 طصل كره:

:

طاملاتِتِملم :

ابترائيه:

ركزك نقط :

6ط

unit

8

Overview

This unit tells us about the perimeter and area of a regions. It deals with square and rectangular regions. It also deals with 3-D shapes, cube and cuboid to find their volumes.

Lesson 1: Perimeter

Objective

Enable student to find perimeter of a region.

Students' Learning Outcomes

Student will be able to:

- calculate the perimeter of a square
- calculate the perimeter of a rectangle
- calculate the volume of cube and cuboid

Start

Ask them to measure their tables' edges all around with the help of ruler or tape.

Main

Tell them that we have already learnt in the previous class what 'perimeter' means. Now we are going to learn how to find the perimeter of plain figures by actual measurement.
Draw a quadrilateral with a ruler on the board. Write the measurements of its sides in centimetre (cm). To find the perimeter, we will add up the measurements of all its sides.

Perimeter of a rectangle

To find the perimeter of a rectangle we must know that two of its opposite sides are equal. The longer side is called its 'length' and the wider side is called its 'breadth'. To find the perimeter of a rectangle, we can either add up the measurements of all its sides, or we can add the measurements of its length and breadth and then multiply the sum by 2 as it has two equal sides of lengths and two equal sides of breadths, i.e.
Perimeter $=($ length + breadth $) \times 2$, or

$$
\mathrm{P}=2 \times(\mathrm{l}+\mathrm{b})
$$

سبت غْبر 1 :احاط
:

طاصلاتِتعملم :

طلبآنابل -
-

ابتخايتي:

مكزك نُط :

كـي
多

Perimeter of a square

Since a square has four equal sides, we can find its perimeter either by adding up the measurements of its sides or by simply multiplying the measurement of one side by 4 , i.e.

$$
\begin{aligned}
& \text { Perimeter }=\text { side }+ \text { side }+ \text { side }+ \text { side, or } \\
& \quad \mathrm{P}=4 \times \text { side }
\end{aligned}
$$

Perimeter of a quadrilateral

To find the perimeter of a quadrilateral with all its sides different in measurement, we have to add the measurements of its four sides.

Plenary

Ask them to complete the tables on page 149, 150 and 151.
Extended Activity: Ask them to find the perimeter of their lunch boxes.

Lesson 2: Area

Objective

Enable student to find the area of rectangle and square.

Students' Learning Outcomes

Students will be able to:

- calculate the area of a square
- calculate the area of a rectangle

Start

Draw the outline of a book or a pencil box on the board. Explain that the outline of the object is its perimeter. The region inside the perimeter is called 'area'. Ask the students to draw the perimeter of their books, pencil boxes, etc.

 احط
چֶارضلع كا احاط

$$
\begin{aligned}
& \text { طصر كر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سّوّ ثُمبر } 2 \text { : روه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { طاصلا تٌتعِم : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • } \\
& \text { • } \\
& \text { ابتراتي : }
\end{aligned}
$$

Main

Area of a rectangle

We can find the area of a rectangle by multiplying the measurement of its length by the measurement of its breadth. The answer will be in square units. Give them few examples on the board.

Plenary

Ask them to complete the table on pages 159 and 160.
Extended Activity: Find the area of their lunch box.

Lesson 3: Volume

Objective
Enable students to find volume of a cube and cuboid.

Students Learning Outcomes

Students will be able to:

- calculate the volume of a cube
- calculate the volume of a cuboid

Start

Ask them which one is bigger a book or an eraser.

Main

We have learnt about the shape of a cube in the previous class and we know that a cube has equal length, breadth and height. A cuboid on the other hand does not have equal length, breadth and height.
Volume is the total space that a three-dimensional figure, i.e. a figure with length, breadth and height, occupies. We can calculate the volume of a cube or cuboid by multiplying length, breadth and height.

Volume $=$ length \times breadth x height

$$
\mathrm{V}=\mathrm{l} \times \mathrm{b} \times \mathrm{h}
$$

Volume is measured in cubic units like cubic cm , or cubic m , etc.
-تم تُطل
ثـ

$$
\text { سبقنمب } 3: \text { :بم }
$$

طاملاتِتعلم :

ابتراتيّ:

ركزك نقط :

 . ?

Let us take an example with $\mathrm{l}=4 \mathrm{~cm}, \mathrm{~b}=3 \mathrm{~cm}$ and $\mathrm{h}=5 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{V} & =1 \times \mathrm{b} \times \mathrm{h} \\
\mathrm{~V} & =4 \times 3 \times 5 \\
& =60 \mathrm{~cm}^{3}
\end{aligned}
$$

Solve example on page 165 on the board.

Plenary

Ask them to solve exercise on page 167 in the class.
Extended Activity: Students will find the volume of their lunch boxes.

$$
\begin{aligned}
& \text {. } \\
& 4 \times 3 \times 5=\text { ? } \\
& \text { 60 = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6ط }
\end{aligned}
$$

Information Handling

(pages 170-181)

9

Overview

This unit consists of the concepts of line graph, and horizontal and vertical bar graphs. This units also helps to interpret bar graphs. It also provides guidance to define and organize a given data.

