Bilingual Teaching Guide 8

Ahmed Lakhani

How to use this guide

This teaching guide provides the teacher the objectives of, and lesson plans for, each unit. Clear, step-by-step guidelines are given for each particular topic.
The activities suggested in this guide can be carried out easily using the materials suggested. If something is unavailable, the materials or the activity can be modified to suit the teacher and students. Whilst doing these activities, it is important to relate them to the main topic that is to be taught. The time spent on the activities may vary from class to class, but nevertheless they must form an integral part of the period as it involves students more into the lesson.
Mathsmagic 8 contains ample exercises for each topic. The lesson plans are flexible enough to be followed according to the school's own time frame. I have indicated the number of periods that are required to complete each unit, but an individual school can adjust these according to the time available and also the ability of the students.
ي بر بمنما

Table of Contents

How to use this guide iii
Unit 1 Operations on Sets 2
Unit 2 Real Numbers 8
Unit 3 Number Systems 14
Unit 4 Financial Arithmetic 28
Unit 5 Polynomials 38
Unit 6 Factorization and Simultaneous Equations 46
Unit 7 Fundamentals of Geometry 58
Unit 8 Practical Geometry 68
Unit 9 Area and Volume 78
Unit 10 Demonstrative Geometry 86
Unit 11 Introduction to Trigonometry 92
Unit 12 Information Handling 100
Extra Exercises 108
Answers 125
iii

3

9

15

29

38

47

59

69

79

87

93

101

108

125

 ب! 2: حقيّ اعراو

ب! 3: اعدارك 6 نظام
ب! 4: اليآن حاب باب5: كثيرتميان

!ب! 7: جيوّيمّك ك بنيارى تصورات
باب 8: كمل جيوثمُمى
ب! 9: رقباور.
باب10: اثبقّ علم تنـ~
!ب11: تكونياتك تقارف
!ب!12: معلوات وارى

اضافْ شثقي جوا!

UNIT 1 OPERATIONS ON SETS

OBJECTIVES

The teacher should cover the following concepts:

- sets and the types of sets and subsets
- natural, whole, rational, irrational, prime, even and odd numbers, and integers
- introduction to power sets and how to calculate the number of subsets
- commutative and associative laws of sets
- a brief explanation of De Morgan's law
- using Venn diagrams

LEARNING OUTCOMES

The students should be able to:

- recall sets and types of numbers such as whole and natural numbers
- understand types of sets and their applications
- understand power sets and list all the subsets of a given set
- understand the commutative and associative laws and solve problems containing these laws
- understand how to use Venn diagrams.

DURATION: Teaching: 3 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Sets (25 minutes)

Begin the lesson by asking the students to define sets as covered in previous classes. Ask them to provide examples of sets, subsets, null sets, etc.
Now discuss the illustration on page 1 of the textbook. Ask the students if they are able to define what types of numbers are included in natural, odd, prime numbers, etc. Then go through the definitions given on pages 1 and 2. Explain each so that the students have a clear idea.
Now write the following sets on the board:

- A set of natural numbers from $1-5$, i.e. $\{1,2,3,4,5\}$
- A set of whole numbers $\{0,1,2,3,4,5\}$
- A set of integers $\{-3,-2,-1,0,1,2,3\}$
- A set of even numbers $\{2,4,6,8,10\}$
- A set of odd numbers $\{1,3,5,7,9\}$
- A set of prime numbers $\{2,3,5,7,11,13\}$

تر بيك مقاصم
اتا, ردرج ; يلتورات

 قوت يـي 6

نتا

 1-1

بيّ (25 ثنط)

$$
\begin{aligned}
& \text { كمل اعرار } 6 \text { بيت } \\
& \text { صُ اءرارك بيّ }
\end{aligned}
$$

Remember to write the sets without naming them. Ask the students to identify them. For example, they should be able to tell that the set $\{2,3,5,7,11,13\}$ is a set of prime numbers up to 13 . The students are familiar with subsets, proper and improper sets, etc.
A quick review with the help of the text and examples given on pages 2 and 3 will enable them to recall what was done in previous classes and retain any new information.

Class exercise (15 minutes)

The students will begin solving Exercise 1.1 in class and complete it at home.

Homework

Complete Exercise 1.1.

2. LESSON PLAN

Operation on sets (25 minutes)

Remind the students that the commutative property applies to the union and intersection of sets. For example, if there are 2 sets, $A=\{1,2,3,4,5\}$ and $B=\{4,5,6,7\}$, then A Union $\mathrm{B}=\mathrm{B}$ Union $\mathrm{A}=\{1,2,3,4,5,6,7\}$. Similarly; A intersection $\mathrm{B}=\mathrm{B}$ intersection $A=\{4,5\}$. Therefore, the commutative property applies to both union and intersection of sets and the order of elements do not affect the union or intersection.
Instruct the students to open their books to page 5. Take them through De Morgan's law. Explain that if the Universe in the field of sets is for example $U=\{1,2,3,4,5,6\}$ as shown in the book and $A=\{1,2,3\}$ and $B=\{3,4,5\}$ then $A^{\prime}=U-A=\{4,5,6\}$ and $B^{\prime}=U-B=\{1,2,6\}$. Take them through the example on page 5.
Next draw a square on the board and write U for Universe inside on the top left corner of the square. Now draw three overlapping circles inside the square as done in the book and label these circles as A, B, and C. With the help of a chalk/marker shade the area that is A Union B. Next, wipe off this shaded area and do the same for A intersection B. Similarly, demonstrate each of the different combinations of unions, intersections, and complements as shown in the textbook.

Class exercise (15 minutes)

Ask the students to follow the steps given to draw a Venn diagram in the example for 3.1a 'Union and Intersection of Three sets'.

Homework

The students will copy the diagrams and text given on pages 8, 9, and 10 as practice and for future reference.

كال هِّ ثّثت (15 هنط)

،وم ورك
ثـت 1.1 كمل كَ جا
2
سيـِ پروا円 (25 منط)

كاس بيّ تثّ (15 ثنط)

،وم ورك

3. LESSON PLAN

Exercise 1.2 (20 minutes)

Begin the class by reviewing what was done in the first and second classes on the unit 'Sets'. Ask the students to read (silently) pages 1 to 10 of the textbook. A brief discussion will follow, allowing students to ask questions and discuss any problems they may have.

Class exercise (20 minutes)
The students will draw the figures and solve questions 1, 2, and 3 of Exercise 1.2.

Homework

Exercise 1.2, questions 4, 5, and 6 will be done as homework.
4-5 LESSON PLAN: Summary and Review Exercises

3
ثت 1.2 (20 هن

كان بي ثت (20 نت)
لـا
وهو ورك

UNIT 2 REAL NUMBERS

OBJECTIVES

The teacher should cover the following concepts:

- rational and irrational numbers
- patterns for squares of natural numbers
- square roots
- cubes and cube roots
- perfect cubes

LEARNING OUTCOMES

The students should be able to:

- understand and differentiate between rational and irrational numbers
- note the general patterns between squares of natural numbers
- calculate square roots of perfect and imperfect squares
- solve word problems involving square roots
- understand and calculate cubes and cube roots of perfect cubes.

DURATION: Teaching: 4 periods; Summary and Review Exercises: 2 periods

I. LESSON PLAN

Irrational numbers (25 minutes)

Ask the students to read pages 13 and 14 of the textbook. This may be done individually or volunteers could be chosen to read out to the class. Explain these concepts with the help of the examples given and maybe some of his/her own if necessary.
Go through the 6 points given on page 15, one by one. Explain each point with the help of an example. For instance, for point number 3, give the example of the number 18 which ends with an 8 . The number 18 when squared is 324 . This example proves the point that the last digit is a 4 and the digit before that is an even number, 2.
Now write the number 7 on the board. Explain that the square of 7 which is 49 can be found by multiplying 7 by 7 . Alternatively it can be found by adding the first 7 odd numbers that is $1+3+5+7+9+11+13=49$. Therefore for any given number \mathbf{n}, the square of \mathbf{n} can be found by adding the first \mathbf{n} odd numbers. $5^{2}=25$, which is also the sum of the first 5 odd numbers. To get the square of 6 by this method, you need to add the sixth odd number which is 11 to 25 . This results in 36 which is the square of the number 6 .

غيرناطت اعراو（25 منث）
 ニ －$<$ 故，

 n n

Class exercise (15 minutes)

The students will copy the two examples given on page 15 in their exercise books.

Homework

The students will be asked to read the points titled 'Remember' on page 15 thoroughly.

2. LESSON PLAN

Square roots (25 minutes)

Write the number ' 8 ' and its square 64 on the board. Explain that where 64 is the square of 8 , the number 8 is called the square root of 64 . Write the mathematical notation, i.e. $\sqrt{64}=8$. Point out that in some cases it is easy to calculate the square roots of perfect squares such as 25,36 , and 64 , etc. but in other cases, it is more difficult to calculate the square roots of numbers that are not perfect squares such as $2,3,5,10,20$, etc.
The method to calculate square roots of imperfect squares is shown step-wise in the book on pages 16 and 17 . Solve the example given on these pages on the board as the students read out the steps from 1 to 13. After completing this step, ask the students to try the next example given at the end of page 17 on their own.

Class exercise (15 minutes)

The students will be asked to solve Exercise 2.1, questions 1 b and 2 b .

Homework

Exercise 2.1, questions 1 and 2 will be completed as homework.

3. LESSON PLAN

Exercise 2.1 (15 minutes)

A review of the work covered in the previous two classes will be done and once satisfied that the students have grasped the concepts taught, a class activity will be given to confirm this fact.

Class exercise ($\mathbf{2 5}$ minutes)

The students will, under supervision, solve Exercise 2.1, questions 3 to 5 d , e, and f, and questions 6,7 , and 8 . If for some reason they are unable to complete the work in class, they may do so at home.

Homework

The remainder of Exercise 2.1 will be completed at home.

كاك بـلثت

،وم ورك
طبا عكا با

2-
جز المرنع (25 ننـ)
屋 8 = 8

$$
\begin{aligned}
& \text { كان بيّثق (15 هنط) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ،و ورك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3 } \\
& \text { ثت } 2.1 \text { (15 نتط) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rو ورك }
\end{aligned}
$$

4. LESSON PLAN

Cube and cube roots (20 minutes)

Draw a cube on the board. Explain that where a square has 2 dimensions (length and breadth) a cube has an additional third dimension that is height. So to calculate the cube of a number, the number is multiplied by itself, thrice (three times). For example, the cube of the number 4 is $4 \times 4 \times 4$ or 4^{3} which equals 64 . It is solved along the same lines as square root except that instead of multiplying the number by itself twice, it is multiplied three times. For example, the square of 2 is $2 \times 2=4$ and the cube of 2 is $2 \times 2 \times 2=8$.
Explain that to find the cube root of a number, the prime factors of that number should be determined and placed in similar groups of 3 . (When calculating the square root, the similar factors are put in groups of 2.) For example, the prime factors of the number 1000 are $2 \times 2 \times 2 \times 5 \times 5 \times 5$. Therefore $2^{3} \times 5^{3}=1000$ and the cube root of 1000 is 10 .

Class exercise ($\mathbf{2 0}$ minutes)

Under supervision, ask the students to solve Exercise 2.2, questions 1e and 2e. Ask them follow the steps of the example given on pages 19 and 20. The idea is to allow them to apply logical deductions. Guide anyone who has a problem.

Homework

Exercise 2.2, questions 1 and 2 a to d.

5-6 LESSON PLAN: Summary and Review Exercises

 \%
كان يّثت (20 ثن)

 -6 هوم ورك
-d

UNIT 3 NUMBER SYSTEMS

OBJECTIVES

The teacher should cover the following concepts:

- the decimal system
- the binary system
- the base 5 and base 8 systems
- conversion into decimal system
- conversion from decimal system
- addition, subtraction, and multiplication of binary numbers
- addition, subtraction, and multiplication of base 5 numbers
- addition, subtraction, and multiplication of base 8 numbers
- addition, subtraction, and multiplication of numbers with different bases

LEARNING OUTCOMES

The students should be able to:

- understand the different number systems
- convert to decimal system from a different system
- convert from decimal system into another system
- add, subtract, and multiply in different number systems
- add, subtract, and multiply numbers with different bases.

DURATION: Teaching: 11 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Number systems (25 minutes)

Write the number 786 on the board. Now explain that in the decimal system, the place of a digit determines its value. Beginning from the extreme right the first digit is the ones, the one to its left is tens, then hundreds, then thousands, and so on. Therefore the number 786 can be written according to the decimal system as follows:

$$
\begin{aligned}
786_{10} & =7 \times 10^{2}+8 \times 10^{1}+6 \times 10^{0} \\
& =700+80+6
\end{aligned}
$$

Explain that the position of the digit in this system shows the power of 10 by which that digit will be multiplied. So the digit on the right is multiplied by 10 to the power of zero, followed by the next digit which is multiplied by 10 to the power of one and so on.
Take the students through pages 22 and 23 which covers this concept in detail. Once the students have understood they will be engaged in class activity.

تر تريك متاصم

－ －

اعشارى نظا
ثأ⿰亻⿱丶⿻工二十⿴囗十

（ 8 U し
كُتف
そ

－
كُّا

ارـّ 6
اءثشارى تظام（25 نث ）
居

$$
\begin{aligned}
786_{10} & =7 \times 10^{2}+8 \times 10^{1}+6 \times 10^{0} \\
& =700+80+6
\end{aligned}
$$

Class exercise (15 minutes)

The students will write a short definition of the base 10 decimal system and will copy the three examples from page 23 in their exercise books.

Homework

The students will read pages 22 to 27 at least twice, at home.

2. LESSON PLAN

Binary system (25 minutes)

Begin the lesson with a discussion on the previous work and move on to ask the students what they have understood about base 2 numbers. Go on to explain that 'bi' means two as in the word bicycle which is a cycle that has 2 wheels, or bisect, which means to cut into two parts or sections. The binary system therefore uses 2 numbers- 1 and 0 . Give the example of computers. When data is fed to computers, a program translates alphabets and digits into one and zero so the computer can understand and compute that data. After the computer processes the data, with the help of the program, it translates it back to alphabets and digits for the user to understand.
Explain that the method used for the decimal system is repeated in the binary system. Ones stand for zero power; tens stand for the power of one and so on. The difference is the base, instead of base ten, the base is two in this case.
Explain that the digits zero and one are the same in both systems. The number 2 of the decimal system is written in binary code as follows:
$2_{10}=1 \times 2^{1}+0 \times 2^{0}=2+0 . \quad$ Therefore $\quad 2_{10}=10_{2}$
Ask the students to turn to page 27 and study the table of numbers of the decimal system written in binary code. The table is fairly simple to explain. Show them that every one is multiplied by 2 to the power 0 ; tens are multiplied by 2 to the power of 1 and so on. Also make them note that as the numbers increase in size in the decimal system, their binary equivalents also increase and whenever the power of 2 is reached, an additional digit is added in the binary system. For example, the number 4 is 2 squared so this is 100 in binary code and is of 3 digits. Whereas the number 3 is 11 in binary code which is equal to 2 digits. Similarly the number 7 in binary code is 111 which is 3 digits and the number 8 (2 to the power of 3) is 1000 in binary and 4 digits long. Explain the rest of the table.

Class exercise (15 minutes)

Ask the students to copy the table from page 27 which shows a list of numbers in binary form.

Homework

The students will review the table for a 'starter activity' in the next class.

وr

2-
ثشاكَ نظام (25 نـ
 آبا bisect

ع
 اروا
 -

$$
2_{10}=10_{2} \leadsto ひ \quad 2_{10}=1 \times 2^{1}+0 \times 2^{0}=2+0
$$

据

كان يّثق (15 ثنظ)
 هوم ورك

3. LESSON PLAN

Binary conversion ($\mathbf{2 5}$ minutes)

Begin with a recap of the table. This can be done in the form of a competition where the students can be divided into teams. Call/write a number and one of the students of one team says/writes the answer. Points are awarded. This activity should not take more than 5 to 6 minutes.
Then write the number 10010011_{2} on the board and convert it into the decimal system going through each step with the students.
There are 8 digits in the above number. We begin from the right hand side

$$
\begin{aligned}
& 10010011_{2}=1 \times 2^{7}+0 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& 10010011_{2}=128+0+0+16+0+0+2+1 \\
& 10010011_{2}=147_{10}
\end{aligned}
$$

Then, copy the example given below on the board. It shows the decimal number 100 being converted into a binary number. Explain that to change from decimal into binary: the number (100) is divided by 2 as shown. The zeros and ones in the last column are the binary equivalent of the number 100 and are written with the digit at the bottom first, followed by the digit above and so on. Thus 100 becomes 1100100 in binary code. Explain that each time the number is divided by two and there is no remainder, 0 is written in the last column and when there is a remainder of 1 , the number 1 is written in the last column as shown below.

