Bilingual Teaching Guide

Shams S. Samson

UNIVERSITY PRESS

How to use this guide

This teaching guide provides the teacher the objectives of, and lesson plans for, each unit. Clear, step-by-step guidelines are given for each particular topic.
The activities suggested in this guide can be carried out easily using the materials suggested. If something is unavailable, the materials or the activity can be modified to suit the teacher and students. Whilst doing these activities, it is important to relate them to the main topic that is to be taught. The time spent on the activities may vary from class to class, but nevertheless they must form an integral part of the period as it involves students more into the lesson.
Mathsmagic 7 contains ample exercises for each topic. The lesson plans are flexible enough to be followed according to the school's own time frame. I have indicated the number of periods that are required to complete each unit, but an individual school can adjust these according to the time available and also the ability of the students.

Table of Contents

How to use this guide iii
Unit 1 Sets 2
Unit 2 Rational Numbers 14
Unit 3 Decimals 22
Unit 4 Exponents 28
Unit 5 Square Root 32
Unit 6 Direct and Inverse Proportion 38
Unit 7 Financial Arithmetic 46
Unit 8 Algebraic Expressions 52
Unit 9 Linear Equations 64
Unit 10 Fundamentals of Geometry 68
Unit 11 Practical Geometry 80
Unit 12 Circumference, area, and Volumes 88
Unit 13 Information handling 94
Extra exercises 98
Answers 103
iii

3

15

23

29

33

39

47

53

65

69

81

89

95
98

103

!ب!1: سيت

ب! ب: ناطت اعراو
ب! 3: كور اعثاري
بب4: وتقنا
ب!5: جزرالمرلج
!ب!6: تاسب راست اورنتامبمكوب
بـ7: اليكن حاب
ب! 8: الجبرى اظهارـي
ب!9: خطمساواتين
!ب!10: جويمّمرى (علم ننمس) ع نبيارى تصورات
!ب 11: عكل بجيوبمّك
!ب 12: كيط ،رقباور.م
!ب13: معلوات وارى
اضافُشثين
جوابات

UNIT 1 SETS

OBJECTIVES

The teacher should cover the following concepts:

- Forms of sets
- Operations on sets
- Venn diagrams

LEARNING OUTCOMES

The students should be able to:

- understand the concept of sets
- identify different terminologies/key words and symbols related to sets
- perform different operations on sets like union, intersection, or difference
- note the sets in three different forms i.e. descriptive, tabular, and set builder notations
- identify, and know the meaning of different symbols and terminologies used with reference to the sets, e.g. "element", " Θ ", " U ", union, " \cap " intersection, "-" difference

DURATION: Teaching: 8 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Sets (25 minutes)

Begin by asking the students to name of a few sports (hockey, cricket, football, etc.). Write these on the board. Then ask them to name the foods they enjoy (briyani, chicken karhai, dal, etc.). Write these on the board too. Explain that these form a set. Explain that sets are groups which have some things in common, as in the first example, all the items listed are games and the next is a list of examples of favourite foods.
Ask the students to write sets for the following:
i. a set of English alphabets from a to e
ii. a set of numbers from 1 to 5

The students may write them without curly brackets which gives you an opportunity to explain that sets should be written within. Then write these sets on the board. The students will correct/make changes in their work if necessary.
Explain that sets can be written in (i) descriptive and (ii) tabular form.

باب1:
تحر بـيك متاصم
 -
 سيؤر 6 تصور بحه كيكي -

وورانه~

1
يّ (25 ت

 لا
 - -ii

Class exercise (10 minutes)

After the explanation, ask the students to solve Exercises 1.1a and 1.1b, questions a, b , and c . After allowing the students a few minutes lead in solving the given questions, you may solve them on the board as well so the students are able to tally their working and solutions.

Homework

Exercises 1.1a and 1.1b, questions e and f to be given as homework.

2. LESSON PLAN

Forms of sets (25 minutes)

Recap the descriptive and tabular forms of sets; it would be a good idea to use the board as well as oral, class participation, e.g. Descriptive form: Set of sports in which a ball is used. Tabular form: \{hockey, cricket, football\}
Using this example, the word "element" and its symbol $€$ should be explained, which means 'is an element of the set'. Taking this further a question could be asked: Is Ludo a part of this set? Of course 'Ludo' cannot be considered as an element of this set as a ball is not used in this game.
Ask the students if there is another way of writing sets-builder notation.
For example, a set of natural numbers from 1 to 5 is $\mathrm{N}=\{1,2,3,4,5\}$.
Explain that ' x ' $\{x \mid x \in \mathrm{~N}, x<6\}$ represents an element. The symbol ' \mid ' stands for 'such that'.

The above set is read as Set N is a set of all the elements x, such that, x is a natural number less than 6.

Class exercise (15 minutes)

Ask the students to solve Exercise 1.1c. Again, after giving them a head start of two or three sums, solve the exercise on the board, so the students are able to grasp/verify the correct method of solving the given sums.

3. LESSON PLAN

Union of sets (25 minutes)

Draw 3 apples and 3 oranges on either side of the board and ask the students what kinds of sets are drawn on the board and how many. On receiving the answer, continue and ask how many sets there will be if both sets are joined. The students will probably give the correct answer, so explain that when two sets are put together as one, it is known as a 'Union' of sets which is represented by the symbol ' U '.

كان بیّ ثپت (10 ثنط)

،وم ورك

2
سيت كَ اقٌام (25 ننـ)

.

3
سييوّ 6 اتصال (25 هنط)

Continue explaining with the help of examples in the textbook. Emphasize that when two or more sets are united (combined), all the members are included, but the common members occurring more than once, will not be written over and over again.
Write the following example on the board to explain this concept further.
$\mathrm{A}=\{1,2,3,4\}$,
$B=\{2,4,6,8\}$

Find $A \cup B$
$\mathrm{A} \cup \mathrm{B}=\{1, \underline{2}, 3, \underline{4}\} \cup\{\underline{2}, \underline{4}, 6,8\}$
$A \cup B=\{1,2,3,4,6,8\}$ (The underlined elements are common in both the sets, so they are written only once in the answer).

Class exercise (15 minutes)

Ask the students to solve Exercise1.2a, questions 1a and b.
The concept of a 'null' set should also be introduced here with examples on the board.

Homework

The students will complete Exercise 1.2a, question 1 as homework.

4. LESSON PLAN

Intersection of sets (20 minutes)

It is always a good idea to recap concepts/work done in the previous class, in this case 'union of two sets'. The sums given as homework could be used for this purpose. They may be worked out on the board to help introduce 'intersection' of sets.
Underline the common elements in all the sums which will help to explain intersection. The symbol for intersection should be written on the board too when the term is introduced. The example on page 3 should be used for further reference and explanation.

Class exercise (20 minutes)

Ask the students to solve Exercise 1.2a, questions $2 \mathrm{a}, \mathrm{b}, \mathrm{c}$, following the example done on the board. Go round the class to see if the students are facing any problems as they work.