Lesson 1: Graphs

Objective

Enable students to identify the types of graphs and interpret them.

Students' Learning Outcome

Students will be able to:

- read line graphs and bar graphs
- interpret line graphs and bar graphs

Start

Paste different types of graphical illustration on the board and ask the students, what are these pictures called? Tell them that these are graphical representation of different information.

Main

Now introduce different types of graphs to them.

1. Line graph

Draw the line graph from the example in the book on page 170 on the board. Teach the students how to find information from the graph. Explain that when the line graph goes up it shows that the quantity is increasing and when it goes down the quantity is decreasing. When the line becomes horizontal the values are the same.

 سبقنم 1 :گراف
:
 هاملاتِتِّم :
 "

ابترائيج:

ركزك نُطط :

$$
\begin{aligned}
& \text { 1- خم گران }
\end{aligned}
$$

2. Bar graph

Draw the bar graph from the example in the book on page 175. Teach the students how to find information from the graphs. Explain them that highest bar shows the greatest value of the data and the shortest bar shows the lowest value. Equal bars show equal values.

Plenary

Ask them to give answers of questions for the bar graph on page 177.
Extended Activity: Draw a line graph on the board representing 5 children's favourite story books. Ask them to make their own questions to interpret the given graph.

Lesson 2: Data Handling

Objective

Enable students to organise a raw data.

Students' Learning Outcome

Students will be able to:

- define a data with its types
- make a frequency table
- organize a data into tabular form

Start

Select 3 students to ask and write the students' favourite fruit.

Main

Show the result sheets which will have different fruit names repeatedly.
Tell them that is a raw data. This is also called primary data. The data obtain through some sources like internet, news paper or television etc. is called secondary data.
Now tell them that primary data can be organize in a tabular form.
For example number of toys having by four children Arif, Asma, Liza and Faiz.

\qquad

 طاصلا تِتعِم :

-

ابتراتيم:
3
ركزى نظط :

 ع عا

Name of children	No. of toys
Arif	5 cars
Asma	7 dolls
Liza	2 dolls
Faiz	2 aeroplanes

To make a frequency table solve the example given on page 181.

Plenary

Give them a raw data of 10 observations and ask them to make a frequency tables.

كطاوزن ك تصرا	106\%
U65	6رن
謜7	H
断2	1\%
28، 2	$\%$

$$
\begin{aligned}
& \text { هص }
\end{aligned}
$$

Answers

Unit I: Numbers and Number Operations

Page 2

1, 2, 4
$1,2,4,8$
1, 2, 5, 10
$1,2,3,4,6,12$
1
1, 5
1, 3, 9

Page 3

1. $2,4,6,8,10,12,14,16,18$
2. $76,78,80,82,84,86,88,90,92,94,96,98$
3. $1,3,5,7,9,11,13,15,17,19,21,23$
4. $151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183,185,187$, 189, 199, 191, 193, 195, 197, 199
5. Even: $50,52,58,70,72,76$

Odd: 55, 61, 63, 73, 75, 77
Even: 102, 128, 152
Odd: 99, 101, 115, 117, 123, 125, 136, 137, 149

Page 4

1. $100,124,426,1002,500$
2. $115,119,123,1947,12315,14417$

Page 5

1. Numbers divisible by 3 .

801, 336, 2304, 1008, 3612, 3540.
2. Numbers greater than 100 and less than 150 divisible by 3 .
$102,105,108,111,114,117,120,123,126,129,132,135,138,141,144,147$

Page 6

1. Numbers divisible by 4 .
$348,412,1200,556,3112,128,5016,14392,24900,1204$
2. Number below 25 divisible by 4 .
$4,8,12,16,20,24$

Page 7

1. Numbers divisible by 6 .
$72,108,114,144,216,300$
2. Divisible by 6 :

48, 54, 60, 66, 72, 78, 84
Not divisible by 6 :
50, 56, 62, 70

Pages 7-8

1. Numbers divisible by 9 .

99, 693, 846, 1800, 9720, 486, 4509
2. Numbers not divisible by 9 .

541, 273, 1378, 8269, 7952, 4609, 23564, 45260

Page 9

1. Numbers below 25 divisible by 5 .
$5,10,15,20$
2. Numbers above 10 below 100 divisible by 10 .
$20,30,40,50,60,70,80,90$
3. Divisible by $5: 110,115,120,130,140,145,150,155.160$

Divisible by 10: 110, 120, 130, 140, 150, 160
Divisible by 5 and 10: 220, 230, 240, 250, 260, 270, 280, 290, 300

Page 11-12

1. a) 6 millions
b) 5 hundred million
c) 7 hundred million
d) 10 million
e) 3 hundred thousand
f) 3 hundred thousand
g) 5 billion
h) 7 billion
2. a) 8 million
b) 6 hundred thousand
c) 1 hundred million
d) 1 ten thousand
e) 5 billion
f) 2 ten million
3. a) Two hundred and thirteen million, five hundred and twenty nine thousand, one hundred and twenty.
b) Five hundred and twenty six million, two hundred and twelve thousand, one hundred and ninety nine.
c) One billion, one hundred and thirty five million, two hundred thirty three thousand, one hundred and two.
d) Five billion, five hundred and thirty seven million, eight hundred and thirty three thousand, five hundred and twenty two.
e) Four hundred and two million, three thousand, five hundred and sixty.
f) Six hundred million, three hundred and seventy thousand, and two hundred.
g) Two billion, four hundred and fifty three million, three hundred and sixty thousand, nine hundred and ninety.
h) Seven billion, two hundred and fifty nine million, seven hundred and eighteen thousand, four hundred and thirty nine.
4.