2	100	
2	50	0
2	25	0
2	12	1
2	6	0
2	3	0
2	1	1
	0	1

Two important points that will help the students here and in the base 5 and base 8 systems are as follows:

1) A number in a smaller base always appears larger in size compared to the same number in a larger base. For example, 15 in the decimal system is 1111 in the binary system.
2) To convert from a smaller base system into a larger system such as from binary into decimal system, the power method (shown) should be used. Similarly to convert from a larger base into a smaller base, the factorization method (also shown) is used.

$$
\begin{aligned}
& 2^{0} \times 1+2^{1} \times 1+2^{2} \times 0+2^{3} \times 0+2^{4} \times 1+2^{5} \times 0+2^{6} \times 0+2^{7} \times 1=10010011_{2} \\
& 1+2+0+0+16+0+0+128=10010011_{2}
\end{aligned}
$$

$$
147_{10}=10010011_{2}
$$

2	100	
2	50	0
2	25	0
2	12	1
2	6	0
2	3	0
2	1	1
	0	1

Class exercise (15 minutes)

The students will solve Exercise 3.1, questions 1 to 3 e.

Homework

Exercise 3.1, questions $1 \mathrm{a}, \mathrm{b}, \mathrm{c}$, and d; questions 2 and $3 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}$, and h .

4. LESSON PLAN

Base-five system (20 minutes)

Explain that 5 digits are used in this system: $0,1,2,3$, and 4 . Values from 0 to 4 are written the same way as in the decimal system. Groups of 5 are made to assign value to a number. For example, the number 6 in the decimal system is one group of 5 and an additional 1 . So the number 6 is written as 11 in the base 5 system. As in the decimal system and in the binary system, ones are multiplied by the zero power of the base which is five in this case and the tens are multiplied by 5 to the power of one and so on. For example, the number 14 in the base five system is $5^{1} \times 1+5^{0} \times 4=9$ in the decimal system. Ask the students to open to page 31, and explain the other numbers given in the table. Also explain the solved examples after the table.

Class exercise ($\mathbf{2 0}$ minutes)

The students will copy the table from page 31 in their exercise books. Then solve question 1 c of Exercise 3.2 on the board with the input of the students. After which they will copy the working in their exercise books and will solve questions 1 and 2 a and h.

Homework

The remaining sums of Exercise 3.2, questions 1 and 2 will be done as homework.

5. LESSON PLAN

Base-eight system (20 minutes)

This system should also be explained in a similar way as the ones done before. Go through the text and explain how base 8 numbers are converted into decimals working out the examples on the board.

Class exercise (20 minutes)

The students will be asked to solve Exercise 3.3, questions 1 and 2 e and f in the class. After giving them a few minutes start, begin solving these sums on the board with which the students will tally their working and answers.

Homework

Exercise 3.3, questions 1 and 2 a to d.

$$
\begin{aligned}
& \text { كان هي ثت (} 15 \text { ثنط) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ،وم ورك }
\end{aligned}
$$

كاس بیّثت (20 هنط)

،وم ورك

5-

 كر< ك ك

 rوم ورك

6. LESSON PLAN

Addition and subtraction of binary numbers ($\mathbf{2 5}$ minutes)

To explain addition and subtraction of binary numbers, write the following sum on the board in binary system:
1011
$+\quad 111$

$$
\underline{10010}
$$

Explain that in addition of binary numbers $0+1=1,1+1=10$ and $0+0=0$. So in the above example when we start adding from the right as in the decimal system, $1+1$ equals to 10.0 is written and one is carried to the tens where again we add $1+1$ which gives 10 plus the 1 carried, so we write 1 next. Now in the hundreds, $0+1$ equals $1+1$ is carried, which again gives 10 so we now have the result 10010. Tell the students to verify the result by first converting the two numbers being added into decimal numbers so 1011 becomes 11 and 111 is equal to 7 in the decimal system. Their sum is 18. This is equal to 10010 in the binary system as we have just calculated.
In subtraction, where 10 is borrowed in the decimal system from the number on the left when subtracting a larger number from a smaller number; in the binary system we borrow 2 as shown with an example in the book. Go through the text and examples on page 36 to further clarify this concept.

Class exercise (15 minutes)

The students will be asked to solve Exercise 3.4, questions 1 to 3 b . Solve these on the board a few minutes after the students begin their work.

Homework

Exercise 3.4, questions 1 to 3 will be completed.

7. LESSON PLAN

Multiplication on binary numbers (20 minutes)

Begin with a discussion and working of the sums given as homework. Once they have been solved on the board by volunteer students, move on to explaining multiplication of binary numbers. The example given on page 37 will be solved on the board to help the students understand this concept. If necessary, a sum can be taken from Exercise 3.5 to clarify the concept.

Class exercise ($\mathbf{2 0}$ minutes)

The students will copy the example given on page 37, in their exercise books before solving b and e of Exercise 3.5 .

,敫
 10

كال بيّثت (15 ثنط)
 ،وم ورك

7-
ثناَّ اعراوكَ

Homework

Exercise $3.5 \mathrm{a}, \mathrm{c}, \mathrm{d}$, and e will be done as homework.

8. LESSON PLAN

Base-five numbers: addition, subtraction, and multiplication (25 minutes)

In base 5, as we know, 0-4 numbers are used. So whenever adding 2 numbers results in a value of greater than 4 , divide that number by five, write the remainder and carry the quotient. For example, when adding 4 and 3 , the result is 7 in the decimal system. But in the base 5 system, you divide 7 by 5 which leaves a remainder of 2 and a quotient of 1 . So this becomes 12 in base 5 .

4
$+\quad 3$
12

In subtraction, repeat the process explained for binary subtraction, but remember that in base 5 system, 5 is borrowed and not 2 as done in binary subtraction. The students should read page 38 and be encouraged to ask any questions if they need to.
Then move on to the explanation of how to multiply base 5 numbers. Multiplication of base 5 numbers carries the same principle as binary multiplication. For example, if the result of a digit is greater than 4 , divide the digit by 5 , write the remainder and carry the quotient. Use examples 1 and 2 on pages 39 and 40 to clarify the concept further.

Class exercise (15 minutes)

The students will be asked to solve Exercise 3.6, questions 1 to 3 a and b, and Exercise 3.7 e and f in class.

Homework

Remaining questions of Exercise 3.6 and 3.7 should be solved as homework.

9. LESSON PLAN

Base-eight numbers: addition, subtraction, and multiplication (25 minutes)

Explain addition and subtraction of base 8 numbers from pages 40 and 41 . The examples for each concept will be solved on the board while the explanation is being done so the students can follow every step of the process. Then proceed to solve Exercise 3.8, questions 1 to 3 c on the board. When the students have understood some class work will be assigned.

Class exercise (15 minutes)

Under supervision, the students will solve questions 1 to 3 a of Exercise 3.8.

 ع عط.

كاّ بیّ ثنّ (15 ثنط)
طلا عَكا جا ط
،وم ورك

9

كالى بّل ثنّ (15 هنط)

Homework

The students will solve Exercise 3.8, questions 1 to 3 b and c .

10. LESSON PLAN

Exercise 3.9 (20 minutes)

Go over the multiplication table of base 8 numbers (page 42). Then explain how multiplication of base 8 numbers is done by solving a and f of Exercise 3.9.

Class exercise ($\mathbf{2 0}$ minutes)

The students will solve b to e of Exercise 3.9.

Homework

Exercise 3.8, questions 1 and 2 d , e, and f. Exercise 3.9, questions a and f.

11. LESSON PLAN

Different base: addition, subtraction, and multiplication (25 minutes)

Let the students know that the only thing to do when adding numbers with different bases is to convert them into the same base. In the book all numbers are converted into the decimal system because it is the most used system. The answer would have been the same had all the numbers been converted into the binary system, base 5, or 8. The important point to be emphasized is that numbers cannot be added, subtracted, or multiplied unless they are all in the same base. The solved examples should be explained one step at a time (pages 43 and 44) which will give the students a better idea of what actually is to be done.

Class exercise (15 minutes)

The students will be asked to solve parts band d of Exercise 3.10.

Homework

Exercise $3.10 \mathrm{a}, \mathrm{c}$, and e will be solved at home.

12-13 LESSON PLAN: Summary and Review Exercises

،وم ورك

هِ

$$
\text { 10_ّبت } 6 \text { فاكد }
$$

$$
\text { ثت } 3.9 \text { (} 20 \text { ثنغ) }
$$

 كأمراكوكَ كان يّثت

- لا ،وم ورك
 11

كان بی ثن (15 ثن)
طبا
هوم ورك

UNIT 4 FINANCIAL ARITHMETIC

OBJECTIVES

The teacher should cover the following concepts:

- compound proportion
- types of banking and bank account
- insurance
- income Tax

LEARNING OUTCOMES

The students should be able to:

- understand the concept of compound proportion, banking account, insurance, and income tax
- properly identify each concept and therefore understand which concept to apply to a given problem
- recognize the different types of problems and solve them accordingly
- recall the different terms and formulas covered in this chapter and use them.

DURATION: Teaching: 9 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Compound proportion (40 minutes)

This is an important but confusing unit from the students' point of view and should be dealt with carefully and thoroughly. Begin the lesson with a discussion about banks, their importance and use, etc. The students will be familiar with things like credit cards, savings accounts, cheques, atm cards, etc. The discussion should lead to 'borrowing and lending', i.e. loans for cars, houses, businesses, etc.
Continue the lesson by drawing the students' attention to the illustration on page 47 with special reference to the captions on the windows and find out how much the students know about these things. Then explain what compound proportion is with the help of the text and examples from pages 47 to 49 . It is important that the students have a clear idea what compound proportion is-a proportion when two or more quantitites are compared.

ب4 4 4 اليّلٌ هاب

مقاصر
 تامب
aid
にばになった。

يـ اي انثورن
U
！！

 ا⿴囗十⿰亻⿱丶⿻工二又

Use the text on page 48 to explain to the students how to verify a proportion and check whether it is true or false. Explain that in compound proportion, we have to check how changes in one quantity will affect other quantities in the proportion. Use the examples on pages 48 and 49 to help clarify the concept.

Homework

Ask the students to read through the text and study the examples carefully.

2. Lesson plan

Class exercise (40 minutes)

Since this is a difficult topic that the students are studying for the first time, it is suggested to solve the exercise in class with class participation.
Begin with a recap of what was discussed in the previous class. Solve Exercise 4.1, questions 1, 2 and 9 on the board, interacting with the students. This will help clarify any doubts that they may have. Allow the students to copy the working in their exercise books.

Homework

Ask the students to review what was done in the class. Ask them to solve Exercise 4.1 , questions 3,4 , and 5 at home.

3. LESSON PLAN

Class exercise (40 minutes)

Let the students know that they will be required to solve Exercise 4.1, questions 6 , and 7 in class. Give them a $10-$ minute head start before solving the questions on the board. Once done, discuss the two questions with the class. Allow the students to tally their work with the working on the board and copy what needs to be copied.

Homework

Exercise 4.1, questions 8 and 10 are to be solved at home.

4. LESSON PLAN

Banking (25 minutes)

The lesson should begin with banking and what it is about. Ask questions in such a way that the students give any information they have on the following topics: bank and bank accounts, types of accounts, pay orders, etc.
On the board, write the types of accounts, such as savings account, current deposit account, fixed deposit account, and foreign currency account.

, انُّكـي
،وم ورك

2
كاس هِّ ثثت (40 ننط)

،وم ورك

3

 حزنز كـيّا
،

4 4
بينّ6 رك (25 منط)

Explain to the students that all accounts except current accounts have one thing in common which is that the depositor earns interest on each type of account. The different types of accounts have different characteristics.
Next, write on the board, the names of the payment instruments, such as cheque, demand draft, and pay order. Explain that there is a difference in payment instruments. Also tell them how and when these can be used. Explain that in most banks, a cheque can only be cashed from the branch for which it is issued, demand drafts can be cleared in any branch of the issuing bank, and that a pay order is the same as a demand draft but it is only used within the city of the issuing bank.
Use the savings account book example on page 52 to explain how an account actually works in a bank.

Class exercise (15 minutes)

The students will copy and solve the questions based on the Bank Savings Account Book, given on page 52.

Homework

Exercise 4.2, questions 1 and 2.

5. LESSON PLAN

Online banking and foreign currency accounts (20 minutes)

Explain how bank transactions take place. The ATM is used for this purpose. An account holder can withdraw his/her money through an ATM whenever needed. Another way of doing online transaction is through a credit card.
Read and explain pages 53 and 54. Ask questions to ensure that the students have understood what online banking is.
The next topic is Foreign Currency Accounts. Ask the students to name the currencies of various countries. Explain that every currency has an exchange rate. On the board, write some currencies and their exchange rates with respect to Pakistani currency. Explain that when someone wants to change 1 gram of gold with silver, the amount of silver or the weight of silver will be more than that of gold as gold is more expensive. For example, I gram of gold may be equal to 100 gram of silver because of their values. The exchange rate between currencies works in the same way. Ask if anyone knows the exchange rate of any foreign currency to the Pakistani rupee. Go on to explain the notes and examples from pages 54 to 56 .

Class exercise (20 minutes)

The students will solve Exercise 4.2, questions 3 and 4 b, c, d, and e, in class. Give them a headstart of 5 or 6 minutes before solving these sums on the board for the students to tally with their own working and answers.

،وم ورك
ثق 4.2 ك وال 1 اور 2-
5
آن لاّن بينظارى اور فارن كرنّ اكَوّنط (20 ثنط)

جب چابَا<

كال بی كثّ (20 ثنط)

Homework

Exercise 4.2, questions 3, 4, and 5 will be completed.

6. LESSON PLAN

Types of finances (25 minutes)

Begin the lesson with an explanation of overdraft (OD), running finance (RF), demand draft (DD), and leasing from page 56 of the textbook.
Recap cost price, selling price, profit, and loss. Explain with examples profit and loss as stated in the book on page 56. Successive transactions of profit are done in compound interest, based on the previous amount and calculated for the next year with the desired interest rate. The successive transactions of loss are the same when one party sells the item to another on profit but the second party sells it to the third on loss basis. These are successive transactions. They should be practiced thoroughly so that the students become familiar with the concept of multiple transactions.

Class exercise (15 minutes)

Ask the students to copy the examples from pages 57 to 59 in their exercise books.

Homework

Complete the work begun in class.

7. LESSON PLAN

Discount (20 minutes)

Refer to pages 59 and 60 to explain what 'discount' is and how to express discount as a percentage of the marked price. The examples given will be solved and explained on the board. It is always a good idea to relate concepts to real-life experiences as this promotes understanding.

Class exercise (20 minutes)

The students will be asked to solve Exercise 4.3, questions 1 and 2 under supervision.

Homework

Exercise 4.3, questions 3 and 4 will be done at home.

هوم ورك

$$
6
$$

/
ست 6

 كتور ــ كاب بيّثت (15 بن)
 ،
كا
7

التار يما,
 ،

هوم ورك
ثشت 4.3 6-

8. LESSON PLAN

Insurance (25 minutes)

It may take the students a while to understand this topic as it is being introduced for the first time. Describe insurance in simple terms.
Define the following terms: insurer, insured, premium, policy, and maturity so that students are familiar with the terminology when dealing with insurance problems. The problems will appear simpler if the concepts of proportion and percentages have been mastered by the students.
The text and examples given on pages 63 to 64 should be worked out on the board for the students' benefit.