Homework

The students will be given Exercise 1.2a, questions 2d and e as homework.

$$
A=\{1,2,3,4\}
$$

$B=\{2,4,6,8\}$

- معلم تمكي AUB

$$
A \cup B=\{1, \underline{\mathbf{2}}, 3, \underline{4}\} \cup\{\underline{\mathbf{2}}, \underline{\mathbf{4}}, 6,8\}
$$

،وم ورك

4 4
سيطون 6 تقاطع (20 هنط)

،وم ورك

5. LESSON PLAN

Difference of sets (20 minutes)

A recap with the same sets should be done, i.e

$$
A=\{1,2,3,4\}
$$

Union means to Unite/Combine and the symbol is U
Intersection means Common. \cap

$$
B=\{2,4,6,8\}
$$

Explain that another operation of sets is the "difference" whose symbol is a minus sign $(-)$. Thus the set will be written as $\mathrm{A}-\mathrm{B}$.
$A-B=\{1, \underline{\mathbf{2}}, 3, \underline{\mathbf{4}}\}-\{\underline{\mathbf{2}}, \underline{\mathbf{4}}, 6,8\}$ (The common elements, in bold, are taken away and the rest are written as the answer), which in this case is $\{1,3\}$.
$\mathrm{A}=\{1,2,3,4\}$
$\mathrm{B}=\{2,4,6,8\}$
$A-B=\{1,3\}$ (The example on page 3 should be used).

Class exercise (20 minutes)

Ask the students to solve Exercise 1.2a, questions 3, a to c.
After the students have completed the class activity, explain the concept of 'Universal Set', which is a set containing all the members of all the given sets.
e.g. $\quad \mathbf{U}=\{1,2,3,4,5,6,7,8,9,10\}$
$\mathbf{A}=\{1,2,3,4\}$
$B=\{2,4,6,8\}$
At this stage, the concept of 'complement' should be introduced. For example, if we have A^{\prime} this means that the set should be solved with the operation of difference A^{\prime} is $U-A$.
Mathematically: $\quad \mathrm{U}$ - A

$$
\text { Answer }=\begin{aligned}
& \{\mathbf{1}, \underline{\mathbf{2}}, \underline{\mathbf{3}}, \underline{4}, 5,6,7,8,9,10\}-\{1,2,3,4\} \\
& \{5,6,7,8,9,10\}
\end{aligned}
$$

Homework

Exercise 1.2a, question 3 d and e to be given as homework.

6. LESSON PLAN

Disjoint and overlapping sets (25 minutes)

Continue with the concepts of 'Universal' and 'Complement' with a recap on how a complement (A^{\prime}) is solved. The previous example of Lesson 5 may be repeated after which the students will be engaged in the class activity.

$$
A=\{1,2,3,4\}
$$

 اتصال 6 مطلب
B = \{2, 4, 6, 8 $\} \quad$ تقط 6 مطلب

 كهع گيا بـ بحكراس
$A=\{1,2,3,4\}$
$B=\{2,4,6,8\}$

$$
\begin{aligned}
& \mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\} \quad \text { پطر } \mathrm{A}=\{1,2,3,4\} \\
& \mathrm{B}=\{2,4,6,8\}
\end{aligned}
$$

$$
\begin{aligned}
& U-A_{\leftarrow} A^{\prime} \\
& \text { U-A } \\
& \text { حابِّ طور پ: } \\
& \{1,2,3,4,5,6,7,8,9,10\}-\{1,2,3,4\} \\
& \{5,6,7,8,9,10\} \\
& \text { جاب }
\end{aligned}
$$

Class exercise (15 minutes)

The students will begin solving Exercise 1.2b. Solve the first question on the board which the students will copy and follow.

Homework

The students may be asked to complete the class activity as homework.

7. LESSON PLAN

Venn diagrams (30 minutes)

Introduce Venn diagrams with the help of the textbook. An interactive class will help the students to understand this concept better. If a student has a question the class may be asked to answer it. This will help the students to understand that questioning is also a form of learning. Use coloured chalk/markers when drawing diagrams on the board.
Begin by explaining that Venn diagrams are also used in 'sets'. Read the information given about Venn diagrams from page 7 and explain it to the class. Explain the different parts of a Venn diagram as shown on page 8 (i) Representation of Sets through Venn Diagrams. Draw it on the board using 3 different colours if possible. Ask the students to draw it in their exercise books.
Go on to explaining what subsets and disjoint sets are using the examples from page 8, and make diagrams on the board which the students will copy in their exercise books.
Next, refer to the diagram 1.3b on page 9 and ask the students to use the data from the given example to make a similar diagram. Show them how to do this by drawing the diagram on the board, and then, step by step placing of the data in the diagram.

Review the difference between 'intersection' and 'union' of sets. Use the picture and the data given below it to show union and intersection of sets. Then discuss how they would draw a Venn diagram to show the union of sets with the data given in example 1.3 c , also on page 9.

Class exercise (10 minutes)

Ask the students to draw a Venn diagram using the data in the example 1.3c.

Homework

Ask the students to read page 10 and try to draw diagrams from 1.3d and 1.3e.

 ،وم وركط 7-7600
, وين اثڤ ا

 6 اكر ,

 كال بين ثق (10 من)

هو ورك

8. LESSON PLAN

Venn diagrams (20 minutes)

The lesson should begin with a discussion on whether it was possible for the students to draw the Venn diagrams showing 'difference' and 'complement' of sets.
Solve any problems faced and explain what should be done.

Class exercise (20 minutes)

Ask the students to do Exercise 1.3 while you walk round to check if they are able to solve the exercise.

Homework

The students will complete Exercise 1.3 and learn the points given in the Summary on page 11 of the textbook.

9-10 LESSON PLAN: Summary and Review Exercises

 ،وم ورك

UNIT 2 RATIONAL NUMBERS

OBJECTIVES

The teacher should cover the following concepts:

- Definition of rational numbers
- Operations on rational numbers

LEARNING OUTCOMES

The students should be able to:

- represent rational numbers on a number line
- define and understand rational numbers
- know the commutative, associative, and distributive properties
- add, subtract, multiply, and divide, rational numbers
- compare and arrange rational numbers in ascending or descending order
- apply the commutative, associative, and distributive properties.

Duration: Teaching: 5 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Rational numbers ($\mathbf{2 5}$ minutes)

Begin by asking whether the students know what a fraction is. Some students may answer $\frac{3}{4}, \frac{1}{3}$. Using some of the examples given by the students, explain that these are also called rational numbers.
Rational numbers are those numbers which can be written in a form where one number may be divided by another. It is also referred to as a ratio, which is actually a comparison. Explain to the students that there are natural numbers starting from 1, $2,3 \ldots$, whole numbers are from $0,1,2,3,4$, integers are $\ldots-2,-1,0,+1,+2,+3$, +4 . Rational numbers are both, negative and positive. Ask the students to read the example on pages 13 and 14 of the textbook. Write the fraction $\frac{3}{0}$ on the board and explain that a rational number cannot have $\mathbf{0}$ as its denominator. Then proceed to show the students how to draw a number line one step at a time. This will be done on the board. It would help if you went around the class to assist the students who are having problems in drawing the number line. It is important that every student is able to draw a number line independently.

Explain that these numbers are integers and are also used as rational numbers. They can be represented on a number line as shown on page 14.

! ب! : ناطت اعرار

تر تريك بتامـ
:
"
共

وراني

1-
ناطتّ اعراو (25 هنط)

 آربى هو تا

 كاكا گیا ب-

Class exercise (15 minutes)

After explaining rational numbers, ask the students to solve Exercise 2.1, questions 1 to 4.

Homework

The students will do Exercise 2.1 question 5 and complete their class work if they were unable to do so.