a) $1,649,556$
b) $35,700,063$
c) $4,502,659,000$
d) $6,402,557,000$
e) $3,990,353,070$
f) $7,800,525,233$

Page 13

a) $7,475,735$
b) $15,322,646$
c) $21,777,522$
d) $22,742,609$
e) $43,192,051$
f) $44,625,605$

Page 13

Word Problems

1. Rs. $40,621,695$
2. Rs. $43,451,182$
3. Rs. $30,958,735$

Page 14

a) $94,134,229$
b) $1,879,914$
c) $5,004,150$
d) $4,808,580$
e) $4,956,767$
f) $17,641,903$

Page 14

Word Problems

1. Red sports car is more expensive by Rs. 3, 649, 470
2. Rs. 31, 385, 196
3. Rs. 3, 573, 436

Page 16

1. a) 53,190
b) 726,500
c) $1,093,000$
d) $25,284,000$
e) 120,600
f) $2,430,000$
g) $24,000,000$
h) $73,614,000$
2. a) 100
b) 4823
c) 10
d) 1000
e) $5,321,000$
f) $3,698,000$
g) 121
h) 798

Page 18

a) $5,063,058$
b) $6,095,745$
c) $51,219,288$
d) $31,412,308$
e) $100,945,660$
f) $19,311,396$
g) $255,315,487$
h) $392,037,525$
i) $31,243,407$

Page 18

Word Problems

1. Rs. 45,684
2. Rs. 229,698
3. Rs. $15,365,475$
4. Rs. 2, 295, 600

Page 19

a) 11, 219, Remainder 20
b) 14,836 , Remainder 9
c) 13,515 , Remainder 32
d) 12, 687 Remainder 21
e) 1136 Remainder 317
f) 2767 Remainder 58
g) 3120 Remainder 139
h) 2068 Remainder 120
i) 1627 Remainder 597

Page 19

Word Problems

1. 1802 rows
2. Rs. 11701
3. 1823 tickets

Page 20

a) 19
b) 22
c) 20
d) 4
e) 152
f) 22
g) 170
h) 10

Page 21

a) $18=18$
b) $50=50$
c) $24=24$
d) $91=91$
e) $12=12$
f) $60=60$
g) $51=51$
h) $38=38$

Unit 2 HCF and LCM

Page 24

1. a) $1,3,9$
b) $1,2,3,4,6,12$
c) $1,2,4,8,16$
d) $1,2,3,6,9,18$
e) $1,2,3,4,6,8,12,24$
f) $1,2,13,26$
g) $1,2,4,7,14,28$
h) $1,2,4,8,16,32$
i) $1,2,4,5,8,10,20,40$
j) $1,3,5,9,15,45$
k) $1,2,5,10,25,50$
l) $1,3,5,15,25,75$
2. $1,3,5,15$
$1,2,4,8,16$
$1,2,4,5,10,20$
1, 5, 25
$1,2,3,4,6,9,12,18,36$
3.

a) True
b) False
c) True
d) True
e) True
f) False
g) False
h) True
i) True
j) True

Pages 26-29
1 (a) 2
(b) Prime factors $2 \times 2 \times 3 \times 3$
(c)
50
1
5×10
1
2×5
Prime $5 \times 2 \times 5$
Factors
(d)

Prime $2 \times 3 \times 222$ Factors
(e)

	18	(f)		28
	9×2			7×4
	$1{ }^{1}$			1
	3×3			2×2
Prime	$3 \times 3 \times 2$		Prime	$7 \times 2 \times 2$
Factors			Factors	

(g)

Prime $2 \times 3 \times 2 \times 5$ Factors
(h)

Prime $3 \times 5 \times 5$ Factors
(i)

Prime $7 \times 2 \times 5$
Factors
2. a) 2×5,
b) $2 \times 2 \times 2 \times 2 \times 2 \times 2$
c) $3 \times 2 \times 2 \times 7$
d) $2 \times 2 \times 5 \times 5$
e) $5 \times 5 \times 5$
f) $2 \times 2 \times 2 \times 3 \times 3$
g) $2 \times 2 \times 3 \times 3 \times 3$
h) $2 \times 2 \times 2 \times 2 \times 3 \times 3$
i) $2 \times 2 \times 2 \times 2 \times 2 \times 3 \quad$ j) $2 \times 2 \times 5 \times 7$