Class exercise (15 minutes)

Ask the students to solve Exercise 4.4, questions 1 and 2 in class.

Homework

Exercise 4.4, questions 3 and 4.

9. LESSON PLAN

Income tax (20 minutes)

Begin the lesson by giving the definition of income tax. Explain how the government imposes the tax and who the people that pay the income tax are. Briefly talk about the income tax structure, taxable income, rebate, and tax rate.
Explain the table on page 65 and the example on page 66. Be open to questions and discussion.

Class exercise (20 minutes)

Ask the students to solve Exercise 4.5 in class.

Homework

The students should review all the work done in this unit and should note down any problems/queries.

10-11 LESSON PLAN: Summary and Review Exercises

 ،وم ورك
ثق 4.4 6 -وال 3 اور 49ــّ
انزَيّْ (20 هن (

 ان با با جيت
كان بيّت (20 ثنط)

،وم ورك

UNIT 5 POLYNOMIALS

OBJECTIVES

The teacher should cover the following concepts

- definition of polynomials and algebraic expressions
- methods of subtraction, multiplication, addition, and division of polynomials
- representation of polynomials

LEARNING OUTCOMES

The students should be able to:

- understand the concept of polynomials
- perform horizontal and vertical operations on polynomials
- add, subtract, multiply, and divide polynomials.

DURATION: Teaching: 7 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Algebraic expressions and polynomials (20 minutes)

Begin the lesson by discussing the algebraic expressions printed on the T-shirts of the 3 boys. The students will probably be able to tell that there are 1,2 , and 3 terms on each one's T shirt. Then go on to the definition of polynomials as given on page 68. Recap, that algebraic expressions consist of signs and symbols which include Arabic numerals $(1,2,3$, etc.), literal numbers (fractions, decimals, etc.), and the operators (,,$+- \times, \div)$.
Explain the difference between term and expression; an expression is a group of terms which are separated by plus or minus signs.
Now write the following examples of a term and an expression on the board.
Term $=2, x, 2 x, x y z$, etc. \quad Expression $=2 x-4 y$ or $8-2 y$
Make sure that the difference between the two is clearly understood. Define coefficient, variable, constant, and operator using the illustration at the top left-hand corner of page 69.
Polynomials are explained quite clearly in the textbook. Too much detail and flow of language will only confuse the students so it is suggested that just enough information should be given to explain each concept. Also mention that polynomials are usually written in decreasing order of terms.
Write different degrees of polynomials on the board and ask the students to identify their degrees. This exercise will reinforce the understanding of the degrees.
The students should also be familiar with the other terms used for polynomial degrees.
First degree polynomial = linear polynomial
Second degree polynomial = quadratic polynomial

تر تيك متامد

 كيرزيّين 6 بيان

1ــ"

$$
\text { رتيان = 2, x, 2x,xyz } \text {,يزه- }
$$

$$
\begin{aligned}
& \text { پ. }
\end{aligned}
$$

Third degree polynomial = cubic polynomial
Fourth degree polynomial = quartic polynomial

Class exercise (15 minutes)

As it is important, the students will be asked to write the definitions given on page 69.

Homework

Ask the students to learn as many of the definitions as possible for a competition in class the next day.

2. LESSON PLAN

Addition of polynomials (25 minutes)

Divide the class into teams to check whether the students have learnt the definitions on page 69 awarding points for every correct answer. This should not take up more than 10 minutes of the class.
Explain that addition, subtraction, multiplication, and division of two expressions can be done in two ways; horizontally and vertically.
In horizontal addition, the brackets are taken away and like terms are combined before adding them. Explain the procedure of addition with the help of the examples on pages 70 and 71. The different colours used will help to make the working clear. Directions are given at every step for horizontal addition. Solve each problem both horizontally and vertically, so that the students understand the working.

Class exercise (15 minutes)

The students should copy all 4 examples using coloured pencils as done in the textbook. This will help them retain what has been explained.

Homework

Exercise 5.1 a, b, and c will be done at home.

3. LESSON PLAN

Subtraction of polynomials ($\mathbf{2 5}$ minutes)

Explain that subtraction of polynomials is similar to addition except for a very important fact which is: a negative (minus) sign causes the signs in the second expression to change to the opposite of what they are. For example, a plus sign will change to a minus and vice versa. Focus on the practice of the exercises to avoid the mistake of the 'negative sign' which will change the whole result.
Go through examples 1,2 , and 3 on pages 72 and 73 , which clearly identify the procedure followed in solving subtraction of polynomials.
كاس هيثت (15 ننظ)
طبا عَ كا با
،وم ورك

ك

 كاس بيّثت (15 ثنط)

،وم ورك

3

$$
\begin{aligned}
& \text { چو }
\end{aligned}
$$

Class exercise (15 minutes)

As done for addition, the students will copy the examples in their exercise books exactly as shown.

Homework

Exercise 5.2, questions 1 to 3 will be assigned as homework.

4. LESSON PLAN

Addition and subtraction of polynomials (10 minutes)

Use this class to do a comparative study of addition and subtraction. Any examples (1 or 2) of the sums given as homework for both these topics should be worked out on the board. For example, $5 x+4 y$ and $3 x-y$: when added, the answer will be $8 x+$ $3 y$ and when subtracted it will be $2 x+5 y$.

Class exercise ($\mathbf{3 0}$ minutes)

The students will solve Exercise 5.1 d, e, and fand Exercise 5.2, questions 4 to 6.

Homework

The students will read pages 74 and 75 .

5. LESSON PLAN

Multiplication of polynomials (20 minutes)

Explain multiplication of polynomials along the same lines that addition and subtraction were done.
Explain the 'FOIL' method which makes multiplication easy. FOIL $=$ Firsts, Outers, Inners, Lasts.
Use the examples to show the students how it is done vertically and horizontally. The FOIL method makes it simple for the students to solve multiplication.

Class exercise (20 minutes)

The students will solve Exercise 5.3 d and f in class. Go around the class to check whether they are able to solve the sums or not. These two sums will be worked out on the board after allowing the students a 10 minute headstart. They will check their solutions with that on the board.

Homework

The remaining sums of Exercise 5.3 will be solved.

كاب بيّت (15 ثنط)

$$
\begin{aligned}
& \text { 4- }
\end{aligned}
$$

 كان بيّثت (30 هن (3)

rوم ورك
 5-
كيثر رّميو كَ

(艮"FOIL"

كاس بيّ ثت (20 هن)

6. LESSON PLAN

Division of polynomials ($\mathbf{2 5}$ minutes)

Students may find this difficult because it is not simple division. Clearly explain the difference between divisor, dividend, quotient, and reminder. Next, explain the rules for division of polynomials.
The first term of the numerator is divided by the first term of the denominator and put in the answer.
Then the denominator is multiplied by that answer and put below the numerator, subtract the two expressions to create new polynomials. Go slowly with the explanation as division is not as simple as addition, subtraction, or multiplication. Copy and solve the three examples given on page 84 to demonstrate the process of division.

Class exercise (15 minutes)

Exercise 5.4 a, and c will be done in class.

Homework

Exercise 5.4 will be completed at home.

7. LESSON PLAN

Evaluating algebraic expressions (20 minutes)

Use the given examples to explain how algebraic expressions should be evaluated.
Class exercise ($\mathbf{2 0}$ minutes)
The students will solve Exercise 5.5, questions 1 and 4 in class.

Homework

Rest of Exercise 5.5 will be completed at home.

8-9 LESSON PLAN: Summary and Review Exercises

 نت ارورّ نَ

$$
\begin{aligned}
& \text { ،وم ورك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7- }
\end{aligned}
$$

،و ورك

UNIT 6 FACTORIZATION AND SIMULTANEOUS EQUATIONS

OBJECTIVES

The teacher should cover the following concepts:

- basic algebraic formulae
- factorization and manipulation of algebraic expressions
- solving simultaneous equations
- algebraic methods of solving simultaneous equations, i.e. elimination and substitution methods

LEARNING OUTCOMES

The students should be able to:

- understand the basic algebraic formulae
- understand the manipulation of algebraic expressions
- identify the different types of factorization expressions and use them according to the nature of the expression
- use the elimination and substitution methods to solve simultaneous equations
- recall and use the different basic formulae covered in this chapter.

DURATION: Teaching: 15 periods; Summary and Review Exercises: 2 periods

Note: This is an important unit which is lengthy and the students might find it confusing to handle so many ways of factorization. It is advisable to explain only 1 or 2 methods at a time.

I. LESSON PLAN

Basic algebraic formulae (20 minutes)

For this unit, divide pages 79 to 83 (Exercise 6.1 Qs 7) into at least 3 lessons, depending on the progress of the class.
Begin with the definition and basic algebraic formulae moving on to deductions from the formulae. The examples given in the book should be solved on the board so that the students understand the concepts being taught. Allow for questions to be asked if something is not clear. Memorizing the basic algebraic formulae will help the students to use them where appropriate.
Write these formulae on the board and show the students how they are made up by multiplying $(a+b)$ with $(a+b)$ and $(a-b)$ with $(a-b)$.
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$a^{2}-b^{2}=(a-b)(a+b)$

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& a^{2}-b^{2}=(a-b)(a+b)
\end{aligned}
$$

Class exercise (20 minutes)

Ask the students to first solve examples a, b, and c on pages 79 and 80 and then copy the formulae written on the board.

Homework

The students will memorize these three formulas.

2. LESSON PLAN

Deductions from the formulae (20 minutes)

Begin this lesson with a recap of the work done in the previous one, then explain the deductions from the formulae as done on page 80. Explain and solve Examples 1, 2, and 3 on the board and ask the students questions as the explanation progresses, e.g. What should I do next? Is this correct?, etc.

Class exercise (20 minutes)

The students will try and solve the examples on their own and if they face any problem, help should be provided.

Homework

The students will be asked to go over Example 4 on page 81, then close their textbooks and solve the same example in their exercise books.

3. LESSON PLAN

Deductions from the formulae (continued) (20 minutes)

Begin the lesson with Example 4 that was given as homework. A student will be asked to solve the sum on the board (voluntarily) while the rest of the class focuses on the procedure used and lets the student know whether the sum was solved as it should be.
Then proceed to explain Examples 5, 6, and 7 (pages 81 and 82) on the board. When the students have understood, work to be done in class will be assigned.

Class exercise (20 minutes)

Exercise 6.1, questions 1 to 3 , will be solved.

Homework

Exercise 6.1, questions 4 and 5 will be done as homework.

كاس يّ ثتّ (20 ثنـ)

،وم ورك

$$
\text { 2ــبق } 661
$$

كيول ستز يّ تِ (20 ننط)

 ب؟
كاس بيّثت (20 ثنط)
 rو ورك

$$
\text { 3ـبّق } 6 \text { 6ا }
$$

كوي

ש
 -
كاس بيّ ثت (20 ثنط)

،وم ورك

4. LESSON PLAN

Factorization of algebraic expressions (25 minutes)

Enough time should be spent on the explanation and solutions of these expressions to avoid facing problems later on.
Go through the different methods of factorization and manipulation of algebraic expressions given on page 83. After which the method of 'factorization by finding the common factors' will be explained in detail with the help of the two examples. Then 'factorization by grouping' will be explained, again with the help of the two examples given.

Class exercise (15 minutes)

The students will solve the 4 examples (pages 83 and 84) on their own after the working has been erased from the board. They will not refer to the textbook either.

Homework

The students will check the work done in class at home and will make the necessary corrections if any. They will also solve Exercise 6.1, questions 6 to 7d.

5. LESSON PLAN

Factorization (continued) ($\mathbf{2 5}$ minutes)

This lesson will be conducted along the same lines as Lesson 4. The methods of 'factorization by splitting the middle term' and 'factorization by using the identity, $a^{2}+2 a b+b^{2}$ will be discussed.

Class exercise (15 minutes)

The examples given in the book for these two methods on pages 84 and 85 will again be solved without consulting the book.

Homework

The students will, as before, check and correct their answers at home.

6-7 LESSON PLANS

Factorization (continued) ($\mathbf{2 5}$ minutes for each)

These two lessons will be conducted as Lessons 4 and 5. In Lesson 6, explain factorization using the identities.
(i) $a^{2}-b^{2}=(a+b)(a-b)$ and (ii) $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$.

In Lesson 7 'factorization using the identities'
(i) $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$ (ii) $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ and
(iii) $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

$$
\text { كابن پ.لثت (} 15 \text { ثنط) }
$$

 غبي ،وم ورك
 -6 5(25) (25 (جارى
 - 天

 ،وم ورك
پ. -7 6-7 \&

$$
\begin{aligned}
& -(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)(i i) \text { را } a^{2}-b^{2}=(a+b)(a-b)(i)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ر. } a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)(i i)(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)(i) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)(i i i)
\end{aligned}
$$

Class exercise and Homework for both these lessons will also be similar to Lessons 4 and 5.

8 - 10 LESSON PLAN

Exercise 6.2 (Depends on the teacher and class requirement)

Divide Exercise 6.2 into three parts. For example, questions 1 to 6 will be part 1, questions 7 to 14 will be part 2, and questions 15 to 19 will make up part 3 . These parts will provide matter for the three lessons 8,9 , and 10.
The 'c' section of all the sums will be solved on the board in class by you or volunteer students after a discussion has taken place on what method will be used to solve each sum. This is important as the students will learn how to identify the method to be used. The students will be required to solve section 'b' of all the sums explained, in class, asking for help when necessary. Section 'a' of all the sums will be given as homework.
Lesson 8 will follow the above procedure for questions 1 to 6; Lesson 9 for questions 7 to 14, and Lesson 10 for questions 15 to 19 .
If the students find it difficult, more time should be spent on this exercise as several methods are involved and could cause confusion. The remaining sums from Exercise 6.2 could be used for more practice.

11. LESSON PLAN

Simultaneous linear equations (25 minutes)

Go through the text and examples for the topic 'simultaneous linear equations'. Pages 89 and 90 will give the students a clear idea of the concept and the solutions.

Class exercise (15 minutes)

Ask the students to solve these examples in their exercise books keeping in mind the explanation.

Homework

The students will verify their solutions and answers at home and make any corrections needed.

12. LESSON PLAN

Elimination method of solving linear equations (35 minutes)

Ask the students to read the first two paragraphs on page 90 and discuss the content with the class. Using the steps given on pages 90 and 91 , explain how the elimination method works. Continue the explanation of this method using examples 1 to 4 but do so with the students' participation otherwise the class will fall asleep. Answer any questions they may have.

ـ 10 ~

$$
\text { ثثّ } 6.2 \text { (استّا, اوركال كز }
$$

 -

 11

 -
كاس هِّ ثپّت (15 ثنط)

،وم ورك

12

 اور 91 ٪,

It is important that the students feel they are able to ask questions especially during/ after an explanation.

Class exercise (5 minutes)

The students will read the text on pages 90,91 , and 92 silently.

Homework

All the examples will be solved as homework.

13. LESSON PLAN

Substitution method (20 minutes)

Explain the substitution method using examples 1 and 2 from the textbook and draw the students' attention to the steps of solution given in the box on page 95.

Class exercise (20 minutes)

The students will be asked to solve Exercise 6.4a, questions 1 and 2, a and d in their exercise books. Check the work as they complete it.

Homework

Exercise 6.4a, questions 1 and 2 will be completed as homework.

14. LESSON PLAN

Exercise 6.4 (10 minutes)

Ask the students if they face any problems in the two methods and solve them if they do, before proceeding with the class activity.

Class exercise (25 minutes)

The students will be told that they will be given 25 minutes to solve Exercise 6.4a, question 3 a to d in their exercise books, which will be marked. After the allotted time the books will be taken up for checking.

Homework

Complete Exercise 6.4a, questions 3 e to i.

 ،و ورك

13
اتتبرالط ميقّ(20 من)

 كآ بيّثت (20 نت)
 ،وم ورك

ثت 6.4 (10 ثت
 -

،وم ورك

* *

15. LESSON PLAN

Problems involving simultaneous equations ($\mathbf{2 5}$ minutes)

Students usually face difficulties when solving problem sums. It is advisable to discuss the sums and what is required to be done, and why. The variables cause confusion in the minds of the students and this should be dealt with before they are required to solve the problem sums.
Begin the lesson with the explanation and examples beginning on page 97. Examples 1 , 2, and 3 should be explained thoroughly and worked out on the board ensuring that the students have followed each step and are clear about what has to be done.