2. LESSON PLAN

Operations on rational numbers (10 minutes)

Conduct a warm up session with the students asking them to give some examples of positive and negative rational numbers whichcan be written on the board. Ask the students to define the words 'sum' and 'difference'. Use the examples given on page 15 to explain how addition and subtraction of rational numbers is done. It is important to mention that the dots between the numerators and the denominators show that multiplication must be done. If they are taken through the examples step by step, the students will be able to understand this clearly as in the numerators, 15.7 is 15×7, 20.11 is 20×11.., the next step shows that the product of 15 and 7 is 105 and $20 \times$ 11 is 220 . Since the students are familiar with addition and subtraction of fractions, this example follows an alternate pattern of solution i.e. using dots (as in algebra) in place of a multiplication sign.

Class exercise ($\mathbf{3 0}$ minutes)

Ask the students to solve Exercise 2.2, question 1a to e. While they solve the questions, work them out on the board a few minutes after the students have begun working, so that they are able to tally their solutions and answers when they are done.
Now explain that just as $2-2=0$, rational numbers also produce the answer zero, when two like numbers have a different sign, e.g. $+2-2=0 ;-9+9=0$. Such rational numbers that produce the answer, zero, are additive inverses of each other. An additive number is a number which, when added or subtracted, produces zero as an answer. The example at the bottom of page 15 should be used to explain this concept further.
Ask the students to solve Exercise 2.3 questions a and b. After the students have completed both sums, solve them on the board.

Homework

Ask the students to complete (i) Exercise 2.2, question 1f, and question 2a to d, and (ii) Exercise 2.3, questions c and d .

،وم ورك

2-
 ,

辑, ب.

،وم ورك

طا

3. LESSON PLAN

1. Multiplication of rational numbers (10 minutes)

Begin with a recap of rational numbers and review the fact that the word 'product' means multiplication. Ask the students to read the text on multiplication of rational numbers given on page 16. The alternative procedure may be explained where one numerator and one denominator that is divisible by the highest common factor are cancelled with that same number, diagonally or top and bottom.

$$
\frac{4}{5} \times \frac{60}{36}=\frac{12}{9} \text { further reduced }=\frac{4}{3}
$$

In the above example, 4 and 36 will be reduced by 4 , and 5 and 60 will be reduced by 5. Explain which sign should be put with the answer as stated in the two basic rules given on page 16.

Class exercise (10 minutes)

The students will then be asked to solve Exercise 2.4, questions a to e. Help them where need be.

2. Division of rational numbers (5 minutes)

Explain division of rational numbers in which the division sign is changed to multiplication, and the rational number after the sign is inverted so that the numerator takes the place of the denominator and vice versa. The process of multiplication is followed. The rules of the signs remain the same as in multiplication. The text and examples on page 17 should also be used further explanation.

Class exercise (5 minutes)

The students will solve Exercise 2.5, questions a and b.

3. Reciprocal (5 minutes)

Begin with a recap of 'additive inverse' which gives zero as the answer. Page 18 will be read and explained (multiplicative inverse and reciprocal of a rational number) with the help of the text and examples given.

Class exercise (5 minutes)

Ask the students to solve Exercise 2.6, questions 1a and b. While they work, solve the sums on the board.

Homework

Assign Exercise 2.4, questions f-i, Exercise 2.5, question c; and Exercise 2.6, question c.

3 3
ناطّ اعراوكَ

ناطت اعراوكّ تّتّم (5 ثنط)

كال بّل ثتّ (5 ثن

3 _معكوس (5 ثنـ)
اتشا,

كاب هيّ ثتّ (5 ثنط)

،وم ورك

4. LESSON PLAN

Commutative property (25 minutes)

Begin by explaining the commutative property over addition as done on page 19. The given example will be used to show what is done in this case. Any questions should be answered immediately to ensure that the students have understood this concept.
The same procedure should be followed to explain the commutative property over multiplication as given on page 20. Once the students have understood, move on to the associative property over addition and multiplication (page 20), and then on to the distributive property of multiplication over addition and subtraction as explained on page 21. If the class is interactive, the students will feel comfortable in asking questions which will allow them to understand these important concepts better.

Class exercise (15 minutes)

Solve Exercise 2.7 on the board, one question at a time, explaining the property being used with each of the sums.

5. LESSON PLAN

Associative property (25 minutes)

The lesson should begin with a recap of the concepts covered in the previous class to reinforce the properties. After discussing and reviewing the commutative, distributive, and associative properties, tell the students that the next topic will be related to the comparison of rational numbers and putting them into ascending or descending order. The students are aware of ascending and descending order but are confused about which is which, at times. Ask them to remember that in ascending order the numbers are written from the smallest to the biggest and that descending order is just the opposite. This is a good practice for concepts such as greater or lesser than, etc. which confuse the students.
A number line may be used to compare two rational numbers as shown on page 22. Go on to explain that in rational numbers the denominators must be common so as to get the required order. This is explained in Method 1 on page 22.
Whatever is multiplied by the denominators to make them common, should be multiplied by the numerators too. Step-wise explanations have been given.

Class exercise (15 minutes)

The students will be asked to solve Exercise 2.8, questions $1 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, and e; question $2 \mathrm{a}, \mathrm{b}$, and c ; and question 3 a and b .

Homework

The students will be asked to solve Exercise 2.8, question $1 \mathrm{f}-\mathrm{i}$, question 2 d to f , question 3 c , and question 4.

6-7 LESSON PLAN: Summary and Review Exercises

فاميت بإلـ (25 هن)

كان بيّثت (15 بت

5
فاميت تالازم (25 نـ

 كآ بي

هوم ورك طلا كَ كا با

UNIT 3 DECIMALS

OBJECTIVES

The teacher should cover the following concepts:

- Conversion of decimals to rational numbers
- Terminating and non-terminating decimals
- Approximate value

LEARNING OUTCOMES

The students will be able to:

- convert rational numbers to decimals and vice versa
- define and identify terminating and non-terminating decimals
- express given rational numbers as decimals; indicating terminating or recurring decimals
- round off decimals.

DURATION: Teaching: 4 periods; Summary and Review Exercise: 2 periods

1. LESSON PLAN

Decimals (25 minutes)

Ask the students to name some prices of general items used in daily life. These responses should be written on the board, e.g. Rs 5 , Rs 12.50, Rs 75, Rs 90.99, etc.
Focussing on the decimal figures given by the students, if none have been provided, write a price with rupees and paise and explain that the point between the rupees and paise is known as the decimal point. The students should be asked to read the definition on page 29.
Proceed to explain the place value of the numbers in the decimal places, e.g. in $34.678 \ldots . .6$ is in the tenths place, 7 is in the hundredths place, and 8 is in the thousandths place. These decimal places can be shown as fractions. So, 0.6 will be written as $\frac{6}{10}, 0.07=\frac{7}{100}$, and $0.008=\frac{8}{1000}$.
Explain that fractions must always be reduced to their lowest terms wherever possible, e.g. $\frac{6}{10}=\frac{2}{5}$ and $\frac{8}{1000}=\frac{1}{125}$.

Class exercise (15 minutes)

Ask the students to solve Exercise $3.1 \mathrm{a}, \mathrm{b}$, and c . As usual, the sums will be solved on the board with class interaction.

Homework

The students will solve Exercise 3.1 d, e, and f.

نتّت كمر اوثاري|ور ئيكتم كمراءثاري

$$
\begin{aligned}
& \text {, }
\end{aligned}
$$

ووراني

1
كورِ الوثاريِ(25 ننط)
اتصارطبا

$$
12.50 \text { روپ، } 75 \text { روپ، } 90.99 \text { روپپ ونيره- }
$$

تزيف رُّهي -

،

2. LESSON PLAN

Terminating and non-terminating decimals (25 minutes)

Refer to pages 31 to 33 of the textbook to explain the concepts and working of fractions as terminating and recurring decimals. There are a few quick ways of knowing whether a decimal is a terminating or non-terminating decimal. One of them is: If the denominator of a rational number has no prime factors besides 2 and 5 then it is a terminating decimal. If the denominator is a prime number then it is a non-terminating decimal.