Page 30

$8,16,24,32,40$
9, 18, 27, 36, 45
$5,10,15,20,25$
$4,8,12,16,20$
$7,14,21,28,35$

Page 31

1. a) $6,12,18,24,30,36,42,48$ $9,18,27,26,45,54,63,72$
c) $9,18,27,36,45,54,63,72$
$3,6,9,12,15,18,21,24$
e) $4,8,12,16,20,24,28,32$
$8,16,24,32,40,48,56,64$
g) $8,16,24,32,40,48,56,64$
$9,18,27,36,45,54,63,72$
i) $5,10,15,20,25,30,35,40$ $10,20,30,40,50,60,70,80$
b) $5,10,15,20,25,30,35,40$ $7,14,21,28,35,42,49,56$
d) $7,14,21,28,35,42,49,56$ $6,12,18,24,30,36,42,48$
f) $10,20,30,40,50,60,70,80$ $8,16,24,32,40,48,56,64$
h) $6,12,18,24,30,36,42,48$
$6,12,18,24,30,36,42,48$
2. $25,40,65,100,135,180$
3. $14,42,63,70,105,56,28,112$

Page 32

Multiples

3, 6, 12, (15, 18
$5,10,15,20,25$ 15
2, 4, (6) 8,10
(6.) $12,18,24,30$
$5,10,15,20,25$
(10.) 20. $30,40,50$
$2,4,6$, 8. 10
(8.) $16,24,32,40$

4, 8, 12. 16,20
5, 10. 15, 20, 2520
Common Multiples610, 208

Pages 33-35

1. 19, 37, 47
$3,5,7,11,13,17,19,23$
29, 31, 37
11, 13, 29
11, 29, 43
53, 59
2. $2,4,6,8,10,12,15$
$5,10,15,20,21,25,27,30$
$51,52,54,55,56,57,58$
$81,82,84,85,87,92,94$
$102,112,117,122,132$
9, 154, 255, 369, 680
3. Prime Numbers: $2,3,5,7,11,23$

Composite Numbers: $4,6,8,15,18,21,25,27,30$
3. Prime Numbers: 31, 43, 47

Composite Numbers: $33,35,38,40,42,50,52,54,56,58,60,62$
4. F, F, T, T, T, T, T, F

Page 37

Multiples	CM	LCM
2, 4, 6. $8,10,112,14,16,18,20$		
3, 6.) $9,12,15,18,21,24,27,30$	6, 12, 18	6
$3,6,9,12,15,18,21,24,27,30$		
4, 8, 12, $16,20,24.28,32,36,40$	12, 24	12
$\begin{aligned} & 2,4,6,8,10,12,14,16,18,20 \\ & 5,(10,15,20,25,30,35,40,45,50 \end{aligned}$	10, 20	10
$\begin{aligned} & 6,12,18,24,30,36.42,48,54.60 \\ & 9,18,27,36.45,54.63,72,81,90 \end{aligned}$	18, 36, 54	18
$\begin{aligned} & 5,10,15,20,25,30,35,40,45,50 \\ & (10,20,30,40,50,60,70,80,90,100 \end{aligned}$	$\begin{aligned} & 10,20,30 \\ & 40,50 \end{aligned}$	10
$\begin{aligned} & 5,10,15,20,25,30,35,40,45,50 \\ & 8,16,24,32,40,48,56,64,72,80 \end{aligned}$	40	4

Page 39
a) 60
b) 96
c) 48
d) 160
e) 225
f) 16
g) 20
h) 90
i) 72

Page 41

1. a) 12
d) 24
g) 36
2. a) 8
d) 30
g) 175
b) 12
e) 20
h) 24
b) 24
e) 32
h) 150
c) 40
f) 64
i) 28
c) 24
f) 60
i) 48

Page 42

1.

Factor	CF	HCF
$1,2,4,8$		
$1,2,3,4,6,12$	$1,2,4$	4
$1,2,5,10$		
$1,2,4,5,10,20$	$1,2,5,10$	10
$1,3,5,15$		5
$1,5,25$		
$1,2,4,5,10,20$	$1,5,10$	10

Page 45

Page 46

1. a) 15
c) 12
e) 12
b) 14
d) 12
f) 12
2. a) 18
c) 2
e) 16
a) 14 c) 4 e) 10
b) 22
d) 96
f) 92
b) 6 d) 24 f$) 0$

Page 48
a) 19
b) 4
c) 5
d) 23
e) 2
f) 9
g) 4
h) 2
i) 17

Unit 3: Fractions

Page 49 Revision

1. a) 20
b) 49
c) 7
d) 8
e) 16 f) 5
2. a) $4 \frac{1}{4}$
b) $8 \frac{3}{4}$
c) $10 \frac{4}{5}$
d) $8 \frac{4}{6}$
e) $3 \frac{1}{8}$
f) $5 \frac{3}{7}$
3. a) $\frac{16}{6}$
b) $\frac{26}{12}$
c) $\frac{18}{4}$
d) $\frac{76}{5}$
e) $\frac{72}{6}$
f) $\frac{62}{15}$

Pages 51
a) $\frac{2}{3}$
b) $\frac{2}{6}$
c) $\frac{3}{8}$
d) $\frac{4}{5}$
e) $\frac{1}{5}$
f) $\frac{2}{5}$
g) $\frac{3}{4}$
h) $\frac{5}{9}$

Pages 52
a. $\frac{5}{9}$
b. $\frac{3}{5}$
c. $\frac{5}{8}$
d. $\frac{1}{4}$
e. $\frac{7}{15}$
f. $\frac{7}{18}$
g. $\frac{3}{10}$
h. $\frac{1}{4}$
i. $\frac{18}{35}$
j. $\frac{7}{9}$
k. $\frac{7}{9}$