Class exercise (15 minutes)

A discussion about what is required to be done in questions 1 and 2 of Exercise 6.4 b should be carried out. This will let you know if the students have understood or not. Focus on statements to be made. Short, simple statements should be used.

Homework

Exercise 6.4b, questions 1 and 2 will be solved.

16. LESSON PLAN

Exercise 6.4b (20 minutes)

Begin by asking the students if they had any problem in solving the homework sums and sort them out.
Next, ask a student to read question 3 of Exercise 6.4b. Discuss what the problem is about and what should be done to solve it. The statements are important too. Ask another student to read question 4 and follow what was done when dealing with question 3 . Continue this procedure till you have reached question 7.

Class exercise (20 minutes)

The students will solve Exercise 6.4 b , questions 3 to 7 in their exercise books. Those unable to complete these in class will do so at home, but do not let them know this until the end of the period.

Homework

The students will complete the work assigned in class and will solve questions 8,9 , and 10 as homework.

17-18 LESSON PLAN: Summary and Review Exercises

،مزاورساواتو لـ كـوالات (25 ننط)

كاّ هيّثت (15 هن)

 ،وم ورك
 16-

ثتّ 6.4 (20 ننط)

 انصز

كاّ هيّثت (20 ثنط)

UNIT 7 FUNDAMENTALS OF GEOMETRY

OBJECTIVES

The teacher should cover the following concepts:

- parallel lines and transversals
- different angles formed by parallel lines and transversals
- polygons-regular and irregular
- methodology to calculate the exterior and interior angles of polygons
- the properties of circles, tangents, chords, etc.
- concentric circles and concyclic points

LEARNING OUTCOMES

The students should be able to:

- understand the basic nature of parallel lines and their relationship with transversals
- identify and differentiate between the different angles formed
- identify the different polygons and calculate their angles
- understand the components of a circle
- calculate the area of a sector
- note the importance of concyclic points and concentric circles.

DURATION: Teaching: 8 periods; Summary and Review Exercises: 2 periods

I. LESSON PLAN

Parallel lines (25 minutes)

Begin the lesson by asking the students if they have travelled by train. Then go on to discussing the difference in the structures of trains and cars, and how they run. Lead the discussion to the railway tracks and the equal spacing between them throughout, and what would happen if they were not.
Draw two parallel lines on the board. Explain to the class that two or more lines are parallel if they never meet to form an angle, no matter how long they are extended. Ask the students to give some examples of things in the classroom and in their daily lives that have parallel lines/sides.
Now draw a line that cuts these parallel lines and let them know that this is called a transversal. Then go through pages 103 and 104 which deal with the two topics.
尼

بالبِ

Draw the figure showing angles (118° and 62°), formed as a result of the transversal cutting the parallel lines as shown on page 104. Four different pairs of angles are formed as a result. Write the names of these pairs on the board: interior angles, corresponding angles, alternate angles, and vertically opposite angles. Explain that interior angles are the angles inside the partial box formed by the transversal and the two parallel lines. They form a square, U-shape. The sum of these 2 angles is always equal to 180 degrees. Corresponding angles are the angles in an F-shape formed by the parallel lines and the transversal, as shown on page 104. These angles are always equal. Alternate angles are the angles in the Z-shaped formation and are the angles inside of the Z. They are also always equal. Vertically opposite angles are always equal too. They are formed when 2 lines cross each other at a point forming an X. Let them know that the above rules apply ONLY in the case of parallel lines. These angles would not be equal if the lines were not parallel. The figures on pages 105 and 106 show the F, Z, and square U that provide easy recognition as to what type of angles they are.

Class exercise (15 minutes)

The students will draw parallel lines on the blank page of their geometry exercise books and write the definition on the adjacent, ruled page, referring to page 103. Then they will draw and define a transversal line and corresponding angles as given on page 104.

Homework

The students will learn the definitions of parallel lines, transversal, and corresponding angles.

2. LESSON PLAN

Calculating unknown angles (20 minutes)

Explain how to calculate the value of unknown angles formed when parallel lines are intersected by a transversal as shown in the two examples on page 106. Every step must be explained carefully and reference to the diagram as the explanation proceeds will help the students to understand better.

Class exercise ($\mathbf{2 0}$ minutes)

The students will copy the examples and the relevant figures from page 106-107.

Homework

The students will memorize the definitions of the remaining angles after drawing the figures and writing the definitions from page 104. They will be asked to go over the work done in class.

،وم ورك

2
نمعلوم زاوليِ كَ مقرارمعلوم كنا (20 منط)

 ط

rوم ورك

3. LESSON PLAN

Exercise 7.1 (20 minutes)

Solve questions $1 \mathrm{~b}, \mathrm{c}, \mathrm{f}$, and h of Exercise 7.1 on the board one at a time so that the students are able to follow how to calculate the unknown angles of various figures. This will be worked according to the examples given on page 106-107. Once the students have understood, work can be given in class for practice.

Class exercise (20 minutes)

Exercise 7.1, questions $1 \mathrm{a}, \mathrm{d}, \mathrm{e}$, and g will be solved by the students in class under supervision.

Homework

The students will complete their class work at home if they were unable to do so in the class and will also complete question 2 as homework.

4. LESSON PLAN

Polygons (20 minutes)

Explain to the class that the word poly means many. So a polygon has many sides and angles. A regular polygon is a polygon that has an equal number of sides and angles. Show the class the different types of polygons illustrated in the book on pages 108 and 109. The clear distinction between regular and non regular polygons is also shown here. Explain that the exterior angles of any polygon always add up to 360 degrees and the sum of the interior angles can be found by $180 \times(\mathrm{n}-2)$ where n is the number of sides in a polygon. For example, the sum of interior angles of a pentagon (5 sides) is equal to $180 \times(5-2)=180 \times 3=540$ degrees. Example 1 should be done on the board. The table on page 109 should also be read.

Class exercise (20 minutes)

The students will copy the definitions and figures from pages 108 and 109, and also the given table of the number of sides. They will complete this work at home if they are unable to do so in class.

Homework

The work begun in class will be completed and the number of sides for each type of polygon should be memorized.

3-
ثق 7.1 (20 نت

طبا شت 7.1 ك بوال
،وم ورك

4
كثر الانلاع (20 نـط)

،وم ورك

5. LESSON PLAN

Exercise 7.2 (25 minutes)

The lesson will begin with a recap of the work done in the previous lesson. Then solve example 2 on page 110 on the board. Then explain how questions $2,5,6$, and 8 of Exercise 7.2 should be solved. It is necessary to make sure that the students have understood the solution of each of these sums.

Class exercise (15 minutes)

The students will solve the remaining sums of this exercise.

Homework

Complete Exercise 7.2 at home.

6. LESSON PLAN

Circle (25 minutes)

Draw a circle on the board and label its circumference, radius, and diameter. Explain that the circumference of a circle is similar to the perimeters of squares and rectangles in that it measures the length of the outer boundary of that shape. Explain that the radius is the distance from the centre of the circle to a point on the circumference. And the diameter, which is twice the radius, is a line drawn from one point of the circumference to another passing through the centre of the circle. A chord is any line drawn from one point of the circumference to another. It does not have to pass through the centre as in the case of the diameter which is a special type of chord. This introduction should not take too much time as the students are familiar with most of the parts of a circle.
Explain how the area and angle of a sector are calculated with the help of the examples on page 112. Copy the examples on the board that show how to calculate the area of a sector and go over each step.
Then proceed to the example of how to calculate the angle of a sector and explain this to the students.

Class exercise (15 minutes)

The students will solve the 2 examples that have been worked out on the board after the working has been erased.

Homework

The students will copy the notes and diagrams from page 111 in their exercise books and will memorize the definitions.

كان يّثت (15 تن)

،و ورك

وار

كاس بیّ ثتّ (15 ثنط)

،وم ورك

7. LESSON PLAN

Tangent; secant; concylic points; concentric circles (25 minutes)
Begin with a recap of the definitions memorized at home before moving on to tangents. Define a tangent and point it out on the diagram on page 112. Explain that the radius of a circle, when it touches the circumference at the same point as the tangent to the circle creates a perpendicular, which is a 90 -degree angle as can be seen in the figure.
Next, explain that a secant is a line that intersects the circle at two different points as shown on page 113. Solve the examples following the diagrams and definition of secants. Concentric circles and concyclic points are also discussed briefly. Go over them briefly and also solve the corresponding example for concentric circles.

Class exercise (15 minutes)

The students will copy the diagrams and definitions of the work done in this lesson, beginning from page 112 till the example on page 114. As the time will be insufficient to complete this work in class, they will finish it at home.

Homework

Complete the work begun in class.

8. LESSON PLAN

Exercise 7.3 (15 minutes)

Quickly go through questions 1 to 3 of Exercise 7.3 and explain how questions 5 and 6 of this exercise should be solved. This should be done with the students' participation.

Class exercise (25 minutes)

The students will solve questions 5 and 6 of Exercise 7.3 in their exercise books.

Homework

Exercise 7.3, questions 1, 2, and 3.

9-10 LESSON PLAN: Summary and Review Exercises

 ركت ،

كاك بيّثق (15 منث)

$$
\begin{aligned}
& \text { ،و ورك }
\end{aligned}
$$

ثت 7.3 7.3 (15 بت
 *)
كان بيّثت (25 نت)
 هوم ورك
ش

UNIT 8 PRACTICAL GEOMETRY

OBJECTIVES

The teacher should cover the following concepts:

- converging lines
- construction and bisection of angles between converging lines
- construction of quadrilaterals
- construction of right-angled triangles

LEARNING OUTCOMES

The students should be able to:

- construct parallels to converging lines
- bisect the angle between converging lines
- construct all types of quadrilaterals
- construct right-angled triangles.

DURATION: Teaching: 11 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Converging lines (25 minutes)

Recap the characteristics of parallel lines, i.e. they are a pair of lines that will never meet, no matter how far they are extended. The other case is converging lines that meet or will meet at some point and form an angle. Read the text from page 117 moving on to the examples given on page 118.
Continue with the next topic, which is to find the angle between two converging lines without producing the lines. This is a step-wise process where lines parallel to the converging lines are drawn. Follow the steps one by one drawing the relevant diagrams. It is important that the lines, points, compass placement, etc. are accurate. The students should not have any difficulty in following the steps of construction and drawing the figures as they progress from one step to the other.

Class exercise (15 minutes)

The students will copy the diagrams and the 7 steps of construction from pages 118 and 119 in their exercise books.

Homework

The students should learn the steps of construction and paractise drawing the diagram several times.

بقاص:
 متقارب غط,
 چوكر بنا قامت الزاوي
! !

1- 1
ثتقاربخطوط (25 هنط)

 كاس بي تثّ (15 منط)

هو ورك

2. LESSON PLAN

Bisection of the angle of converging lines (20 minutes)

To bisect the angle made by two converging lines without producing them, follow steps 2-7 of the book for drawing parallel lines to converging lines. Mark the point O where the parallel lines meet and using the information provided in earlier guides bisect the angle formed at O .

Class exercise (20 minutes)

Ask the students to bisect the angle made by two converging lines without producing them. Go around the class checking if they are having any problems.

Homework

Exercise 8.1a, questions 1 and 2.

3. LESSON PLAN

Quadrilaterals (15 minutes)

Explain that just like a triangle is a three-sided figure (the prefix "tri" means 3), a quadrilateral is a four-sided figure (the prefix "quad" means 4). However, a quadrilateral can mean any of many different shapes. Some examples of quadrilaterals such as squares, rectangles, parallelograms, trapeziums, rhombuses, and kites will be given.
The properties of all these quadriaterals are on page 120. Make sure you go through them with the students to help them in differentiating between these shapes. Give special attention to rhombuses and kites as they have not been covered in depth before.

Class exercise ($\mathbf{2 5}$ minutes)

The students will write the properties and draw the diagrams of the following figures; parallelogram, rhombus, trapezium, and kite. Draw the diagrams on the board to help the students.

Homework

The students will draw a rectangle and a square and note down their properties. They should know the properties of all six figures.

4. LESSON PLAN

Constructing a square to given diagonals (20 minutes)

Using the steps given on page 121, construct a square. Three different cases for the construction of squares are given. In this lesson, explain the first two cases thoroughly, drawing the diagrams following the steps of construction.

كان بي ثت (20 نت)

هوم ورك
شثت 8.1 6 كوال 1 اور 2-
3 3
چֶور (15 هن

كان بيّثت (25 نت)

،وم ورك

4-
,
 *

Class exercise (20 minutes)

Ask the students to construct squares when (a) the diagonals are given and (b) when the difference between the diagonals and the sides is given. The steps of construction must be written for each figure.

5. LESSON PLAN

Constructing a square when sum of side and diagonal are given (25 minutes)

Explain how a square is constructed when the sum of a side and diagonal is given on the board from page 122.
The students will draw the figure and write the steps of construction in their exercise books. Open the book to Exercise 8.1b and discuss how each question will be done.

Class exercise (15 minutes)

The students will do questions 1 and 2 of Exercise 8.1b.

Homework

Exercise 8.1b, questions 3 and 4.

6. LESSON PLAN

Construction of a rectangle (20 minutes)

Show the students how to construct rectangles when two sides are given and when two sides are given and when the diagonal and one side are given.
Just follow the steps given in the book but first write them on the board. Students should not have to look into their books to understand the steps while following what you are saying and drawing on the board.

Class exercise (20 minutes)

The students will solve questions 1 and 4 of Exercise 8.1c.

Homework

Exercise 8.1c, questions 2 and 3.

7. LESSON PLAN

Construction of a rhombus (20 minutes)

The construction of a rhombus when one side and a diagonal are given and when one side and a base angle are given will be taught in the same way as done in Lesson 6.

طبا عَي
 5

هوم ورك
ثقّ
6-

،وم ورك

7- 7

Class exercise (20 minutes)

With the students' participation, explain how questions 1 and 2 of Exercise 8.1 d will be done. These will be given as homework. The students will then solve the 2 examples that were explained on the board in their exercise books.

Homework

Exercise 8.1d, questions 1 and 2.

8. LESSON PLAN

Construction of a parallelogram (20 minutes)

Ask the students to read the notes given on 'Construction of a Parallelogram' silently. After a discussion of how to go about drawing the figure of the first case, 'when two adjacent sides and the included angle are given' and the second case, 'when two diagonals and the angle included by them is given'; the students will be asked to draw the figures and write the steps of construction on their own during the class activity.

Class exercise (20 minutes)

The students will work on the two examples given on pages 124 and 125 under supervision and guidance. Check that they are going about it correctly. This should not be a problem for the students to handle on their own as by now they will be familiar with what is to be done.

Homework

Exercise 8.1e, questions 1 to 3 will be given as homework.

9. LESSON PLAN

Construction of a kite (20 minutes)

On the board, construct a kite when two unequal sides and a diagonal are given, while the students read out each step (refer to page 126). There will then be a class discussion on how questions 2 and 3 of Exercise 8.1 f will be solved. Next, two students will be asked to come to the board (voluntarily) and draw the required figures. The rest of the class will be involved in verbally calling out the steps of construction.

Class exercise ($\mathbf{2 0}$ minutes)

The students will draw the figures that were drawn on the board by the students and also write the steps of construction.

Homework

Exercise 8.1f, question 1.

 ،وم ورك
ثت 8.1d 6 - ووال 1 اور2-
8- 8
متوازى الانلاع بنا (20 نت

كاس بيّثت (20 تن)

هوم ورك
شَ
9- 9

كآ بي ثت (20 هن)
 هوم ورك

10. LESSON PLAN

Construction of pentagons and hexagons (20 minutes)
Explain how pentagons and hexagons are constructed when one side is given with the help of the examples given on pages 126 and 127.

Class exercise ($\mathbf{2 0}$ minutes)
Exercise 8.1 g , questions 1 a and 2 a will be solved in class under supervision.

Homework

Exercise 8.1 g will be completed as homework.