Class exercise (15 minutes)

Ask the students to solve Exercise 3.2, question $1 \mathrm{a}, \mathrm{b}, \mathrm{c}$ and question 2 a .

Homework

The students will complete Exercise 3.2 as homework.

3. LESSON PLAN

Rounding off (25 minutes)

Sometimes decimal answers are very lengthy, e.g. 0.032456 . Such a fraction may be rounded off to make the length reasonable. To round off a decimal, we need to know the place values of the numbers after the decimal point. Rounding off is done as the question requires, e.g. 1 place, 2 places, 3 places, etc.

tens	units	point	tenths	hundredths	thousandths
4	5	.	6	7	8

The tenths place is called the $1^{\text {st }}$ decimal place.
The hundredths place is called the $2^{\text {nd }}$ decimal place.
The thousandths place is called the $3^{\text {rd }}$ decimal place.
Write the decimal on the board and explain the process of rounding off, e.g. 34.5386.

To round off this number to 1 decimal place, we look at the second number after the decimal point (which is the hundredths place and the number is 3). Therefore, we write 34. $\underline{5}$. If the next number was 5 or greater, we would increase the value of the number in the tenths place by one, and 5 would become 6 . In this case since the next number is 3 , it remains as 5 and does not increase by one. Hence the answer is 34.5 .
If $34.5 \mathbf{3} 86$ is rounded off to two decimal places which is 3 , the next number is 8 which is greater than 5 , so 3 becomes 4 . Hence 34.54 is the required answer.
In the same way, if $34.53 \underline{8} 6$ is to be rounded off to three decimal places, the third number is 8 and the number after 8 is 6 . Since 6 is greater than 5 , the number 8 has to be increased by one which then becomes 9 . Hence the required number is 34.539 .

كان بيّثت (15 ثن)

هو ورك
طبّ
3- 3
كمل عر, (25 نـ

兵

 34.54 5،6 -5

Class exercise (15 minutes)
Ask the class to solve Exercise 3.3, questions 5 a, b, c. After that they should solve questions 2 and 3 , a and b .

Homework

Ask the students to complete Exercise 3.3 questions 2, 3, and 5 as homework.

4. LESSON PLAN

Rounding off (15 minutes)

Through an interactive session involving questions and discussion, the concepts covered in the entire unit should be reviewed and any problems faced by the students should be solved.

Class exercise (25 minutes)
Ask the students to complete questions 1 and 4 of Exercise 3.3.
5-6 LESSON PLAN: Summary and Review Exercises

كآ بيّثت (15 نت)

،

شثت 3.3 (15 هن

كآ بی بیث (25 ثن

UNIT 4 EXPONENTS

OBJECTIVES

The teacher should cover the following concepts:

- Exponents and indices
- Laws of exponents and indices

LEARNING OUTCOMES

The students will be able to:

- identify base, exponent, and the values
- use rational numbers to deduce laws of exponents
- demonstrate the concept of powers of integers
- apply laws of exponents to evaluate expressions.

DURATION: Teaching: 3 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Exponents and indices (20 minutes)

Write an algebraic term on the board..... $4 x^{2}$
4 = coefficient; $x=$ base or variable; 2 = index, or exponent, or power.
Explain the parts of an algebraic term as shown above. Then focus on the power (index). Review past work, e.g. 2^{2} is two times two, which is 4 .
Thus, $2^{2}=2 \times 2=4 ; 3^{2}=3 \times 3=9$; and $4^{3}=4 \times 4 \times 4=64$.
If the students answer, then write the answer(s) on the board; otherwise just write the answers and relate that the squares and cubes are called exponents or powers. Index may be a new word for the students. There are some laws of index which we need to know in order to solve related sums/exercises.

Class exercise (20 minutes)

Ask the students to solve Exercise 4.1, questions 1 and 2 a-c. Go around to make sure that the students have grasped the concept.

Homework:

The students will solve Exercise 4.1, questions 1 and 2 as homework.

ووم ورك

2. LESSON PLAN

Laws of exponents (i, ii, and iii) ($\mathbf{2 5}$ minutes)
Begin by reading and explaining (law i and law ii) from the textbook (pages 45 to 47) and write and explain one example each on the board. When the students have understood these two laws, go on to explain laws, iii a, b, and c, working out one example of each as done before.

Class exercise (15 minutes)

Choose a different example from the ones done on the board for the laws explained in class and ask the students to copy them in their exercise books, which they will then solve. They may be asked to check their working from the textbook once the sums are completed. Errors may be corrected.

Homework

Ask the students to go over the examples they have worked out in their exercise books in class, and review the rules explained. Any problems or questions should be noted down to be discussed in the next class.

3. LESSON PLAN

Laws of exponents (iv-vi) (25 minutes)

Begin with a recap of the laws taught in the previous class. If any students have problems/questions regarding these, they should be discussed and answered. Move on to explaining the remaining three laws following the procedure of the previous lesson.

Class exercise (15 minutes)

Ask the students to solve Exercise 4.2, questions 1 and $2 \mathrm{a}, \mathrm{b}$, and c. On-the-spot checking should give a fair idea of whether the students have understood or not.

Homework

Ask the students to solve Exercise 4.2, questions 1 and 2, d, f, g, h, I, m, and o as homework.

4-5 LESSON PLAN: Summary and Review Exercises

 كـع

 بوم ورك
 طبا كـ 3-
ro ; أْ يُ ان اوا

كان بيّثت (15 ثن)
لط

،وم ورك

UNIT 5 SQUARE ROOT

OBJECTIVES

The teacher should cover the following concepts:

- Perfect squares
- Square roots

LEARNING OUTCOMES

The students will be able to:

- define and test a perfect square
- identify and apply properties of a perfect square
- define square roots of natural numbers and recognize notations
- find square root of natural numbers, fractions, and decimals by division and factorization method
- solve real-life problems involving square roots.

DURATION: Teaching: 4 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Perfect squares (25 minutes)

Draw the following figure on the board.

A perfect square has the same number of rows and columns as shown in the diagram on page 54 ($3 \times 3=9$ squares).
9 is called the perfect square and 3 is the number which when multiplied by itself gives that perfect square.
A perfect square may be defined as the product of a number multiplied by itself, e.g. $1 \times 1=1 \quad 2 \times 2=4 \quad 3 \times 3=9 \quad 4 \times 4=16$.
$1,4,9$ and 16 are the perfect squares and $1,2,3$, and 4 are the square roots of these numbers. These are the roots of natural numbers.

جزرالمركِ
 !ب5:

,
 -- جزرالرنّ

 كول تتيم ارؤلّ

$$
\begin{aligned}
& \text { ووراني }
\end{aligned}
$$

1

6الّ رنّ (25 منط)

1	2	3
4	5	6
7	8	9

Class exercise (15 minutes)

Ask the students to solve Exercise 5.1, question 1, the table, and a, b, and c in their exercise books.

Homework

Exercise 5.1 question 2 a-f.