1. $\frac{5}{18}$
m. $\frac{1}{5}$
n. $\frac{20}{27}$
o. $\frac{4}{9}$

Page 54

1. a) $1 \frac{5}{12}$
d) $1 \frac{7}{8}$
b) $3 \frac{5}{6}$
e) $2 \frac{9}{10}$
c) $1 \frac{5}{9}$
f) $2 \frac{14}{45}$
2. a) $\frac{1}{18}$
d) $\frac{4}{21}$
b) $\frac{9}{28}$
e) $\frac{11}{56}$
c) $\frac{17}{45}$
f) $1 \frac{2}{25}$

Page 54

Word Problems

1. $1 \frac{1}{4}$ miles
2. $\frac{11}{35}$

Page 56

a) $4 \frac{1}{2}$
b) 2
c) $\frac{2}{4}$
d) $1 \frac{4}{5}$
e) $3 \frac{1}{3}$
f) 9
g) $4,15,7$

Page 57
a) $13 \frac{4}{5}$
b) $33 \frac{3}{4}$
c) 39
d) $5 \frac{5}{7}$
e) $22 \frac{3}{3}$
f) $15 \frac{3}{5}$
g) 11
h) $34 \frac{1}{6}$
i) $23 \frac{4}{5}$

Page 59

(Word problems)

1. $12 \frac{1}{2}$ minutes
2. 36 marbles
3. Rs 250
4. 75 kg
5 Rs 62

Page 60
a) $\frac{5}{9}$
b) $\frac{2}{9}$
c) $\frac{11}{56}$
d) $\frac{7}{37}$
e) $\frac{1}{57}$
f) $\frac{2}{17}$
g) $\frac{1}{81}$
h) $\frac{1}{6}$
i) $\frac{13}{42}$
j) $\frac{1}{8}$
k) $\frac{1}{4}$

1) $\frac{1}{4}$

Page 62

1. a) $\frac{1}{2}$
b) $\frac{1}{14}$
c) $\frac{1}{9}$
d) $\frac{1}{16}$
e) $\frac{1}{10}$
f) $\frac{1}{9}$
2. a) $\frac{2}{3}$
b) $\frac{5}{14}$
c) $\frac{9}{56}$
d) $\frac{1}{3}$
e) $\frac{117}{128}$
f) $1 \frac{1}{6}$
g) $2 \frac{1}{5}$

Page 62

Word Problems

1. In Maths class
2. 9 students
3. 25 hours.

Page 64

a) $1 \frac{7}{4}$
b) $\frac{7}{30}$
c) $5 \frac{1}{4}$
d) 6
e) $2 \frac{4}{9}$
f) $\frac{7}{10}$

Unit 4: Decimals and Percentages

Page 66

1. a) 0.5
b) 0.7
c) 0.41
d) 0.130
e) 0.245
f) 0.69
g) 0.47
h) 0.138
2.

a) $\frac{9}{10}$
b) $\frac{18}{100}$
c) $\frac{7}{100}$
d) $\frac{23}{100}$
e) $\frac{10}{100}$
f) $\frac{5}{100}$
g) $\frac{3}{10}$
h) $\frac{13}{1000}$
i) $\frac{117}{100}$
j) $\frac{9}{1000}$
k) $\frac{213}{1000}$
l) $\frac{21}{100}$

Page 67

a) 3.1
b) 10.3
c) 16.1
d) 14.03
e) 6.7
f) 12.11
g) $\quad 18.99$
h) 23.009
i) 36.028

Page 68

1. a) 0.5
b) 0.4
c) 0.2
d) 0.6
e) 0.8
2. a) 0.75
b) 0.15
c) 0.50
d) 0.30
e) 0.60
f) 0.80
g) 0.50
h) 0.34

Page 69
a) 3.75
b) 2.6
c) 1.2
d) 8.7
e) 3.9
f) 2.35
g) 4.24
h) 5.04
i) $\quad 6.25$

Page 71
a) 0.888
b) 0.666
c) 0.875
d) 0.375
e) 0.916
f) 0.25
g) 0.166
h) 0.833
i) 0.571
j) 0.777

Page 72
a) $\frac{3}{20}$
b) $\frac{2}{5}$
c) $\frac{1}{4}$
d) $\frac{19}{50}$
e) $\frac{3}{4}$
f) $\frac{1}{25}$
g) $\frac{4}{25}$
h) $\frac{11}{50}$
i) $\frac{49}{200}$
j) $\frac{3}{5000}$

Page 74

1. a) 39.021
b) 75.137
c) 148.933
d) 814.881
e) 181.561
f) 887.704
g) $1,052.213$
h) 1800.788
2.

a) 7.101
b) 18,85
c) 60.056
d) 223.305
e) 184.562
f) 314.374
g) 324.809
h) 325.536

Page 74

Word Problems

1. 7.50 m
2. 1.49 m
3. Rs. 4.30
4. Rs. 48.21
5. 4 m

Page 75

1. a) 128.90
b) 3968.00
c) 42397.00
d) 65128.00
e) 73342.00
f) 86.890
g) 4923.5
h) 983386.00
i) 2738.00
2. a) 10
b) 100
c) $\mathbf{1 0 0 0}$
d) 100
e) $1000 \quad$ f) 10