11. LESSON PLAN

Construction of right-angled triangles (20 minutes)
The same procedure will be followed as in Lesson Plan 10 for this lesson on the construction of right-angled triangles (pages 127 and 128).

Class exercise ($\mathbf{2 0}$ minutes)
Exercise 8.2, questions 1 and 3.

Homework

Question 2 of Exercise 8.2 will be done at home.
12-13 LESSON PLAN: Summary and Review Exercises

كان بيثق (20 نت)

ثق 8.2 6-1ال ارور 3-
هوم ورك

UNIT 9 AREA AND VOLUME

OBJECTIVES

The teacher should cover the following concepts:

- Pythagoras' theorem and its proof
- Hero's formula applied to triangles and quadrilaterals
- volume and surface area of a cone
- volume and surface area of a sphere

LEARNING OUTCOMES

The students should be able to:

- define and use Pythagoras' theorem
- use Hero's formula to find the area of triangles and quadrilaterals
- calculate the volume and surface area of cones and spheres.

DURATION: Teaching: 8 periods; Summary and Review Exercises: 1 period

I. LESSON PLAN

Pythagoras' theorem (25 minutes)

Draw a right-angled triangle on the board. Label the base, perpendicular, and hypotenuse of the triangle. Now tell the class that Pythagoras' theorem states that the square of the hypotenuse ALWAYS equals the squares of the perpendicular and the base added together. If the length of the hypotenuse is \mathbf{h} and the length of the base and perpendicular are \mathbf{b} and \mathbf{p} respectively, then Pythagoras' theorem states that $h^{2}=b^{2}+p^{2}$. So, for example, if the base is 12 cm , the perpendicular is 5 cm , and the hypotenuse is unknown, it can be found by using Pythagoras' theorem as follows:
$\mathrm{H}^{2}=12^{2}+5^{2}$
$\mathrm{H}^{2}=144+25$
$\mathrm{H}^{2}=169$
$\mathrm{H}=\sqrt{169}=13$
Pythagoras' theorem is proved on pages 131 and 132 of the textbook. Draw the square shown at the bottom of page 131 along with the inserted square and triangles on the board and label them as instructed. Then copy the equations and explain the proof. Once the students have understood the theorems that have been explained, move on to the class activity.

 ط- طالت

$$
\begin{aligned}
;
\end{aligned}
$$

Class exercise (15 minutes)

The students will copy the theorem and examples along with the relevant figures from pages 130 to 132 in their exercise books.

Homework

Complete the work begun in class and memorize Pythagoras' theorem as stated on page 130 of the textbook.

2. LESSON PLAN

Pythagorean triple (20 minutes)

Explain that a Pythagorean triple is a set of three numbers-the base, perpendicular, and hypotenuse, such that base squared plus perpendicular squared is equal to the square of the hypotenuse. For example, the numbers 5, 12, and 13 are a Pythagorean triple because the squares of the first two are equal to the square of 13 . On the other hand, 4,5 , and 6 do not form a Pythagorean triple because 16 and 25 do not equal 36 .
Use a few more examples to prove this theorem and then solve the examples from page 132, on the board.

Class exercise (20 minutes)

The students will copy the examples as solved in the textbook on page 132, under the above-mentioned title. Remind the students that all figures/diagrams must be drawn with a well-sharpened pencil. They will then solve Exercise 9.1.

Homework

Complete the work begun in class.

3. LESSON PLAN

Hero's formula (40 minutes)

$A=\sqrt{s(s-a)(s-b)(s-c)}$
Copy the above formula on the board. The symbols a, b, and c are the three lengths of a triangle. The symbol \mathbf{s} denotes the semi-perimeter of a triangle, found by adding a, b, and c and then dividing the sum by 2 . By using this formula, the area of a triangle can be found. Consider the same example as above of a right-angled triangle with sides 5,12 , and 13 respectively. The semi-perimeter \mathbf{s} can be found by adding 5,12 , and 13 , and dividing the sum by 2 which gives $s=15 \mathrm{~cm}$.
So $\quad A=$ square root of $\{15(15-5)(15-12)(15-13)\}$
$A=$ square root of $\{15(10)(3)(2)\}$
$A=$ square root of $900=30$
The above area can be verified by using the formula $A=\frac{1}{2} \times$ base \times height

$$
A=\frac{1}{2} \times 5 \mathrm{~cm} \times 12 \mathrm{~cm}=30 \mathrm{~cm}
$$

2

$$
\text { ثناث فيثا ؤرث (} 20 \text { ننط) }
$$

 132
كاس ڤيثت (20 نن)

،وم ورك
كان بي ثروع كيا گياكمل كـي
3ـبّق 66اكد

انيرو6 ك6ي (40 ننط)

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

 2 2 2
النغا

$$
\text { جنر الرن } 6 \text { ك15(10)(3)(2)\} = A }
$$

$$
\text { 30= } 900 \text { = A }
$$

$$
A=\frac{1}{2} \times 5 \mathrm{~cm} \times 12 \mathrm{~cm}=30 \mathrm{~cm}
$$

The book also explains how to calculate the area of a quadrilateral by dividing a kite into 2 triangles and then applying Hero's formula. This is shown on page 134. Go through this example with the students.

Homework

The students will copy Hero's formula, diagrams, and examples from pages 133 and 134 in their exercise books.

4. LESSON PLAN

Exercise 9.2 (20 minutes)

There will be a class discussion on how each sum of this exercise should be solved.

Class exercise ($\mathbf{2 0}$ minutes)

The students will begin solving Exercise 9.2 in their exercise books.

Homework

Review all the work done so far and complete the work begun in class.

5. LESSON PLAN

Volume and surface area of a cone (25 minutes)

Draw a cone on the board, clearly showing the circular base and the vertex. Explain that the base of the cone is a circle and the point at the end is a vertex. Write the formula for the volume and surface area of a cone and solve the examples given on pages 135 and 136 on the board.

Class exercise (15 minutes)

The students will copy the diagrams and solved examples from these pages.

Homework

Review the work done in class thoroughly and learn all the formulas given.

6. LESSON PLAN

Volume and surface area of a sphere (25 minutes)

Let the students know that just like the cone is a three-dimensional figure; so is a sphere. Examples of spheres are cricket balls, marbles, and the Earth. Remind them that a line drawn from the circumference to the centre of the sphere equals its radius and that line extended to the other end of the sphere is its diameter. Now write the formulae of volume and surface area of a sphere and solve the examples on the board given on page 137.

،و ورك

4
تثت 9.2 (20 نت)

كانّ بي ثن (20 تن)

،و ورك

5

كاك بينثت (15 نت)

،و ورك

6
كرّ 6 6.

 با ت,

Class exercise (15 minutes)
Ask the students to copy the diagrams and solved examples from page 137 in their exercise books.

Homework

Review all the work done in class and learn the formulae.

7. LESSON PLAN

Exercise 9.3, questions 1 to 6 (20 minutes)

Spend the first half of the class in reviewing the formulae and questioning the students as to how questions $1-6$ should be solved. When the students have understood, they will work them out individually, in class.

Class Exercise (20 minutes)

The students will solve Exercise 9.3, questions 1 to 6 in class.

Homework

Complete the class work.

8. LESSON PLAN

Exercise 9.3 Questions 7 to 10 ($\mathbf{2 0}$ minutes)

The procedure for the previous lesson plan will be followed for questions 7-10.

Class exercise (20 minutes)

The students will solve questions 7-10 of Exercise 9.3 in their exercise books.

Homework

The students will review pages 130-137 and complete their class work if they were unable to do so.

9. LESSON PLAN: Summary and Review Exercises

$$
\begin{aligned}
& \text { كآ بيّثت (15 ثن) }
\end{aligned}
$$

هوم ورك

$$
\begin{aligned}
& \text { 7- 7 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اتا تِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { كان بیثت (20 هن) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { هوم ورك }
\end{aligned}
$$

$$
\begin{aligned}
& 8
\end{aligned}
$$

-

كاك بيّثت (20 نت)

$$
\begin{aligned}
& \text { هوم ورك }
\end{aligned}
$$

UNIT 10 DEMONSTRATIVE GEOMETRY

OBJECTIVES

The teacher should cover the following concepts:

- definition and explanation of demonstrative reasoning
- definition and explanation of axioms, postulates, theorems, converse, propositions, and corollary
- explanation of hypotheses and conclusions
- theorems on straight and parallel lines
- theorems on triangles

LEARNING OUTCOMES

The students should be able to:

- understand demonstrative reasoning
- use logic in mathematics
- identify the differences between propositions, axioms, postulates, etc.
- understand the theorems in this unit
- apply the theorems correctly.

DURATION: Teaching: 9 periods; Summary and Review Exercises: 1 period

I. LESSON PLAN

Demonstrative geometry ($\mathbf{2 5}$ minutes)

Explain to the students the importance of understanding mathematical theory. Tell them that the mathematical formulae and concepts that they learn about are a result of years of research into mathematical theories and concepts. For example, the total measure of the angles of a triangle are 180°, or that to find the area of a circle you have to square its radius and multiply it by π, is a result of mathematical research and demonstrative reasoning that they will learn about in this chapter. Go through pages 140 and 141 explaining all the definitions given on these pages. It is important that the students understand all that is being taught in this lesson thoroughly. It is always a good idea to make the students feel comfortable in asking questions or for further clarification for any concept being taught. This practice, improves comprehension of the work being taught and makes mathematics 'easier'.

Class exercise (15 minutes)

Ask the students to copy the definitions and the steps to be followed to prove a theorem logically in their exercise books.

بغرونات اورنتانگ 6 بيان

مثڤ

1

x

Homework

The students will memorize the definitions they have noted in their exercise books.

2. LESSON PLAN

Converse of a theorem (25 minutes)

Before beginning this topic, ask the students to give the definitions of demonstrative geometry, reasoning, proposition, axioms, postulates, and theorems.
Explain the 'converse of a theorem' and the steps to be followed to be able to prove a theorem logically. They should know the parts of a theorem and understand other related terms.

Class exercise (15 minutes)

The students will copy the examples and definitions of terms such as converse, etc. that are given on pages 141 and 142 in their exercise books.

Homework

The students will be asked to review all the work from pages 140 to 142 . This is important.

3. LESSON PLAN

Theorems (i) and (ii) ($\mathbf{2 5}$ minutes)

Begin the lesson with a recap of the definitions of all the terms taught from pages 140 to 142 with extra focus on axioms, postulates, and theorems. Explain that to prove a theorem, the reasoning must be logical. For example, as on page 142, the theorem that if a straight line meets another straight line, the angles formed must be supplementary, is proved by the fact that on a straight line, all adjacent angles form equal 180° in sum and therefore, these angles are supplementary. Similarly, the converse is also proved on the next page.
Then move on to stating and explaining the first theorem; 'If a straight line meets another straight line, the sum of the adjacent angles so formed is equal to two right angles.' Explain each step of how they should go about proving this theorem. Use diagrams as these will help them understand better. Explain the converse of this theorem too. Make sure that all the students have understood.
Then move on to the next theorem, 'If two adjacent angles are supplementary, then their exterior arm/s lies/lie in a straight line.' Go through the stages of proof on page 143.

Class exercise (15 minutes)

The students will copy all the material related to the two theorems taught from pages 142 and 143.

2
مستلم تنرى 6 معكوّ (25 هنط)

"وم ورك

3
مساكّل نمنىى (i) اور (ii): 25 منط)

 , وو"

Homework

The students will memorize the two theorems taught and review all the work done so far in this unit. It is important to emphasize the fact that reviewing the work done will ensure that the important facts and methods will remain clear.

4-9 LESSON PLAN

The same procedure as Lesson Plan 3 will be followed for Lessons 4, 5, 6, 7, 8, and 9. Use the textbook to explain all the concepts.

LESSON 4: Theorems (iii) and (iv), pages 144 and 145.
LESSON 5: Theorem (v), pages 145 and 146.
LESSON 6: Theorems on triangles (i) and (ii), pages 146 and 147.
LESSON 7: Theorems (iii) and (iv), pages 148 and 149.
LESSON 8: Triangle postulates, examples 1, 2, and 3, pages 149 and 150.
LESSON 9: Triangle postulates, examples 4 and 5 , pages 150 and 151.

10. LESSON PLAN

Exercise 10.1 (40 minutes)

Explain the first two sums on the board and the students will begin working them out. Neat diagrams must be drawn. Do not accept crooked lines or untidy figures.
The exercise will be completed in class if possible. If not, it should be completed at home. Go around the class helping students who need help.

Homework

Complete the class work and review Unit 10.

11. LESSON PLAN: Summary and Review Exercises

،وم ورك

$$
4 \text { 4 } 4
$$

 سبق 9: ثلث 6 اصول موضود، شثل 4 اور 5، هند 150 اور 151 اور 150

،وم ورك

$$
\begin{aligned}
& \text { 10 } \\
& \text { ثت } 10.1 \text { (40 نت) }
\end{aligned}
$$

x

UNIT 11 INTRODUCTION TO TRIGONOMETRY

OBJECTIVES

The teacher should cover the following concepts:

- basic trigonometric terms
- main functions and co-functions of trigonometry
- different ratios of trigonometry
- trigonometric ratios of complementary angles
- table of sine, cosine, and tangent

LEARNING OUTCOMES

The students should be able to:

- understand the concept of trigonometry
- remember and recall the main functions and co-functions
- apply the trigonometric ratios
- determine complementary angles and their relation in trigonometry
- use the sine, cosine, and tangent table.

DURATION: Teaching: 6 periods; Summary and Review Exercises: 1 period

I. LESSON PLAN

Trigonometric ratios of acute angles, 60° (25 minutes)

Ask the students to silently read page 154. Discuss the reason for the development of trigonometry and its use in modern life. They could use a computer to get information.
Explain to the class that trigonometry is the branch of mathematics that studies the relationship between the sides and angles of a triangle. Ask the students to recall the three sides of a right-angled triangle. The three sides, as we know, are the perpendicular (also known as the opposite), the base (also known as the adjacent), and the hypotenuse (which is the longest side of a right-angled triangle).

For the given right-angled triangle, the angle between the hypotenuse and base is normally labeled as θ which is the eighth Greek alphabet 'theta'. Write down the main functions and the co-functions on the board. It is easier for the students to remember the formulae for the main functions by using the following line:

زاويح اره ،606 كنكونياقَ نّبتي (25 نتط)

Some People Have Curly Brown Hair Till Painted Black

Note that the first letter of each word above is in bold print as it represents the main functions of trigonometry. $\operatorname{Sin} \theta=$ Perpendicular/Hypotenuse; $\operatorname{Cos} \theta=$ Base/ Hypotenuse; Tan $\theta=$ Perpendicular/Base. By using such remembering techniques (called mnemonics, pronounced ne-monics), students can learn and memorize these formulae faster and more easily.
Explain all the text and examples given under the following headings on pages 155 and 156: Right-Angled Triangles; Sine, Cosine, and Tangent; Trigonometric Ratios of $30^{\circ}, 60^{\circ}$, and $90^{\circ}, \ldots . .60^{\circ}$ and related examples. Since this is a difficult topic, patiently answer any queries the students have.

Class exercise (15 minutes)

The students will copy the formulae and examples (60° angle) from pages 155 and 156. Diagrams should be neat.

2. LESSON PLAN

Trigonometric ratios of 30° and 45° (20 minutes)

After a quick recap of the work done in the previous class, move on to the working and examples on pages 156 and 157.
Write and explain step-by-step on the board including Example 1 on page 157.

Class exercise (20 minutes)

Ask the students to copy the working and Example 1 in their exercise books beginning from the 30° (page 156; ending at Example 1 h) including diagrams where necessary.

Homework

Revise all the work done so far and note uncertainties, if any.

3. LESSON PLAN

Trigonometric ratios continued (20 minutes)

Solve and explain examples 2,3 , and 4 from pages 157 to 159.

Class exercise (20 minutes)

The students will copy these examples in their exercise books.