2. LESSON PLAN

Square root (25 minutes)

Explain that square root can be calculated using two methods: factorization and division.
Refer to the step by step process given in the example on page 58 to explain how the square root is calculated using the factorization method. Use a few more simple numbers to calculate the square root by factorization on the board, e.g. 64, 72, etc. Once the students have understood this thoroughly, move on to the explanation of calculating the square root of fractions.
This method is also applied to find the square root of natural numbers, fractions, and decimals. Referring to the example in the book on page 59, solve $\frac{256}{625}$ on the board taking the numerator and denominator. For a decimal the square root is calculated by changing the decimal into a fraction, e.g. $43.56=\frac{4356}{100}$, and is then solved using the same method for the solution of fractions. It is important to remember that the answer must be changed back into a decimal. $\frac{4356}{100}=\frac{66}{10}$ when changed into decimal form is 6.6. Therefore the answer is: $\sqrt{43.56}=6.6$

Class exercise (15 minutes)

Ask the students to solve Exercise 5.2a, questions b, e, and i. As usual, after giving them a head start of about 3 minutes, these sums should be worked out on the board to guide the students.

Homework

The students will complete Exercise 5.2a as homework.

3. LESSON PLAN

The long division method ($\mathbf{2 5}$ minutes)

Ask the students to give the square root of some of the numbers like 144, 64, 9, etc. The definition of perfect squares should be revised as the numbers we get when we multiply a number by itself and that number is the square root. Then explain to the class that square root can also be calculated by another method; the division method.
Beginning with the first example on page 60, go through each step from the textbook. Then work out the second and third examples on the board making sure that the students have understood every step. This can be done by asking the students what

كاب بيّثت (15 نت)

،

2
جزر المرنّ (25 نـط)

 ارْنبنايا

 كان يّثت (15 بت)

هو ورك

3ـ"

苑 ك ك : كا ك ,

the next step is right through to the end of the solution of the sum. They will then be asked to check whether the answer is correct or not.
Explain that as in the factorization method, the same procedure is applied for the calculation of the square roots for decimal fractions in the division method.

Class exercise (15 minutes)

The students will be asked to solve Exercise 5.2b, questions a, e, and f. Go around the class to see that the students are following the steps given on pages 60 and 61. Any problems or questions should be addressed immediately so that they are able to understand this concept clearly.

Homework

Ask the students to complete the remaining sums of Exercise 5.2 b as homework.

4. LESSON PLAN

Problems involving square roots (20 minutes)

There all several problems involving square roots in daily life. First explain and give the hint that to recognize a problem involving square root, look for the data to be arranged in equal rows and columns. For example, the number of students, or people, or flower pots, should be arranged in a square formation with equal rows and columns. Secondly, discuss the problem in which the area of a square is given and one has to find the length of each side by calculating the square root. These are some of the common types of problems. The students should be asked to read examples 1 and 2 on pages 63 and 64 to see how problems related to calculating the square root are solved.

Class exercise (20 minutes)

Read and discuss how the four problem sums given in Exercise 5.2c should be solved. If time allows, the first one should be solved on the board which the students will copy in their exercise books.

Homework

The students will solve questions 2, 3, and 4 of Exercise 5.2c as homework.

5-6 LESSON PLAN: Summary and Review Exercises

اور يـيّنٍ بنا

كاس بیّ شثّ (15 هن)

،وم ورك

4
جزر المنع ع عوالات (20 منط)

كاب بيّ ثپت (20 هنط)

،وم ورك
طبا ثت 54.2c 6 - بوال 2، 3 اور 4 بهور ،وم ورك

UNIT 6 DIRECT AND INVERSE PROPORTION

OBJECTIVES

The teacher should cover the following concepts:

- Continued ratio
- Time, work, and distance

LEARNING OUTCOMES

The students will be able to:

- define direct and indirect proportion
- solve real-life problems using unitary and proportion methods
- find the relationship between distance and time
- convert units of speed.

DURATION: Teaching: 3 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Direct and inverse proportion (30 minutes)

A few days before beginning this concept, ask the students to bring a recipe of any dish to the class.
Use the textbook to explain the concept of ratio and continued ratio. The example on page 67 (top) of the textbook would help the students to understand how relevant sums are solved. Ratio is the comparison between two or more like quantities. The quantities can be written in the format $4: 3$ which is read as 4 is to 3 . This may also be written as $\frac{4}{3}$. The order of the ratio cannot be changed. It remains the way it is given. Explain the term proportion as a comparison of two ratios, e.g. $4: 3:: 8: 6$ which is read as 4 is to 3 as 8 is to 6 .
After this, read the definition of direct proportion given at the top of page 66 of the textbook. The recipes brought in by the students should be used as concrete examples to explain this concept.
For example, for 1 kg meat, 4 medium sized onions, and 500 g of tomatoes are required. If the quantity of meat was to be reduced to half, the other ingredients would also have to be reduced to half. In the first case, more people would be able to eat the prepared dish and in the second case, it would be sufficient for only half that number.
Ask the students that if 2 pens cost Rs 4 , how much will 4 pens cost? Will they cost more or less? Some of the students may give the logical answer that if 2 pens cost Rs 4 then 4 pens will cost Rs 8 . Similarly, if 2 pens cost Rs 4 then 1 pen will cost Rs 2 . Later work this out on the board.

تناسب راست اور تناسب معكو
 باب6:

-قاصم

若
! !

> وروانيّ

1-بّق 6 6اك
تناسب راست اور تناسب معكو (30 هنط)

 پ

Hence the equation $2 x=4 \times 4$.

$$
\begin{aligned}
\text { And } x & =\left\{\frac{4 \times 4}{2}\right\} \longrightarrow(16 \div 2=8) \\
x & =8
\end{aligned}
$$

The same can be applied to solve the other part given. Both quantities either increase or decrease. This type of proportion is called direct proportion.
The pictures on page 69 can be used to explain inverse proportion. The students study the two pictures and answer the question given below them. A discussion should be held as to why more people are able to complete a certain task quicker fewer people. Solve the following sum on the board. 10 men finish a piece of work in 18 days. How many days will 15 men take to finish the same job?

(This can be worked out using the arrows shown.)
The equation $10 x=15 \times 18$

$$
\begin{aligned}
& x=\left\{\frac{15 \times 18}{10}\right\} \longrightarrow(270 \div 10=27) \\
& x=27 \text { days }
\end{aligned}
$$

Explain that this is the 'proportion method'. The same 2 sums will be solved using the 'unitary method' as follows:

Example

Cost of 2 pens is Rs 4.
Cost of 1 pen $=$ Rs $4 \div 2=$ Rs 2 (Find the cost of one/unit.)
Cost of 4 pens $=$ Rs $2 \times 4=$ Rs 8 (Multiply the cost of 1 pen by 4 .)

Example

10 men take 18 days.
1 man takes $18 \times 10=180$ days (1 man will need more time; therefore 10×80.)
15 men take $180 \div 15=12$ days (15 men need fewer days than 1 man; therefore $180 \div 15$. Thus 15 men need only 12 days while 10 men need 18 days and 1 man will take 180 days).

$$
\begin{aligned}
& x=\left\{\frac{4 \times 4}{2}\right\} \longrightarrow(16 \div 2=8) \\
& x=8
\end{aligned}
$$

$\xrightarrow{\text { P }}$
(ات

$$
\begin{aligned}
& 10 \longleftrightarrow 18
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } \\
& 10 \\
& 1
\end{aligned}
$$

Class exercise (10 minutes)

Ask the students to copy the sums given as Example 1 on pages 67 and 69 by both, unitary and proportion methods. They will then check with the solution of these sums in the textbook (pages 68 and 70) and correct any errors.