Page 76
a) 0.3632
b) 0.37193
c) 0.14965
d) 2.7710
e) 0.59829
f) 0.64719
g) 8.9359
h) 1.1243
i) 0.97103
j) 11.0255

Pages 77-78
a) 15.6
b) 35.2
c) 5.4
d) 6.9
e) 57.72
f) 21.14
g) 77.85
h) 3.92
i) 111
j) 6.402
k) 137.656

1) 457.002

Page 79

1.

a) 6.465
b) 168.72
c) 8.9964
d) $\quad 7.5375$
e) 12.01674
f) 4.5552
2.
a) 2.58
b) 4.608
c) 13.6332
d) 7.488
e) 191.625
f) 18.6
g) 11.75757
h) 0.475625
i) 24.10758

Page 80
a) 2.23
b) 14.2
c) 2.1
d) 0.31
e) 2.9
f) 4.39
g) 0.93
h) 5.98
i) 8.54

Page 82
a) 8
b) 21.2
c) 23
d) 7.1
e) 182
f) 6.3
g) 2.3
h) 0.34
i) 0.29

Page 82 (word problems)

1. 7 metres
2. 187.5 cm
3. 0.6 kg 4 . $\quad 3.95 \mathrm{~m}$
4. Rs 8.1
5. 70 cm

Page 83
a) 63.02
b) 50.31
c) 71.69
d) 267.85
e) 366.37
f) 35.4
g) 3580.68
h) 7979.09
i) 18.81

Page 84

a) 14.3
b) 23.4
c) 35.4
d) 56.2
e) 75.4
f) 89.5
g) 73.5
h) 39.6
i) 65.3
j) 83.3
k) $\quad 27.4$
l) 96.5

Page 85

a) 13.18
b) 25.24
c) 32.13
d) 45.22
e) 63.73
f) 41.33
g) 73.24
h) 55.13
i) 61.39
j) 59.93
k) $\quad 37.29$
l) 49.53

Page 88

1.

a) 30%
b) 50%
c) 70%
d) 90%
e) 17%
f) 26%
g) 8%
h) 6%
i) 50%
j) 40%
k) 25%

1) 75%
2. a) $\frac{1}{5}$
b) $\frac{9}{20}$
c) $\frac{17}{20}$
d) $\frac{7}{10}$
e) $\frac{11}{12}$ or $1 \frac{1}{10}$
f) $\frac{1}{4}$
3. $5 \%-0.05$

48\% - 0.48
$69 \%-0.69$
75\% 0.75
4. a) 12%
b) 56%
c) 21%
d) 127.4%
e) 334.7
f) 176.5%

Page 88

Word Problems

1. 85%
2. 50%
3. 90
4. 80%

Unit 5: Distance, Time and Temperature

Page 90

1.

a) 4000 m
b) 5500 m
c) 7000 m
d) 8750 m
e) 9000 m
f) 2750 m
g) 6500 m
h) $10,000 \mathrm{~m}$
i) 12250 cm
j) 15000 m
k) 13000 m
l) 65000 m
2.
a) 0.025 km
b) 0.038 km
c) 0.075 km
d) 0.102 km
e) 0.158 km
f) 0.225 km
g) 0.349 m
h) 0.450 m
i) 0.563 m
j) 0.679 m
k) 0.272 m
l) 0.090 m
3. a) 3 km 46 m
b) 4 km 899 m
c) 4 km 920 m
d) 5 km 525 m
e) 6 km 452 m
f) 7 km 60 m
g) 8 km 596 m
h) 8 km 65 m
i) 9 km 200 m
j) 7 km 589 m
k) 8 km 266 m

1) 9 km 999 m

Page 91

a) 40 km 114 m
b) 48 km 182 m
c) 64 km 104 m
d) 84 km 158 m
e) 66 km 158 m
f) 79 km 684 m
g) 86 km 214 m
h) 100 km 315 m
i) 75 km
2.
a) 3.93 km
b) 23.41 km
c) 25.38 km
d) 10.67 km
e) 22.77 km
f) 29.85 km
g) 57.83 km
h) 71.58 km

Page 92

1. a) 2 km 107 m
b) 9 km 162 m
c) 24 km 175 m
d) 10 km 190 m
e) 41 km 101 m
f) 21 km 825 m
g) 4 km 620 m
h) 17 km 586 m
i) 9 km 932 m
2.

a) 0.79 km
b) 1.82 km
c) 5.77 km
d) 9.37 km
e) 12.23 m
f) 14.85 m
g) 15.9 m
h) 55.49 m

Page 93

Word Problems

1. Daniyal travelled more by 976 m . 2. 11.5 m
2. 134 km 524 m 4. 5.5 m

Page 95

1. a) 300 cm
b) 450 cm
c) 3600 cm
d) 5500 cm
e) 6700 cm
f) 7300 cm
g) 7925 cm
h) 8275 cm
i) 9600 cm
j) 9950 cm
2.