Homework

Revise all the work done so far thoroughly.
 Tan $\theta=$ = (; ; ; (Tan θ = Perpendicular/Base)

2
30°

،وم ورك

3 3

،وم ورك

4. LESSON PLAN

Trigonometric ratios of complementary angles (40 minutes)

Explain that complementary angles are the two angles of a right-angled triangle whose sum is equal to 90 degrees. So, for example, if in a right-angled triangle, one angle is 60 degrees and one is obviously 90 degrees, the third angle is equal to 30 degrees. The 30 and 60 degree angles are called complementary angles as they add up to 90 degrees.
Explain that the co-functions of cosec, sec, and cot are inverses of the main functions of sin, cosine, and tan respectively. Sine X = Perpendicular/Hypotenuse and Cosec X = Hypotenuse/Perpendicular. The same is the relationship between cosine and sec, and also between tan and cot.
Returning to complementary angles, draw a right-angled triangle on the board and label the sides as base, perpendicular, and hypotenuse. Mark the complementary angles as x and θ. Now copy the table on top of page 160 on the board. Explain with the help of a table that $\sin \theta=\cos x=\cos (90-\theta)$. This is because $\sin \theta$ is perpendicular / hypotenuse, and $\cos x=$ base/hypotenuse, but since the base for cos is the perpendicular for sin, they both are equal. And since $x+\theta=90$ degrees (complementary angles), $\sin \theta=\cos x=\cos (90-\theta)$. Similarly, explain the rest of the relationships given in the table.
Finally, teach the students to use the table of values on page 161 which gives values for sin, cos, and tan for 1 to 90 degrees. Explain that if the values of co-functions need to be determined, the value for that angle for the main function should be divided by one as it is the reciprocal of the main function. For example,
the value of $\operatorname{cosec} 30=\frac{1}{\sin } 30=\frac{1}{0.5}=2$.

Homework

Review the work done in class.

5. LESSON PLAN

Exercise 11.2a (20 minutes)

Use the board to explain one sum of each part of question 1, and orally go through one sum each of questions 3,4 , and 5 .

Class exercise ($\mathbf{2 0}$ minutes)

Ask the students to solve Exercise 11.2a, questions 1 to 6 in their exercise books.

Homework

Complete the work begun in class.

矢 $\sin \theta=\cos x=$ زاويل ك x اور

 پ.

،وم ورك

5
ثتّت11.2a (20 منط)
 كاّ بيّثن (20 هن)

،وم ورك

6. LESSON PLAN

Word problems (20 minutes)

Using the example on page 163, explain how word problems should be solved. Then explain what is to be done to solve Exercise 11.2b, questions 1 to 3 .

Class exercise (20 minutes)
The students will solve questions 1, 2, and 3 of Exercise 11.2 b with help if necessary.

Homework

Revise the work done so far in Unit 11.
7-8 LESSON PLAN: Summary and Review Exercises

6
بيانيَكالات (20 بـ)

L كآ يّ
 ،و ورك ! إب 11 ين كا

UNIT 12 INFORMATION HANDLING

OBJECTIVES

The teacher should cover the following concepts:

- frequency tables
- histograms
- calculation of mean, median, mode, and range
- calculation of mean from a frequency table
- calculation of mean from a frequency table with class intervals

LEARNING OUTCOMES

The students should be able to:

- use frequency tables
- create histograms properly and understand their distinction from bar charts
- calculate mean, median, mode, and range
- calculate mean from a frequency table
- calculate the mean from a frequency table with class intervals.

DURATION: Teaching: 6 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Frequency distribution (40 minutes)

Frequencies and frequency distribution tables have been covered earlier. Students should be familiar with the basic concept of arranging and organizing data in frequency distribution tables. Ask the students to recall the above concepts and test their memories by starting with a question. Copy the data given on page 168 on the board and ask the students to construct a frequency distribution table given this data of 32 items sold in a store. Ask them to use 7 class intervals with a range of 50 . Ask them to note that as 'a rule of thumb', class intervals should not be less than 5 and not greater than 20. If too few class intervals are used, the purpose of organizing this data to derive meaning is lost. On the other hand, if too many intervals are used, it becomes difficult for the reader.
Now use the data in the frequency distribution table to construct a histogram. Ask the students if they recall bar charts. Tell them that histograms are similar to bar charts in that frequencies are listed on the vertical axis and class limits on the horizontal axis. The only difference is that unlike bar charts, histogram bars touch each other and there is no space in between. This can also be seen from the frequency histogram on page 168. In bar charts, class limits are in the form 0-49, 50-99, and so on. In histograms, the upper class limit of one interval is exactly the same as the lower limit of the next class interval. So the classes are connected by their limits, and hence the histogram
~
 - تورى جرول

ايك تقدرى جبرل ــاوروط معلومكنا

范
! !

1- 1-4 6
تقروكتّتم (40 بن)

 ,

bars touch each other. Go through examples 1, 2, and 3 on pages 168 to 170.

Homework

Emphasize the fact that revision and practice are important in this unit. They should review all the work done in class and copy the examples and diagrams explained in class in their exercise books.

2. LESSON PLAN

Frequency distribution continued (25 minutes)

Begin with a recap of the previous day's work to pave the way for a continuation of the topic. Then go through examples 4, 5, and 6 (pages 170 to 172), with the class, answering all questions put forward by the students that relate to the frequency distribution tables, graphs, and histograms so that they can work independently.

Class exercise (15 minutes)

The students will be asked to copy the examples and diagrams/figures from the pages explained in class.

Homework

Complete the class exercise and review all the work done. Note any problems/ questions that need to be addressed in class.

3. LESSON PLAN

Exercise 12.1 (20 minutes)

Discuss all the questions and their solutions in detail making sure that the students will be able to work independently.

Class exercise (20 minutes)

Ask the students to solve Exercise 12.1 in class, and extend guidance when necessary.

Homework

The students will complete the class exercise at home.

4. LESSON PLAN

Measures of central tendency (40 minutes)

Explain to the students that quite often the central values from a group of data are required to be calculated so as to give it meaning. Three of the most commonly used measures for this are (i) mean, (ii) median, and (iii) mode.
Write the following data for the scores by a Pakistani cricket batsman in his last twenty 'One Day' innings:

،

2ـ"بّق 6اكم

،وم ورك

$$
\text { 3ـبّ 6ط } ا
$$

تڭ 12.1 (20 نت

،وم ورك

4-بت 66

For example; 20, 35, 15, 17, 9, 42, 68, 0, 0, 36, 15, 8, 88, 46, 1, 7, 19, 0, 102, 10. Explain that the mean is also called the average and is found by adding all the given data values and dividing the sum by the number of data values. The formula is written as Mean $=\boldsymbol{\Sigma} \mathbf{X} / \mathbf{n}$ where \mathbf{n} is the total number of data, which is 20 in this case; $\boldsymbol{\Sigma}$ is the Latin symbol pronounced 'sigma', and it means sum; and \mathbf{X} is the data values. So ΣX is the sum of the above data values.
The sum of the above values is 538 . Dividing 538 runs by 20 innings gives a value of 26.9. Ask the students to note that the actual formula for calculating a batsman's average is to calculate the total runs and divide it by the number of times he has been dismissed. In case the batsman above was not out on 5 of the 20 occasions, we would have divided the runs by 15 and his average would have been 35.87 .
Go on to explain that the median value is the middle value in a group of data. First of all the data must be arranged in ascending order (descending order is used only when specified). If the data is odd-numbered, for example, such as consisting of only 9 data values, four values are separated on either side, the middle value is the median. If the data is even-numbered, for example it consists of 20 values, 9 of these are cancelled out from either side of the data leaving 2 'middle' values. These values are added and their sum is divided by 2 to get one middle value. So, organizing the above data in ascending order gives us:
$0,0,0,1,7,8,9,10,15,15,17,19,20,35,36,42,46,68,88,102$
Ask the students to write the above data values as shown in ascending order in their notebooks and to start cancelling one value from the left, which is 0 , and then cancel one from the extreme right, which is 102 . They should cancel 9 values from both sides. The middle two values are 15 and 17 , so $(15+17) \div 2$ is 16 which is the median of the data and the median score of the Pakistani batsman.
The mode is the most frequently occurring data value. From the above values, we can see that the most frequently occurring data value is zero. Therefore, the mode of the Pakistani batsman in the last 20 innings is zero. Tell the students that the mode is not as good an estimate of central tendency as mean and median are as can be seen from the batsman's score calculated under: mean 26.9 or 35.87 , median 16 , and mode zero, even though the batsman has made some good scores his score stands at zero if calculated as mode.
Another less frequently used measure is range. Explain that range measures the variation in the data. Write the formula for range on the board, which is the highest value minus the lowest value. From our data set, the highest value is 102 and the lowest is zero. So the range is $102-0=102$. This is the other extreme when compared to the mode of the batsman's score which turns out to be zero.

Homework

The students will copy the examples and diagrams from pages 174 to 176 that show how the mean, median, and mode are to be calculated. They should also be able to define each one orally.

 20

 مقرارول ك.

$$
0,0,0,1,7,8,9,10,15,15,17,19,20,35,36,42,46,68,88,102
$$

 102-0 102 ، 102

،وم ورك:

5. LESSON PLAN

Mean from frequency tables ($\mathbf{2 5}$ minutes)

Ask your students their ages. If, for example, there are 10 students and their ages are 13, $15,14,12,13,15,11,12,13$, and 13 , the data can be put in a frequency table as follows:

Age	11	12	13	14	15
Frequency	1	2	4	1	2

The mean age of the students can be found directly from the given data by adding all the data values and dividing the sum by 10 . However, explain to the students that this is a small data set. Quite often in real life, there are hundreds and thousands of data values and it would be impossible to add each value and divide the sum. In that case, a frequency table like the one above may be used.
To calculate the mean from the frequency table above, the method is to multiply each age with its frequency, add all the products, and divide by the number of data values. Therefore, we do the following calculation:
$(11 \times 1)+(12 \times 2)+(13 \times 4)+(14 \times 1)+(15 \times 2)=131$.
Divide 131 by 10 students to get 13.1 as the mean age. Ask the students to do it directly without using the data table to see if they get the same answer (which they should).
Where class intervals are given, explain to the students that they have to find the mid-point of each class interval and multiply the mid-point with the frequency of that particular interval. Then adding all the products and dividing by the number of data values, the mean is acquired. This should be explained with the help of examples on page 176 to 178.

Class exercise (15 minutes)

The students will copy the examples that were explained on the board in their exercise books.

Homework

Review all the work done in this unit.

6. LESSON PLAN

Exercise 12.2 (10 minutes)

Go through the exercise orally, using questions to find out whether the students know how to solve the sums.

Class exercise ($\mathbf{3 0}$ minutes)

Ask the students to solve Exercise 12.2 in class.

7-8 LESSON PLAN: Summary and Review Exercises

15	14	13	12	11	$\boldsymbol{\beta}$
2	1	4	2	1	,

$$
(11 \times 1)+(12 \times 2)+(13 \times 4)+(14 \times 1)+(15 \times 2)=131
$$

 چا جا

كاّ بیثت (15 ثن)

،وم ورك

6-
ثت 12.2 (10 ثن)

كاس بی ثتّ (30 ثنط)

Extra Exercises

Fun with Maths

1. The cube of $7=7^{3}=7 \times 7 \times 7=343$

Number	1	2	3	4	5	6	7	8	9	10	11	12

2. $\quad 6^{3}$ can be written as $3^{3}+4^{3}+5^{3}$. Write 9^{3} as the sum of three cubes. $9^{3}=$ \qquad $+$ \qquad $+$ \qquad
Write 1729 as the sum of two cubes in two different way.
$1729=$ \qquad $+$ \qquad
or $=$ \qquad $+$ \qquad
Study the following pattern and complete rows 4 and 5 .

Row 1	1	$=1$
Row 2	$3+5$	$=8$
Row 3		$=27$

3. Look at this pattern.
$4^{2}=16 \quad 34^{2}=1156 \quad 334^{2}=111556 \quad 3334^{2}=11115556$
(a) Write down the next line of the pattern.
(b) Use the pattern to work out 3333334^{2}.
(c) What is the square root of 1111111155555556 ?
4. In the isoscles triangle below, the digits of the unequal angle are formed by reversing the digits of the equal angles.

Can you find other isoscles triangles with the same property? Remember that the sum of a triangle must add upto 180°.
5. When my father was 31 , I was 8 . He is twice as old as I am. How old am I?
6.

Place the numbers $1,2,3,4,5,6,7,8,9,10,11,12,13,14$ into 14 circles so that each line of four numbers adds up to 30 . Two lines have been done for you.
7. Find the sum of this arithmetic series:

$$
(-300)+(-297)+(-294)+----+(306)+(309) .
$$

8. A courier service person has a package to deliver. He remembers the street and not the house number. He can only read the last digit of each address on the old mailbox and he remembers the number was a perfect square. The digits that he can read are $2,3,6,7$, and 8 . To which house should he deliver the package?
9. Three tennis balls are stacked in a cylinder that touch the cylinder on all sides, on the top and on the bottom. What takes up more space, the balls or the air around them?
10. What comes next in the series?

59, 53, 47, \qquad , \qquad -
11. In computer bytes how many 32 KB are in $4 \mathrm{MB}[\mathrm{M}=$ mega or million, $\mathrm{K}=$ kilo or thousand].
12. For each group of 100 women in a certain area, 85 are graduates, 70 are employed, 75 can drive and 80 are married. What is that least possible number of these 100 women who are married, employed, graduates, and can drive cars?
13. The owner of a bicycle shop made a list of his bicycles and tricycles. He counted 153 wheels and 136 pedals. How many bicycles and tricycles did he have?
14. Three congruent rectangles are placed together to form a larger rectangle as shown, with an area of $1350 \mathrm{~cm}^{2}$. Find the area of the square that has the same perimeter as the larger rectangle.

15. If one skip equals four hops and if one jump equals three skips, what is the total number of hops in a hop, a skip, and a jump?
16. If $\frac{1}{3}$ and $\frac{1}{4}$ are lengths of the two sides of a right-angled triangle, find the length of the hypotenuse.
17. A closed rectangular box has a surface area of $1000 \mathrm{~cm}^{2}$. Its length is twice its width and its height is six times its width. What is its volume?
18. Mr Saeed leaves his house for work at exactly 8 a.m. every morning. When he averages 40 miles per hour, he reaches three minutes late. When his average speed is 60 miles per hour, he is three minutes early. To reach his workplace just on time, what should his average speed be?
19. The sum of two numbers is 28 and their product is 7 . Find the sum of the reciprocals of the numbers.
20. Maria's age is twice Fareed's age and one third of Sadia's age. If the sum of their ages is 99 , how old are the three of them?
21. Determine the values of the three different digits d, a, and n.

$$
\text { dna }+ \text { dan }=
$$

\qquad

More Practice

Unit Two

1. Find the squares of:
(a) 0.0362
(b) 9.73
(c) 0.0341
2. Find the square root of the following by prime factorization.
(a) 258064
(b) 136161
(c) 164025
(d) 156816
(e) $6 \frac{394}{1225}$
(f) $3 \frac{457}{784}$
(g) $24 \frac{129}{625}$
(h) $4 \frac{129}{1024}$
3. Find the cubes of the following:
(a) 0.0009604
(b) 0.00007225
(c) 0.00277729
(d) 0.060124516
(e) 132.25
(f) 7613.609536
(g) 1402.5025
(h) 11924.64
4. Find the cubes roots of the following:
(a) 7
(b) 13
(c) 0.32
(d) 0.832
(e) 0.014
(f) 0.6014
(g) 0.052
(h) 0.00278
(i) 39.46
(j) 1.4860
(k) 4.1356
(I) 19
(m) 51.7
(n) 0.008294
(o) 99.1765
5. Some people contributed as many Rs 5 coins as there were number of people in the group. If the amount collected was Rs $15,225,125$, find the amount contributed by each person. [Hint: first find the number of Rs 5 coins in the total contribution. Number of Rs \div coins $=15225125 \div 5$]
6. For a charity drive, a group of students contributed as many Rs 2 coins as the number of students. If the total contribution amounts to Rs $1,25,000$, find the number of students and amount contributed by each. Find the number of Rs 2 coins in the total contribution.
7. A farmer planted as many trees in each row as the number of rows on his farm. If there were 225 rows, find the told number of trees planted.
8. A sports teacher wishes to arrange his students in the form of a square. If he has 1223 students, how many students should join the group to make them stand in the form of a square?
9. The area of a circular region is 5544 sq m . Find its radius.
10. Use the factorization method to find out which of the following numbers are perfect cubes.
(a) 2197
(b) 35937
(c) 17576
(d) 59319
11. Find the cube root of:
(a) 10648
(b) 314432
(c) 42875
(d) 166375
(e) 46656
(f) 456533
12. Find the square root of:
(a) $2 \frac{2786}{4225}$
(b) $1 \frac{4944}{8281}$
13. Calculate square root upto three decimal places.
(a) 0.00021
(b) 79.2485
14. Find the cube root of:
(a) 474552
(b) 2197