Homework

Ask the students to copy and solve the sums given as Example 2 on pages 68 and 70 in their homework books.

2. LESSON PLAN

Exercise 6.1 (20 minutes)

Go over the examples done as homework and answer any questions relating to the working with unitary and proportion methods. Once satisfied that the students are able to use both methods easily, discuss questions 1 to 6 of Exercise 6.1 in terms of more or less time taken, money earned, distance covered, petrol used, etc.

Class exercise (20 minutes)

Ask the students to solve questions 1, 3, and 6 of Exercise 6.1 in class. After allowing the students a head start of about 5 minutes, begin solving the sums on the board, one at a time which the students will be asked to refer to once they have completed each sum. Corrections, if any, should be made immediately.

Homework

Exercise 6.1 questions 2, 4, and 5 will be given as homework.

3. LESSON PLAN

Time, work, and distance (30 minutes)

Ask the students to define speed, time, and distance. Explain that in this unit, speed is defined as distance per unit of time. It is calculated according to the formula given below:
Speed $=\frac{\text { distance }}{\text { time }}($ speed $=$ distance divided by time $)$
The parts of this equation can be used to find any one of the three quantities that might not be known. For example, if the distance needs to be found, the formula used is:
distance $=$ speed \times time
The formula for time is: time $=\frac{\text { distance }}{\text { speed }}$
The unit of speed is km per hour or $\mathrm{km} / \mathrm{hr}$. Sometimes $\mathrm{km} / \mathrm{hr}$ must be changed to m / s.

كاس هِّ ثپت (10 بنط)

، ،وم ورك

2
ثت 6.1 (20 نت

،
طباثت 6.1 6 بوال 2، 4 اور 5 بطور هوم ورك كـي گـ
3
وتت، رفّآر اور فاصل (30 ثنط)

$$
\begin{aligned}
& \text { رنار = فاصلـ / وتت }
\end{aligned}
$$

فاصلـ = رنار x وتت

This can be done using the following formula:
$\frac{\mathrm{m}}{\mathrm{s}}=\frac{1000}{3600} \mathrm{~km}$
Go through the topics and examples from pages 71-73 making sure that the students are clear on the concepts and formulas being taught.

Class exercise (10 minutes)

The students will be asked to solve Exercise 6.2 question 1.

Homework

The students will be asked to solve questions 2 and 3 of Exercise 6.2.
4-5 LESSON PLAN: Summary and Review Exercises

$$
\underset{\mathrm{hr}}{\mathrm{~km}} \frac{1000}{3600} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

 كاس بيّثت (10 ثنط)
 ،وم ورك

UNIT 7 FINANCIAL ARITHMETIC

OBJECTIVES

The teacher should cover the following concepts:

- Taxes
- Profit and markup
- Zakat and ushr

LEARNING OUTCOMES

The students should be able to:

- understand property and general sales tax and solve tax-related problems
- understand and calculate the rate, profit, and markup per annum
- define zakat and ushr
- solve real-life problems related to zakat and ushr.

DURATION: Teaching: 3 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Taxes (25 minutes)

Begin the lesson by discussing the illustration of public facilities provided by the government, namely hospitals, schools, parks, etc. Then go on to ask the students whether they have bought, or were present when shoes were bought from shoe stores, and whether they have noticed the price and other sums on the bill. Write the following example on the board:

Retail price	Rs 299.00
Sales tax @ 2\%	Rs
Total price	Rs 304.98

Most students will recall that tax is to be paid on most items including eating out at restaurants or fast food outlets. Ask the students to read the note under the title/unit on page 76. Taxes are based on different degrees of percentages set by the government depending on the use and necessity of the item. There are various types of taxes set by the government. Some of them are put on items sold, like the one for shoes. The text is called sales tax. There is a tax that is to be paid on property which is called property tax. The tax set on the salary that people earn is called income tax because the salary that people earn is known as their income. People earning less than a certain amount specified by the government do not pay any income tax. The percentages set, for various taxes is usually a flat rate, agreed upon by the law makers of the country. For example, the property tax in Pakistan, is fixed at 10\%. Zakat, which is the 'giving of a certain part of your wealth' to the poor, is fixed at 2.5% on jewellery, surplus money in the bank, etc. Once the students grasp the concept of tax as an amount to be paid

باب 7: الياّكّ حاب
مـ*
 طولات

منانٌ اور بو,
-

$$
\begin{aligned}
& \text { ! ب }
\end{aligned}
$$

ورانهي

1
حصولات (25 ننط)

そ 299.00
تيتّزونت
ॐ 5.98
كِ
پ, 304.98 كُ يُّت

on various items, the following example may be put up on the board:
A house costs Rs 90,000 . What is the property tax that will have to be paid on it at the prescribed rate?

Solution:

Price of property Rs 90000.00
Rate of tax 10\%

Therefore
$\frac{10}{100} \times 90000=9000$
Tax due is
Rs 9000.00
The students should be told that they will not only be required to calculate the tax due, but also the rate $\%$ as sometimes the prices stated, include taxes. The examples and explanation given on page 77 will further show the students how to solve both kinds of sums.

Class exercise (15 minutes)

The students will solve Exercise 7.1, questions 3 and 4. These could be solved on the board.

Homework

Exercise 7.1 questions 1 and 2 will be given as homework.

2. LESSON PLAN

Profit and markup (25 minutes)

Begin by putting forward a simple problem. Supposing a pencil is bought for Rs 5 and then sold for Rs 8 , will there be a gain or a loss? Most of the students might answer that there is a gain of Rs 3 . Explain that the next concept will be the profit (gain) and loss and will go through pages 78 and 79, text and examples to explain the cost price, selling price, rate, and markup.

Class exercise (15 minutes)

The students will solve questions 1 and 2 of Exercise 7.2. This should be checked in class, either on the board or individually so as to find out whether the concept has been understood or not.

Homework

Exercise 7.2, questions 3 and 4 will be solved as homework.

 ايكس بكا كَ اليت90000روپ :

そو 90000.00
10%

$$
چ و, 9000=\frac{10}{100} \times 90000
$$

جايُياوك يَّت ياليت تِّ

$$
\begin{aligned}
& \text { واجب الا واليّك }
\end{aligned}
$$

،وم ورك

2
منان己 اورثُ ح سور (25 منط)

،وم ورك

3. LESSON PLAN

Zakat and ushr (25 minutes)

Ask the students to read the notes given on page 80 under the heading 'Zakat and Ushr'. A discussion should be held to help the students understand what zakat is, who pays zakat, on what, and when it must be paid. These facts relate religion directly to life and emphasize flexibility and duty as part of our lives. The examples on page 81 will be used to show the students how to solve sums based on zakat.
Then go on to explain what ushr is and how it should be calculated, as shown on page 81 . More examples may be used if necessary. It is very important to clarify the difference between the two types of Islamic taxation.

Class exercise (15 minutes)

Ask the students to solve Exercise 7.3, questions 1 and 2, which should be checked or solved on the board depending on the time available.

Homework

The students will complete Exercise 7.3, questions 3 and 4.

4-5 LESSON PLAN: Summary and the Review Exercises

艮 ك，症物
 ل باكتَ ب－يَبا كاب بيّثت（15 بنط）
 با بك هو ورك

UNIT 8 ALGEBRAIC EXPRESSIONS

OBJECTIVES

The teacher should cover the following concepts:

- Algebraic expressions
- Operations with polynomials
- Algebraic identities
- Factorization of algebraic expressions

LEARNING OUTCOMES

The students should be able to:

- identify variables, coefficients, index, or power
- identify different types of polynomials
- add, subtract, and multiply polynomials
- identify and verify algebraic identities and apply them to factorization.