a) 0.03 m
b) 0.32 m
c) 0.45 m
d) 0.49 m
e) 0.56 m
f) 0.63 m
g) 0.71 m
h) 0.78 m
i) 0.86 m
j) 0.95 m
3.
a) 3 m 9 cm
b) 4 m 12 cm
c) 4 m 98 cm
d) 5 m 8 cm
e) 6 m 14 cm
f) 6 m 99 cm
g) 7 m 46 cm
h) 8 m 65 cm

Page 96

1. a) 30 mm
b) 120 mm
c) 100 mm
d) 170 mm
f) 97.5 mm
g) 352.5 mm
h) 435 mm
i) 45 mm
2.

a) 6.2 cm
b) 7.1 cm
c) 3.5 cm
d) 7.9 cm
e) 8.5 cm
f) 1.2 cm
g) 9.3 cm
h) 7.5 cm
i) 6.4 cm
e) 290 mm
j) 122.5 mm

Page 98

1. a) 240 min
b) 210 min
c) 360 min
d) 345 min
e) 435 min
f) 480 min
g) 555 min
h) 405 min
i) 480 min
j) 630 min
2. a) $\frac{1}{4}$ hour
b) $\frac{23}{60}$ hour
c) $\frac{19}{30}$ hour
d) $\frac{3}{4}$ hour
e) $\frac{57}{60}$ hour
f) $\frac{89}{60}$ hour
g) $\frac{39}{30}$ hour
h) $\frac{69}{60}$ hour
i) 3 hours
j) 4 hours
3. a) 143 mins
b) 195 mins
c) 866 mins
d) 965 mins
e) 1422 mins
f) 2975 mins
g) 3132 mins
h) 4390 mins

Page 99

a) 12 hr 11 min
b) 6 hr 31 min
c) 12 hr 28 min
d) 14 hr 21 min
e) 13 hr 23 min
f) 11 hr 32 min
g) 10 hr 24 min
h) 9 hr 24 min
i) 15 hr 17 min
j) 11 hr 28 min

Page 100
a) 1 hr 10 min
b) 3 hr 5 min
c) 4 hr 12 min
d) 4 hr 13 min
e) 2 hr 14 min
f) 1 hr 53 min
g) 2 hr 45 min
h) 2 hr 45 min
i) 1 hr 53 min
j) 50 min

Page 101

Word Problems

1. Najam look 15 minuets more.
2. Rameez by 45 minutes
3. 1 hour 55 minutes
4. 1 hour 5 minutes
5. 14 hours 15 minutes

Page 102-103

1. a) 360 sec .
b) 210 sec .
c) 345 sec .
d) 480 sec .
e) 465 sec .
f) 720 sec .
g) 540 sec .
h) 285 sec .
i) 330 sec .
2.

a) 3 min
b) 4 min
c) 6 min
d) 9 min
e) 8 min
f) 5 min
g) 7 min
h) 12 min
i) 10 min
j) 13 min
3. a) 190 sec .
b) 345 sec .
c) 378 sec .
d) 655 sec .
e) 925 sec .
f) $1,110 \mathrm{sec}$.
g) 1808 sec .
h) $1,154 \mathrm{sec}$.
i) $1,613 \mathrm{sec}$. j) 1661 sec .

Page 104

a) 19 min 25 sec .
b) 35 min 56 sec .
c) 17 min 52 sec .
d) 35 min 53 sec .
e) 58 min 16 sec .
f) 51 min
g) 50 min 15 sec .
h) 13 min 27 sec .
i) 39 min 10 sec . j) 55 min 13 sec .

Page 105

a) 3 min 10 sec
b) 1 min 2 sec
c) 4 min 27 sec
d) 4 min 30 sec
e) 22 min 20 sec
f) 1 min 45 sec
g) 45 sec
h) 5 min 40 sec
i) 10 min 48 sec
j) 4 min 50 sec

Page 106

Word Problems

1. 35 min 32 sec
2. Sarah took lesser time Difference $=1 \mathrm{~min} 9 \mathrm{sec}$
3. 1 hr 55 min
4. 3 hrs .
5. 2 hr 5 min
6. a) 25 days
b) 33 days
c) 38 days
d) 53 days
e) 20 days
f) 71 days
7. a) 4 weeks
b) 6 weeks c) 8 weeks
d) 12 weeks
e) 9 weeks
f) 11 weeks
8. a) 27 months
b) 45 months
c) 67 months
d) 81 months
e) 106 months
f) 119 months

Page 108

Word Problems

1. 34 days
2. 3 years 11 months

Page 110

1. a) $5^{\circ} \mathrm{C}$
2. a) $59^{\circ} \mathrm{F}$
b) $25^{\circ} \mathrm{C}$
b) $86^{\circ} \mathrm{F}$
c) $30^{\circ} \mathrm{C}$
c) $104^{\circ} \mathrm{F}$
d) $35^{\circ} \mathrm{C}$
d) 131
e) $40^{\circ} \mathrm{C}$
e) $50^{\circ} \mathrm{F}$
f) $45^{\circ} \mathrm{C}$
f) $77^{\circ} \mathrm{F}$
g) $50^{\circ} \mathrm{C}$
g) $167^{\circ} \mathrm{F}$
h) $60^{\circ} \mathrm{C}$
h) $140^{\circ} \mathrm{F}$

Page 110

Word Problem

1. $221^{\circ} \mathrm{F}$ 2. Difference $=15^{\circ} \mathrm{C}, 59^{\circ} \mathrm{F}$

Unit 6: Unitary method

Pages 112

Word problems

1. Rs 420
2. Rs 1944
3. 625 match sticks
4. 42 km
5. Rs 20
6. 15 stamps
7. 172 soldiers
8. 200 words
9. Rs 5820
10. 108 metres.