Unit Four

1. Convert the following foreign currencies to Pakistani rupees using the table given in the textbook. Give your answer to 2.d.p. where necessary:
i) Dh 2315
ii) Aus \$ 5121
iii) Yen 6005
iv) Yuan 1655
2. Convert the following amount in rupees into the stated foreign currency using the table given in the textbook:
i) Rs $103,549.00$ to US\$
ii) Pak Rs 441 to Indian rupees
iii) Rs 51,014 to Saudi riyals
iv) Rs 6499 to Yen
3. If the rate of exchange between US dollars and the Canadian dollar is US\$ $1=$ Can \$ 1.06, find:
i) the amount in Canadian dollars received in exchange of 800 US dollars
ii) the amount in US dollars received in exchange of 1800 Canadian dollars
4. Mr Ahmed bought an article and sold it to Mr Shakir at a gain of 25%. Mr Shakir sold it to Mr Tahir at a gain of 20\%. How much money did Mr Ahmed pay for the article if Mr Tahir paid Rs 3600 for it?
5. The profit on a certain item is 21% of the cost price. If the profit is Rs 4900 , find the cost price and the selling price of the item.
6. A shopkeeper bought 80 crystal pieces for Rs 48,000 . He found 5 pieces were broken. He sold the remaining pieces at a profit of 40%. The ones left are sold at a profit of 100% on his cost price. Find the overall gain or loss percent.
7. By selling a carpet for Rs 16,500 , the shopkeeper loses 15%. Find the cost price.
8. Salma makes a profit of 30% when she sells a pair of earings for Rs 650 . Find the cost price.
9. A shopkeeper sold two books for Rs 700. One book is sold at a loss of 14%, the other at a gain of 35%. Find the cost price of each book. Also calculate the overall gain or loss percent.
10. Zafar bought a vehicle worth Rs $10,50,000$. He got it increased at 3.5% for 5 years. If he made a damage claim of Rs $1,00,000$, how much would he have paid by way of premium to cover the risk? Depreciation is calculated at 10%.
11. Refer to the table on page 65 of the textbook and calculate the income tax payable in the year 2010, if the taxable income is:
i) $\operatorname{Rs} 4,60,000$
ii) Rs 2,30,000
iii) Rs 7,21,000
iv) Rs 9,75,000
12. A man has a monthly income of Rs 69,000 per month. If the amount of rebate is Rs 65,000 , find his taxable income and tax payable.
13. Miss Florence pays Rs 39,000 as income tax at the rate of 6%. Her brother paid Rs 57,000 at 7.5%. Calculate their taxable incomes.

Unit Five

1. Add the following polynomials:
i) $3 x^{4}-5 x^{3},-3 x^{2}+5 x+1$
ii) $x^{3}-x^{2}-7,2 x^{3}-7 x-4$
2. Subtract: i) $3 x^{3}-10 x^{2}+7 x-3$ from $7 x^{3}-5 x^{2}+9 x+1$
ii) $y^{3}-y^{2}-5$ from $6 y-y^{2}+7+7 y^{3}$
iii) $\quad 2 x^{3}-3 x^{2}+5 x-7$ from $5 x^{2}-3$
3. Multiply the following:
i) $\left(2 x^{3}-3 x^{2}+5 x-7\right)\left(3 x^{2}-5\right)$
ii) $\quad\left(x^{4}-3 x^{2}-4\right)\left(x^{2}-x-4\right)$
iii) $\left(2 x^{2}+6 x-7\right)\left(x^{2}-4 x-2\right)$
iv) $\quad\left(7 x^{3}-3 x^{2} y+11 x y^{2}-6 y^{2}\right)(2 x-7 y)$
v) $\left(7 x^{2}-3 x+11\right)\left(3 x^{2}-5\right)$
vi) $\quad\left(a^{2} p^{2}+b^{2} q^{2}+c^{2} r^{2}\right)(a p+b q+c r)$
vii) $\left(x^{2}-x+3\right)\left(x^{2}+2 x-2\right)$
4. Divide the following as directed:
i) $\left(t^{2}-3 t+2\right) \div(t-1)$
ii) $\quad\left(s^{2}+3 s-4\right) \div(4+s)$
iii) $\quad\left(y^{2}+4 y+3\right) \div(y+3)$
iv) $\quad\left(a^{3}+a^{2}-3 a+9\right) \div(a+3)$
v) $\left(6 a^{3}+5 a^{2}+9\right) \div(2 a+3)$
vi) $\left(2 y^{3}+5 y^{2}+7 y+6\right) \div\left(y^{2}+y+2\right)$
vii) $\quad\left(a^{4}-3 a^{2} b^{2}+b^{4}\right) \div\left(a^{2}-a b-b^{2}\right)$
viii) $\left(6 a^{4}+5 a^{3}+2 a^{2}-a+2\right) \div\left(3 a^{2}-2 a+1\right)$
5. If $a=3, b=-2, c=1$, then evaluate the following expressions:
a) $\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}$
b) $\frac{x^{3}-y^{3}}{x^{2}+x y+y^{2}}$

Unit Six

1. Expand the following:
i) $(b-4)(3 b+7)$
ii) $(7-2 \mathrm{c})(5-3 \mathrm{c})$
iii) $(3 x-5 y)(7 x+6 y)$
iv) $(4 x+3)(4 x+3)$
2. Expand each the following:
i) $(x+1)^{2}$
ii) $\quad(m+6 n)^{2}$
iii) $(5+3 a b)^{2}$
iv) $(a b+c d)^{2}$
3. Expand the following:
i) $(5-a)^{2}$
ii) $(7-2 x)^{2}$
iii) $(2 p-5 q)^{2}$
iv) $(3 m-4 n)^{2}$
v) $\left(a-\frac{1}{2}\right)^{2}$
vi) $\left(\frac{a}{5}-1\right)^{2}$
4. Expand the following:
i) $(2 a+1)(2 a-1)$
ii) $(6 d+5)(6 d-5)$
iii) $(a-2 x)(a+2 x)$
iv) $(x y-6)(x y+6)$
v) $\left(\frac{1}{2}-p\right)\left(\frac{1}{2}+p\right)$
5. Expand and simplify: $(3 x+5 y)^{2}-(2 x-z)(2 x+z)$
6. Evaluate each of the following using formulae:
i) 709^{2}
ii) 1005^{2}
iii) 397^{2}
iv) 999^{2}
v) 39.7^{2}
vi) 601×599
vii) 295×305
viii) 485×515
7. Evaluate the following:

i)	$a^{2}+b^{2}$	if $a+b=9$ and $a b=13$
ii)	$x^{2}+y^{2}$	if $x+y=-9$ and $x y=7$
iii)	$a^{2}+b^{2}$	if $a-b=5$ and $a b=19$
iv)	$(a+b)^{2}$	if $\mathrm{a}^{2}+\mathrm{b}^{2}=13$ and $a b=8$
v)	$(\mathrm{a}-\mathrm{b})^{2}$	if $\mathrm{a}^{2}+\mathrm{b}^{2}=21$ and $a b=-5$
vi)	$16 a^{2}+9 b^{2}$	if $4 \mathrm{a}-3 \mathrm{~b}=11, \mathrm{ab}=5$
vii)	$x^{2}+25 \mathrm{y}^{2}$	if $x-5 \mathrm{y}=12, x \mathrm{y}=13$
viii)	$\mathrm{a}+\mathrm{b}$	if $\mathrm{a}-\mathrm{b}=3$ and $\mathrm{a}^{2}-\mathrm{b}^{2}=33$
ix)	$\mathrm{m}^{2}+\mathrm{n}^{2}$	if $\mathrm{m}+\mathrm{n}=3$ and $\mathrm{mn}=-4$

8. Resolve into factors:
i) $2 x-6$
ii) $6 u-3 v$
iii) $p^{2}+4 p q$
iv) $2 x^{2} y+2 y$
v) $2 a^{2}+b^{2}$
vi) $m^{2} n-m n^{2}$
vii) $2 x^{3}-6 x y^{2}$
viii) $10 a^{2}+15 a b$
ix) $4 x^{2} y-6 x$
x) $8 x^{3}-3 x^{2}$
xi) $6 e f+9 f^{2}$
xii) $12 p^{3} q+15 a p^{3}$
xiii) $24 h^{2} k^{2}-30 h^{3} k \quad$ xiv) $4 y^{2}-4 y-6$
xv) $m^{3} n^{3}-m^{2} n^{2}+2 m n$
xvi) $54 g^{2} h-45 g^{2} h^{2}+18 g^{2} h^{3}$
9. Factorize the following algebraic expressions:
i) $2 \mathrm{a} x+6 \mathrm{~b} x-\mathrm{ay}-3 \mathrm{~b} y$
ii) $p^{3}-2 p^{2}+p-2$
iii) $6 m x-2 n+3 m+4 n x$
iv) $\quad 2 \mathrm{c}^{2} \mathrm{~d}-2 \mathrm{~cd}+4 \mathrm{~d}^{2} \mathrm{c}-4 \mathrm{~d}^{2}$
v) $c d-6 d-2 c+12$
vi) $6 x y+6 z-12 x z-3 y$
vii) $3 \mathrm{rs}+9 \mathrm{r}+2 \mathrm{~s}+6$
viii) $6 \mathrm{c} x+12 \mathrm{dy}+9 \mathrm{~d} x+8 \mathrm{cy}$
ix) $a b+5 a c-b d-5 c d$
x) $x^{5}+6 x^{4}-4 x-24$
xi) $x^{7}-5 x^{6}-9 x+45$
xii) $x^{3}+6 x^{2}-2 x-12$
xiii) $x^{4}+5 x^{3}+3 x+15$
xiv) $x z+2 y z+w x+2 w y$
xv) $14 a b-10 c d-4 a d-35 b c$
xvi) $18 q x-20 p y-15 q+24 p x$
xvii) $9 b+15+20 a+12 a b$
10. Factorize completely by splitting the middle term:
i) $x^{2}+5 x-6$
ii) $x^{2}-2 x-15$
iii) $t^{2}+9 t+20$
iv) $\mathrm{r}^{2}+\mathrm{rs}-12 \mathrm{~s}^{2}$
vii) $x^{2}+4 x-32$
v) $\mathrm{p}^{2}+3 \mathrm{p}-28$
vi) $x^{2}+13 x+30$
x) $3 c^{4}+27 c^{3}+60 c^{2}$
xiii) $x^{2} y^{2}-10 x y+25$
viii) $x^{2}+5 x-14$
ix) $2 r^{3}+10 r^{2}-48 r$
xi) $2 x^{3}+24 x^{2}+70 x$
xii) $10 x^{3}+40 x^{2}-50 x$
xiv) $x^{2}+4 x y+3 y^{2}$
xv) $c^{2}+4 c d-45 d^{2}$
xvi) $c^{2}+12 c d-45 d^{2}$
xvii) $x^{2}+x-30$
xiii) $x^{2}-7 x-30$
xix) $48+14 t+t^{2}$
xx) $22-13 n+n^{2}$
11. Factorization of the form $a x^{2}+b x+c$:
i) $2 m^{2}-11 m+5$
ii) $4 h^{2}-8 \mathrm{~h}-5$
iii) $5 p^{2}-2 p-7$
iv) $36 m^{2}-5 m-24$
v) $8 \mathrm{~g}^{2}-10 \mathrm{gt}-3 \mathrm{t}^{2}$
vi) $4 m^{2}-12 m+9$
vii) $2 x^{2}+7 x+6$
viii) $3 x^{2}+5 x-2$
ix) $4 a^{2}+20 a+24$
x) $12 \mathrm{~b}^{2}+41 \mathrm{bc}+15 \mathrm{c}^{2}$
xi) $12 x^{2}-48 x-27$
xii) $16 y^{2}-6 x y-27 x^{2}$
xiii) $18 x^{2}-21 x-72$
xiv) $3 x^{2}-20 x+32$
xv) $30 x^{2}-23 x-14$
xvi) $18 \mathrm{y}^{2}+21 \mathrm{y}-9 \quad$ xvii) $5 x^{2}-29 \mathrm{xy}-6 \mathrm{y}^{2} \quad$ xviii) $\quad 2 \mathrm{a}^{2} \mathrm{~b}^{2}-13 \mathrm{ab}+15$
xix) $2 p^{2}-11 p q+5 q^{2}$
xx) $8 x^{2}-x y-7 y^{2}$
xxi) $9-15 x+6 x^{2}$
xxii) $5 m^{2}-11 m-12$
xxiii) $\quad 6 c^{2}+23 \mathrm{c}+7 \quad$ xxiv) $\quad 24 a^{2}+59 a+7$
12. Factorize the following using the algebraic identity $a^{2} \pm 2 a b+c^{2}$:
i) $\mathrm{p}^{2}-6 \mathrm{p}+9$
ii) $49+14 r+r^{2}$
iii) $36-12 a+a^{2}$
v) $9 b^{2}-12 b+4$
vii) $25 m^{2}+10 m+1$
ix) $81 m^{2}+90 m p+25 p^{2}$
xi) $121 m^{2}-176 x y+64 y^{2}$
xiii) $5 x+20 x^{2}+20 x^{3}$
xv) $8 c^{3} d^{3}-24 c^{2} d^{2}+18 c d$
xvii) $4 h^{4}-20 h^{3} k+25 h^{2} k^{2}$
xix) $c^{4} d^{6}-22 c^{3} d^{4} e+121 c^{2} d^{2} e^{2}$
xxi) $a^{2}+2 a b+b^{2}-4 c^{2}$
xxiii) $x^{4}-2 x^{2}+1$
xxv) $\frac{49}{81} x^{2}-2 x y+\frac{81}{49} y^{2}$
iv) $4 x^{2}+20 x+25$
vi) $p^{2}-16 p q+64 q^{2}$
viii) $100 g^{2}+20 g+1$
x) $4 x^{2}+28 x y+49 y^{2}$
xii) $16 q^{2}-80 b q+100 b^{2}$
xiv) $100 s^{2} t^{2}-40 s^{2} t+4 s^{2}$
xvi) $18 m^{2}-48 m n+32 m$
xviii) $\quad 49 a^{6} b^{3}+14 a^{3} b^{4}+b^{6}$
xx) $a^{2}-6 a+9-9 b^{2}$
xxii) $x^{2}+10 x+25-121 y^{2}$
xxiv) $16 x^{6}-16 x^{5}+4 x^{4}$
13. Resolve the expressions using the algebraic identity $\mathrm{a}^{2}-\mathrm{b}^{2}$:
i) $x^{2}-9$
ii) $a^{6}-b^{2}$
iii) $4 m^{2}-n^{4}$
iv) $9 a^{2}-4$
v) $169 m^{2}-4 n^{2}$
vi) $225 \mathrm{c}^{2} \mathrm{~d}^{2}-256$
vii) $\mathrm{m}^{4}-121 \mathrm{~m}^{2}$
viii) $48-3 x^{2}$
ix) $3 x^{2}-124^{2}$
x) $450 a^{5}-8 a$
xi) $27 x^{3}-363 x y^{2}$
xii) $45 x^{2}-320 y^{2}$
xiii) $32 x y^{2}-2 x^{5}$
xiv) $75 x-27 x y^{2}$
xv) $d^{2}-\frac{225}{256}$
xvi) $a^{6} b^{4} c^{2}-\frac{361}{d^{4}} \quad$ xvii) $(3 x-5 y)^{2}-49 y^{2}$
xviii) $(a+b)^{2}-\frac{36}{289} y^{2}$
14. Find the cube of the following:
i) $3 x-y$
ii) $7 a-2 b$
iii) $4 x-3 y z$
v) $6 x-7$
vi) $x+\frac{1}{x}$
vii) $2 a b-9 c d$
15. Factorize using the algebraic identities:

$$
\begin{array}{rlrl}
(a+b)^{3} & = & a^{3}+b^{3}+3 a b(a+b) \\
& = & a^{3}+b^{3}+3 a^{2} b+3 a b^{2} \\
& & \\
\text { (a-b) } & = & a^{3}-b^{3}+3 a b(a-b) \\
& = & a^{3}-b^{3}+3 a^{2} b-3 a b^{2} \\
\text { i) } 27 x^{3}-108 x^{2}+144 x-64 \\
\text { ii) } & 27 x^{2}+54 x^{2} y+36 x y^{2}+8 y^{3} \\
\text { iii) } & 343 m^{3} n^{3}-1617 m^{2} n^{2}-231 m n-1331 \\
\text { iv) } & 216-216 x y+72 x^{2} y^{2}-8 x^{3} y^{3} \\
\text { v) } & a^{3}-27 a^{2}+243 a-729 \\
\text { vi) } & x^{3}-\frac{3}{2} x+\frac{3}{4 x}-\frac{1}{8 x^{2}}
\end{array}
$$