DURATION: Teaching: 5 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Algebraic expressions ($\mathbf{2 5}$ minutes)

Begin the lesson by discussing the illustration on page 84 of the textbook and move on to the significance of the expressions in the dialogue between the two students. Read the definition of the term 'algebraic expression' from the top of the page. Use the example given to introduce the terms coefficient, variable, and constant. Take the students through the text on page 85 to introduce and explain the various terms used in this unit. The table at the bottom of this page should be used to show the difference between a monomial, binomial, and a trinomial. A quick, oral recap should give an idea whether the students have been able to grasp most terms. Then put up a few examples on the board and point to the term you would like the students to name.
Since this is an important unit in algebra, sufficient time should be spent on the different kinds and parts of algebraic expressions.

Class exercise (15 minutes)

The students will be asked to write two algebraic expressions of their own and name the different parts that were taught in this class.

> روراني

1
الجرى اظباريـ (25 منـ)
 6

 ع

Homework

The students will be asked to learn the definitions of the various parts of algebraic expressions dealt with. As stated earlier, this is a very important stage of solving algebraic expressions.

2. LESSON PLAN

Like, unlike, and combining terms (20 minutes)

Review the previous lesson using the board to write a few examples and ask the students what each is.
i) $3 x$
ii) $3 x+1$
iii) $4 x+4 y+1$

Ask: i) What is $3 x$? $3 x$ is a term.
ii) What is $3 x+1$? $3 x+1$ is an expression.
iii) What is $4 x+4 y+1 ? 4 x+4 y+1$ is an expression too.

The lesson can progress to like and unlike terms and the combining of terms as explained on page 86.
Stress the fact that algebraic expressions are arranged in ascending or descending order depending on the powers of their base. The variable should be the same having different powers. e.g. $x^{3}+4 x^{4}+1+x^{2}$.
Explain that to arrange the example of the algebraic expression given in ascending order, (from the smallest to the largest), begin with 1 because it has the smallest power of x which is 1 . The next will be x^{2}, then x^{3} and lastly $4 x^{4}$.
$1+x^{2}+x^{3}+4 x^{4}$ (ascending order) and $4 x^{4}+x^{3}+x^{2}+1$ (descending order)
In the given example, the students will note how the terms are arranged according to their powers.
The examples on page 87 should be used to show the grouping of the data in an algebraic expression and then the class should move on to solving a few sums. The instructions given should be followed exactly, as this is the initial stage of solving algebraic expressions with like terms.

Class exercise (15 minutes)

Ask the students to begin Exercise 8.1, questions 1 and 2. A time limit of 8 to 10 minutes should be set for the solution of these two questions. Use the remaining 5 minutes to discuss and correct the answers.

Homework

Exercise 8.1 questions 3 and 4 are to be given as homework.

- ك

2
كيسان ، نّم بيسان اور بيكاكر

$3 x$ (i
$3 x+1$ (ii
$4 x+4 y+1 \quad$ (iii
 -4

چپ

،

3. LESSON PLAN

Operations with polynomials (20 minutes)

Go through the steps for addition of polynomials and solve the given examples on the board. Stress the fact that when adding, the same kind or like terms are put together then added. For example, x can only be added to x with any coefficient and x^{2} can be added to x^{2} with any coefficient.
Once satisfied that the class has understood this concept, move on to subtraction. The students should be informed that the operations of addition, subtraction, and multiplication of polynomials follow the same rules as used in the solution of integers. For addition and subtraction two like signs are added and the sign of the greater number is used. Similarly two different signs are subtracted, putting the sign of the greater number.
For example: $-6 x+3 x=3 x$ and $-6 x-6 x=-12 x$.
Also, in subtraction of the expression, the signs of the bottom terms must be changed when working in the vertical method. The sign must also be changed when a negative sign is outside a bracket.
For example: Subtract $x+4$ from $3 x-4$ is written as $3 x-4$
Change the signs in the bottom expression

$$
\begin{aligned}
& -(+) x-(+) 4 \\
& 2 x-8
\end{aligned}
$$

The same example has been solved horizontally.

$$
\begin{aligned}
& (3 x-4)-(x+4) \\
& 3 x-4-x-4 \\
& 3 x-x-4-4 \\
& 2 x-8 \text { (Here too it is seen that the signs of } x \text { and } 4 \text { are changed.) }
\end{aligned}
$$

Class exercise (20 minutes)

Ask the students to solve Exercise 8.2, questions 1 a, d, and h, and questions 2 e and f. Move around the class for a few minutes supervising the students' work. Then work out the sums on the board which the students will tally with the work they have done and make any corrections if necessary.

Homework

The students will complete Exercise 8.2, questions 1 and 2 as homework.

4. LESSON PLAN

Multiplication of polynomials (20 minutes)

Begin this lesson with a recap of what monomials, binomials, and trinomials are. Go through the explanation and examples of the following concepts: i) multiplying monomial with monomial; ii) monomial with binomial; iii) binomials by binomials; iv) binomials by trinomials, that are given on pages 88 to 90 .

 ارونر أى

$$
-6 x+3 x=3 x \quad-6 x-6 x=-12 x \text { ثر }
$$

 .

$$
\begin{gathered}
(3 x-4)-(x+4) \\
3 x-4-x-4 \\
3 x-x-4-4
\end{gathered}
$$

2x-8 (يكا 2 (
كان بی ثّت (20 نت)

 وr ورك

Class exercise (20 minutes)

The students will be asked to solve Exercise 8.2, questions $3 \mathrm{~b}, \mathrm{e}, \mathrm{g}$, and j . Give the students a few minutes to begin work and complete a sum before solving the given sums on the board which the students will use to check their own solutions and make any corrections if needed.

Homework

The remaining sums from question 3 of Exercise 8.2 will be solved as homework.

5. LESSON PLAN

Simplification of algebraic expressions (20 minutes)

Begin the lesson by inquiring whether the students have any problems regarding multiplication discussed in the previous class. The sums given as homework may be solved on the board so as to verify the level of comprehension. Once satisfied that the students have a command over these concepts, proceed to the next topic which deals with the simplification of algebraic expressions involving addition, subtraction, and multiplication.
Use the given steps and examples on pages 90 and 91 to help the students understand how sums related to the topic are to be solved.

Class exercise (20 minutes)

The students will solve question $4 \mathrm{~d}, \mathrm{f}, \mathrm{h}$, and j of Exercise 8.2 in class. After allowing a head start of about 5 minutes, begin solving the given sums on the board which the students can tally their work with.

Homework

Exercise 8.2, questions $4 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{g}, \mathrm{i}, \mathrm{k}$, and l will be solved as homework.