Pages 114

Word problems

1. 24 kg
2. Rs 256
3. 128 litres
4. 10 kg
5. 75 metres
6. 700 eggs
7. 180 books
8. Rs 189
9. 1311 km
10. 70 students

Page 116
$24 \div 4 \quad 6$
$59 \div 4 \quad 14.75$
$180 \div 5 \quad 36$
$4.5 \div 3 \quad 1.5 \mathrm{~m}$
$11.1 \div 3 \quad 37$
$14.8 \div 4 \quad 3.6251$

Pages 116-117

Word problems

1. 330 km 2. 70 kg
2. 82 runs
3. 74 marks
4. 83 birds
5. 120 cm
6. 6.5 kg
7. 52.5 cm

Page 120

Word Problems

1. 8 days
2. 15 days
3. 2 hours
4. 4 months

Unit 7: Geometry

Page 125

Straight lines AB, CD
Straight line XY
ray AB . parallel lines AB, XY
ray CD.straight line XY
Pege No. 131

1. a) 58°
b) 45°
c) 64°
d) 75°
e) 51°
f) 48°
f) 32°
h) 29°
i) 17°
j) 61°
2.

a) 68°
b) 77°
c) 82°
d) 45°
e) 95°
f) 35°
g) 44°
h) 71°
i) 57°
j) 33°

Unit 8: Perimeter and Area

Page 149

21 cm
31 cm
16 cm
17 cm
25.2 cm

Page 150

Page 151-152

34.4 cm
31.2 cm
59.2 cm

38 cm
7.2 cm

1. 10 cm
12.5 cm
14.5 cm

39 cm
28 cm
2. a) 15 cm
b) 18 cm
c) 10 cm
d) 16 cm
e) 32 cm
f) 19 cm

Page 156

(a) 4
(b) 9
(c) 6
(d) 12
(e) 6
(f) 7
(g) 16
(h) 8

Page 157

4 square centimetres
6 square centimetres
6 square centimetres
Page 159
$26 \mathrm{sq} \mathrm{cm} \quad 20 \mathrm{sq} \mathrm{cm} \quad 73.5 \mathrm{sq} \mathrm{cm} \quad 7.14 \mathrm{sq} \mathrm{cm} \quad 32.3 \mathrm{sq} \mathrm{cm}$
Page 160
$225 \mathrm{sq} \mathrm{cm} \quad 4.41 \mathrm{sq} \mathrm{cm} \quad 110.25 \mathrm{sq} \mathrm{cm} \quad 31.36 \mathrm{sq} \mathrm{cm} \quad 302.76 \mathrm{sq} \mathrm{cm}$

Page 161

1. Area	Perimeter
54 sq cm	30 cm
106 sq cm	110 cm
3.77 sq cm	8.4 cm
13.05 sq cm	4.8 cm
136.53 cq cm	46.8 cm
2.	Area
100 sq cm	Perimeter
5.76 sq cm	40 cm
65.61 sq cm	9.6 cm
22.09 sq cm	32.4 cm
320.41 sq cm	71.6 cm

Pages 162-163
World Problems

1. 250 sq cm

70 m
2. 1860 m
3. 44 cm
4. 15 sq m
5. 12 m
$6 \quad 200 \mathrm{~cm}$
7. $900 \mathrm{sq} \mathrm{cm}, 120 \mathrm{~m}$
8. $625 \mathrm{sq} \mathrm{cm}, 100 \mathrm{~cm}$. Yes

1. a) 8 cubic cm
b) 64 cubic cm
c) 80 cubic cm
d) 30 cubic cm
e) 27 cubic cm
f) 54.872 cubic cm
g) 27 cubic cm
h) 15.625 cubic cm
i) 30 cubic cm
2. 432 cubic cm

112 cubic cm
102.486 cubic cm

378 cubic cm 750 cubic cm

Page 169
Word Problems

1. 1,120 cubic cm
2. 1,2000 cubic cm
3. 60 cubic m
4. 3,600 cubic cm

Unit 9: Information Handlings

Page 171-174

1. a) Sunday and Monday
b) Tuesday
c) Friday and Saturday
2.

a) Math
b) Science
c) English
d) English/Islamiat
3. a) 5 hours
b) 3 hours
c) 2 hours
d) 1 hour
a) 25
b) 10
c) 15
d) 5
e) cat
5. a) Bina
b) Lubna
c) Bano and Bilquees
4.

Page 177-179

1. a) 40
b) Strawberry
c) Pista
d) 20 more
e) 210 altogether
2. a) 90
b) Science and english
c) Urdu
d) 30 marks
3. a) class 5
b) class 3
c) 300 books
d) 50 more books