16. Find the products using the formulae:

$$
\begin{aligned}
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{3}-b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

i) $\quad(x+y)\left(x^{2}-x y+y^{2}\right)$
ii) $(x+3)\left(x^{2}-3 x+9\right)$
iii) $(2 x-5 y)\left(4 x^{2}+10 x y+25 y^{2}\right)$
iv) $(x+y)\left(x^{2}+x y+y^{2}\right)(x-y)\left(x^{2}+x y+y^{2}\right)$
v) $(x+3)\left(x^{2}-3 x+9\right)(x-3)\left(x^{2}+3 x+9\right)$
17. Factorize using algebraic identities.
i) $x^{3}-27$
ii) $8 x^{3}+27 y^{3}$
iii) $a^{3}+125$
iv) $216 a^{3}-729 b^{3}$
v) $27-(a-b)^{3}$
vi) $(a+b)^{3}-(a-b)^{3}$
vii) $a^{3} b^{3}-\frac{1}{343 c^{3} d^{3}}$
18. Find the value of $x^{3}-\frac{1}{x^{3}}$ when $x=7$.
19. Calculate $x^{3}-y^{3}$ when $x-y=7$ and $x y=9$.
20. Find the value of $x^{3}+y^{3}$ when $x+y=6$ and $x y=13$.
21. Expand the following:
i) $(x+y)(x+2 y)$
ii) $(3 x+s)(2 x-3 s)$
iii) $(2 z+3 w)(4 z-5 w)$
iv) $(2 c d+p q)(c d+3 p q)$
v) $\left(x^{2}-2 y\right)\left(x^{2}+y\right)$
vi) $(4 p-7 q)^{2}$
vii) $(7 x+2 y)^{2}$
viii) $(5 a-3 b)^{2}$
ix) $\left(2 x^{2}-y^{2}\right)^{2}$
x) $(a+4)(a-4)$
(xi) $(x+7)(x-7)$
xii) $(3 x-10 y)(3 x+10 y)$
xiii) $\quad(t-4 u v)(t+4 u v) \quad$ xiv $\quad(5 x+13 y)(5 x-13 y)$
xv) $\left(p^{2} q^{2}-r^{2} s^{2}\right)\left(p^{2} q^{2}+r^{2} s^{2}\right)$
xvi) $\quad\left(\frac{3}{5} x+\frac{1}{7} y\right)\left(\frac{3}{5} x-\frac{1}{7} y\right) \quad$ xvii $\quad\left(\frac{2}{9} m n-9 I\right)\left(\left.\frac{2}{9} m n+9 \right\rvert\,\right)$
22. Expand and simplify each of the following:

$$
\begin{aligned}
\text { i) } & (3 x+7 \mathrm{y})^{2}-(5 x-\mathrm{y})(5 x+\mathrm{y}) \\
\text { ii) } & (2 x-3)\left(4 x^{2}+6 x+9\right)+(3+2 x)\left(9-6 x+4 x^{2}\right) \\
\text { iii) } & (2 x-2)\left(9 \mathrm{a}^{2}-6 \mathrm{a}+4\right)-(3 \mathrm{a}-2)\left(9 \mathrm{a}^{2}+6 \mathrm{a}+4\right) \\
\text { iv) } & \left(2 x+\frac{2}{x}\right)\left(4 x^{2}+\frac{4}{x^{2}}-4\right)-\left(\frac{2}{x}-x\right)\left(\frac{4}{x^{2}}+x^{2}+2\right)
\end{aligned}
$$

23. Evaluate:
i) $463^{2}-453^{2}$
ii) 198^{2}
iii) $\quad 98^{2}-4$
iv) 595×605
24. Use the substitution method to solve these simultaneous equathous.
i) $3 m-7 n=8$
ii) $3 c-d=7$
iii) $8 x+6 y=0$
$5 m-9 n=16$
$6 c+4 d=17$
v) $3 x+7 y=13$
$5 x+2 y=12$
vi) $5 x+2 y=13$
$7 x-7=8 y$
vii) $\quad 4 x-6 y=18$
$8 x+6 y=42$
viii) $15 x-4 y=6$
$6 x-2 y=1$
ix) $3 x-y+14=0$
$2 x+y+1=0$
25. Using the elimination method, solve:
i) $5 a+2 b=18$
ii) $3 c+5 d=1$
iii) $10 a-11 b=2$
$6 \mathrm{a}-2 \mathrm{~b}=26$
$4 \mathrm{c}+7 \mathrm{~d}=2$
$5 a+4 b-28=0$
iv) $x+y+24=0$
v) $24 x-8 y=4$
$3 x+2 y=6$
$12 x-10 y=7$
vi) $21 a+12 b=84$
$7 a+4 b-28=0$
vii) $\frac{x}{2}+\frac{y}{5}=3$
viii) $\frac{x}{5}-\frac{y}{4}=\frac{1}{3}$
$\frac{x}{3}-\frac{y}{4}=1$
$\frac{x}{2}-\frac{y}{3}=\frac{5}{6}$
26. Use the method of your choice to solve: $\frac{3}{4} a+\frac{1}{3} b=8$

$$
\frac{1}{2} a-\frac{5}{6} b=1
$$

27. The perimeter of a rectangle is 76 cm . The length is 17 cm more than the width. Find the length and width.
28. Rahat is 5 years older than her brother. Three years ago she was twice as old as her brother. How old is each of them ?
29. The larger of the two numbers is 16 less than the smaller. Their sum is 6 less than three times the smaller number. Find the numbers.
30. Safia's mother is 4 years younger than her father. When they were married her mother was $\frac{5}{6}$ years as old as her husband. What were their ages when they married?
31. A two-digit number is equal to 7 times the sum of its digits. The number formed by reversing its digits is less than the original number by 21 . Find the original number.
32. Expand using formulae:
a) $(11 x+5 y)^{3}$
b) $\quad(6 p+5 q)^{3}$

Unit Seven

1. Find the values of the unknown marked angles.

Unit Nine

1. In the following right-angled triangles, find the hypotenuse:

2. In the following right-angled triangles, find one of the shorter sides:

3. In the following right-angled triangles, find the required length:

4. Determine whether each of the following is a right-angled triangle:

5. In the following right-angled triangles, find the required lengths:
a)

Find
(i) PR
(ii) PS
(iii) and RS
b)

Find
(i) OZ
(ii) XO
c)

Find QS
d)

Find (i) $A B$
(ii) $C D$
6. In the given figure, $P Q$ is a building with a height of 24 m . L and M are two cars at the same level as Q. $L P=44 \mathrm{~m}, \mathrm{MP}=30 \mathrm{~m}$. Find LM, the distance between the two cars.

7. In the diagram, a vertical pole PQ 10 m is supported by wires $P X=16 \mathrm{~m}$ and $\mathrm{PY}=12 \mathrm{~m}$. Find the distance between X and Y .

8. The lengths of the sides of a triangle are $14 \mathrm{~cm}, 21 \mathrm{~cm}$, and 25 cm . Find the area of the triangle.
9. Find the area of triangles with the following lengths of sides
a) $9 \mathrm{~m}, 12 \mathrm{~m}, 13 \mathrm{~m}$
b) $6 \mathrm{~cm}, 17 \mathrm{~cm}, 18 \mathrm{~cm}$
10. Copy and complete the table below:

$$
2 s=a+b+c
$$

	a	b	c	s	Perimeter	Area Δ
i)	22	17		35	m	
ii)	14	19			50 m	
iii)		6	8	10	20 m	

11. Find the area of the quadrilaterals:
a)

b)

c) Find PR, then the area of the quadrilateral.

12. Find the curved surface area of the cone.

13. A solid metal cone has a base radius of 8 cm and a height of 15.5 cm . It is melted and made into a sphere. Find:
a) the radius of the sphere
b) the surface area of the sphere

14. A solid cone has a height of 17 cm and a slant height of 21 cm .
a) Find its total surface area.
b) Find its volume.
c) If the cone is melted and recasted into a solid sphere, find the radius of the sphere.

15. Find the required lengths in the following triangles:
a)

b)

c)

d)

e)

f)

16. $\mathrm{PS}=\mathrm{QS}=25 \mathrm{~cm}$. The height of the triangle is 14 cm . Find $P R$ and $P Q$.

17. Find the area of the shaded region.

18. The surface area of a sphere is equal to the total surface area of a cone with base radius 7 cm and slant height 11 cm . Find the radius of the sphere.

Unit Ten

1. Prove that a diagonal of a parallelogram bisects it into two congruent triangles.

2. In the figure, line $X Y$ is drawn through the vertex L and parallel to the side MN of $\triangle \mathrm{LMN}$.
a) Which angle is equal to $\angle \mathrm{b}$?
b) Which angle is equal to $\angle \mathrm{c}$?
c) Find $\angle \mathrm{a}+\angle \mathrm{d}+\angle \mathrm{c}$.
d) Find $\angle \mathrm{a}+\angle \mathrm{b}+\angle \mathrm{c}$.

3. In the figure $A B=A C=7 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $\angle A N C=90^{\circ}$.
i) Name the congruent triangle in the figure.
ii) Find BN .

4. $A B C D$ is a parallelogram and E is a point on $A D$. Given that $\angle C D E=40^{\circ}$ and $\angle C E D=55^{\circ}$, find with reason:
i) $\angle \mathrm{ECD}$
ii) $\angle \mathrm{ECB}$
iii) $\angle A E C$
iv) $\angle B A E$

5. In the adjacent figure $\angle \mathrm{ABC}=120^{\circ}, \angle \mathrm{BCD}=110^{\circ}, \angle \mathrm{CDA}=$ 75°, and $B C=C D . B X| | C D$. Calculate and give reasons for your answer:
i) $\angle B A X$
ii) $\angle C B X$
iii) $\angle B D X$

6. In the diagram $A B$ is parallel to the line $E D C . \angle A E D=116^{\circ}$, $\angle B D C=72^{\circ}$, and $B D=B C$.
Calculate stating reasons:
i) $\angle A B D$
ii) $\angle D B C$
iii) $\angle B A E$

7. In the diagram, AE is parallel to $\mathrm{BCD} . \angle \mathrm{BAC}=36^{\circ}$, $\angle A E D=90^{\circ}$, and $A B=A C=C D$. Find the size of $\angle A D E$.

8. In the diagram $A B \| D C$ and $A D \| B C$. The diagonal is AC . Calculate $\angle \mathrm{DCA}$ and $\angle \mathrm{DAC}$ and give reasons for your answer.

9. In the diagram, $P Q|\mid S R$ and $P S \| Q R$.

Calculate and give reasons for your answer.
i) $\angle S R Q$
ii) $\angle S T R$

10. Find the values of x and y in the figures given below. Give reasons for your answers.
a)

b)

Unit Eleven

1. Use the table on page 161 to find the tangents of the angles:
i) $53^{\circ} / 1.33$
ii) $19^{\circ} / 0.344$
iii) $12 \% .013$
iv) 37/0.754
2. Use the table on page 161 to find the sines of these angles:
i) 17°
ii) 39°
iii) 41°
iv) 18°
3. Use the table on page 161 to find the cosines of the angles:
i) 44°
ii) 26°
iii) 67°
iv) 74°
4. Find the measure of A to the nearest degree to complete the table given below:
Value of trigonometric ratio A

1.	$\sin \mathrm{A}=0.669142^{\circ}$	2.	$\tan \mathrm{A}=0.1944$	3.	$\cos \mathrm{A}=0.8572$
4.	$\tan \mathrm{A}=4.7046$	5.	$\cos \mathrm{A}=0.4384$	6.	$\sin \mathrm{A}=0.1450$
7.	$\sin \mathrm{A}=0.9613$	8.	$\cos \mathrm{A}=0.5300$		

5. Write the values of $\sin P, \cos P$, and $\tan P$ in each of the given figures.

6. In the following triangles, find the required lengths. Use the table when needed:
i) $P Q$

ii) $B C$

iii) LM

vi) $P Q$

v) $B C$

vi) $Q R$

7. Find the value of x in the figures given below. Use the table when needed.
i)

ii)

iii)

8. Find the value of x. Use the table when required.
i)

ii)

iii)

iv)

9. Find:
i) $\quad B D$
ii) $B C$ and $A D$ in the given figure

10. Calculate the length of x.

11. How far is it across the river?

12. Refer to the given figure. PQ is a straight line of 25 cm . At point P a boy flies a kite, so that the string $P R$ is vertically above C. Calculate the length of PR.

13. The diagram shows a frame that supports a hanging plant. PQR is a vertical support and QTS is a horizontal support PS, PT, and RS are three more rods. Calculate i) PQ, ii) $R S$, iii) $T S$.

Answers

Unit 1 Operation on sets
Exercise 1.1 (Page 4)
1.
(a) 5
(b) 4
(c) 5
(d) 6
(e) 2
(f) 7
2.
(a) True
(b) False
(c) True
(d) True
3.
(a) $\{6,4\}$
(b) $\{1,2,3,4,6,7,8,9,10,11\}$
(c) $\{1,6,4,11\}$
5.
(a) True
(b) False
(c) True
(d) False
(e) Fa ;se
6.
(a) 2
(b) 1
(c) 8
7.
(b) 4
(c) 8
(d) 6
(e) 2

Exercise 1.2 (Page 10)
1.
(a) $\{0,1,2,3,5,6,7,8,9\}$
(b) $\{6,7,9\}$
(c) $\{6,8\}$
(d) $\{2,3,4,5,6,7,8,9\}$
(e) $\{6\}$
3.
(a) $\{1,3,5,6,7,8,9,10\}$
(b) $\{1,3,9,10\}$
(c) $\{1,2,3,4,6,7,8,9,10\}$
(d) $\{6,7,8\}$
5.
(a) $\{1,2,3,4,5,6,7,8\}$
(b) $\{1,2,3,4,5,6,7,8\}$
(c) \{ \}

Review Exercises (Page 12)
1.
(a) 8
(b) 7
(c) 10
2.
(a) $\{4,5,6,7,8,9\}$
(b) $\{5,6,8\}$
(c) $\{0,1,2,3,4,5,6,7,8,9\}$
(d) $\{5,6,7,8,9\}$
4. (a) 2
(b) 8
(c) Infinite
(d) $2^{4}=16$
5. (a) $\}$
(b) $\{1,2,3,4,5,6\}$
(c) $\{3,4,5,6,7,8\}$

Unit 3 Number systems
Exercise 3.4 (Page 37)
3.
(a) 111111_{2}
(b) 11010_{2}

Unit 5 Polynomials

Review Exercises (Page 78)
3. $20 a^{7}-13 a^{6}+4 a^{5}-23 a^{4}+4 a^{3}+22 a-3$
4. (a) $a^{3}+a^{2}+a+2$ Remainder 1
(b) $\mathrm{a}^{4}+4$ Remainder 1
5. $\frac{253}{1728}$

Notes
\qquad

Notes
\qquad

Notes
\qquad