6. LESSON PLAN

Algebraic identities (25 minutes)

Begin the lesson by solving the example given on page 92 on the board. Use the diagram on page 92 to explain the working done on the board.
Another sum may be given to the students to solve. $(x+3)(x+3)$
This may be written as $(x+3)^{2}$. When the students have arrived at the answer that is $x^{2}+6 x+9$, explain that it is called an algebraic identity.
Use the example $(x+3)^{2}$ to explain further.
Showing resemblance $\quad(a+b)^{2}=a^{2}+2 a b+b^{2}$ (example in the textbook)
$(x+3)^{2}=x^{2}+2(x)(3)+3^{2}$
$(x+3)^{2}=x^{2}+6 x+9$

$$
\begin{aligned}
& \text { 5 }
\end{aligned}
$$

ابلجرى اظهار ليول 6 اختصار (20 منط)

،وم ورك

6"~
البجرى كليج (25 هنط)
 طل طب كو

$$
\begin{array}{r}
(\mathrm{H})(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2} \\
(x+3)^{2}=x^{2}+2(x)(3)+3^{2} \\
(x+3)^{2}=x^{2}+6 x+9
\end{array}
$$

The answer is the same as the one got by the simple multiplication process.
Go on to explain how to solve sums related to the calculation of the difference of two squares. Ask the students to try and solve the following sum:

$$
\begin{aligned}
& (x+2)(x-2) \\
& =x(x-2)+2(x-2) \\
& =x^{2}-2 x+2 x+4 \\
& =x^{2}-4
\end{aligned}
$$

Explain that this is the second identity called difference of two squares. Given by a general formula:
i. $a^{2}-b^{2}=(a+b)(a-b)$
ii. $\quad 9 x^{2}-16 \mathrm{~b}^{2}=(3 x)^{2}-(4 \mathrm{~b})^{2}$

$$
=(3 x+4 \mathrm{~b})(3 x-4 \mathrm{~b})
$$

Once these concepts are clear, the students should be given an exercise to solve.

Class exercise (15 minutes)

The students will be asked to complete Exercise 8.3 in class.

Homework

Write the following sums on the board for the students to solve as homework.
Solve:
i) $(x+4)^{2}$
ii) $(a+9)^{2}$
iii) $(2 a+3 b)^{2}$
iv) $(3 a-b)^{2}$
v) $(8 a-b)^{2}$

Answers:
i) $x^{2}+8 x+16$
ii) $\mathrm{a}^{2}+18 \mathrm{a}+81$
iii) $4 a^{2}+12 a b+b^{2}$
iv) $9 a^{2}-6 a b+b^{2}$
v) $64 a^{2}-16 a+b^{2}$

7. LESSON PLAN

Factorization of algebraic expressions (20 minutes)

Factorization is the process in which a common factor is taken from an expression. This is done throughout the expression, and can also be done by grouping. The following will be explained on the board. Take the example $3 x^{2}+6 x^{2}+12 x$. In this sum, the number 3 and x are common factors throughout the expression, so $3 x(x+2 x+4)$.

$$
\begin{aligned}
& (x+2)(x-2) \\
& x(x-2)+2(x-2) \\
& x^{2}-2 x+2 x+4 \\
& x^{2}-4 \\
& \text { اتار ي بيا } \\
& a^{2}-b^{2}=(a+b)(a-b) \quad-i \\
& 9 x^{2}-16 \mathrm{~b}^{2}=(3 x)^{2}-(4 \mathrm{~b})^{2} \quad-\mathrm{ii} \\
& =(3 x+4 \mathrm{~b})(3 x-4 \mathrm{~b})
\end{aligned}
$$

$$
\begin{aligned}
& \text { ،وم ورك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { صكّي: } \\
& (2 a+3 b)^{2} \quad(i i i \\
& (a+9)^{2} \quad(i i \\
& (x+4)^{2} \quad \text { (i } \\
& (8 a-b)^{2} \quad(v \\
& (3 a-b)^{2} \quad \text { (iv } \\
& \text { جوابت: } \\
& \begin{array}{rlll}
4 a^{2}+12 a b+b^{2}
\end{array} \text { (iii } \begin{array}{rlrl}
a^{2}+18 a+81 & \text { (ii } & x^{2}+8 x+16 & \text { (i } \\
64 a^{2}-16 a+b^{2}
\end{array} \text { (v } \quad 9 a^{2}-6 a b+b^{2} \quad \text { (iv } \\
& \text { كا } 6 \\
& \text { ابلمبى اظطاريو } 6
\end{aligned}
$$

Consider this example for grouping.
$7 x+14 y+b x+2 b y$
$7(x+2 \mathrm{y})+\mathrm{b}(x+2 \mathrm{y})$ [7 is common in the first group and b in the second.]
$(x+2 \mathrm{y})(7+\mathrm{b}) \quad[x+2 \mathrm{y}$ is the common factor and makes up the first part of the expression. That leaves 7 (outside the first bracket) and b (outside the second bracket).]
Factorization can also be done using algebraic identities.
For example: $a^{2}+4 a+4$
First write the identity: $(a+b)^{2}=a^{2}+2 a b+b^{2}$
Then the example will be written as: $(a+2)^{2}=a^{2}+2(a)(2)+(2)^{2}$
Thus factorization can be done by using these identities. The procedure given in the textbook will make the process clearer. It is important for the students to be comfortable with asking questions during the maths class.

Class exercise ($\mathbf{2 0}$ minutes)

Students will be asked to solve Exercise 8.4, questions 1 a and b, and questions 2 $\mathrm{e}, \mathrm{f}, \mathrm{g}$, and h . The answers to question 1 should be discussed in class while those of question 2 should be solved on the board, if possible by students who have completed their work. Setting time limitations for class work will help to increase the working speed, which is very important in maths.

Homework

Exercise 8.4, questions 2 a-d and questions 3 a-o.

8-9 LESSON PLAN: Summary and Review Exercises

$$
\begin{aligned}
\text { كروه بنאى }
\end{aligned}
$$

$$
\text { [} 7(x+2 \mathrm{y})+\mathrm{b}(x+2 \mathrm{y})
$$

(
".
كّ

،وم ورك

x

UNIT 9 LINEAR EQUATIONS

OBJECTIVES

The teacher should cover the following concepts:

- Definition of linear equations
- Solution of linear equations

LEARNING OUTCOMES

The students should be able to:

- define linear equations in one variable
- demonstrate different techniques to solve linear equations
- solve real-life problems involving linear equations.

DURATION: Teaching: 2 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Linear equations ($\mathbf{2 5}$ minutes)

First recap that a variable is any alphabet taken like ' x ', ' y ', ' a ' or ' b ' and constant are numbers like such as $1,2,3$, and so on.
Explain that an equation contains a variable with an 'equals to' sign in between and is solved, not simplified. The value of the variable is calculated by shifting the variables to one side where they are positive and the constants to the other side. Then the value of that variable is calculated.
For example: $3 x+3=4 x+2$

$$
\begin{aligned}
3-2 & =4 x-3 x \\
1 & =x
\end{aligned}
$$

To solve the above equation all the variables must be taken to one side, in this case, $4 x$ and $3 x$; and the constants namely, 3 and 2 to the other side to find out the value of x.
The actual concept is that what we add or subtract, multiply or divide, on one side of the 'equals to' (=) sign should also be added, subtracted, multiplied, or divided on the other side. For example:
$3 x+3=4 x+2$
Subtract 2 from both sides to get rid of the 2 on the right-hand side.

$$
\begin{aligned}
3 x+3-2 & =4 x+2-2 \\
3 x+1 & =4 x
\end{aligned}
$$

Subtract $3 x$ from both sides.

$$
\begin{aligned}
3 x-3 x+1 & =4 x-3 x \\
1 & =x
\end{aligned}
$$

！ب：9：
تاريك تـامص
-
：
 －榢 －

קروا：＊
新 2 2
1－1
（
－
隹㑒 ك كابِ $3 x+3=4 x+2 \quad \because \quad$ ，

$$
3-2=4 x-3 x
$$

$$
1=x
$$

 ك
 $3 x+3=4 x+2$

$$
3 x+3-2=4 x+2-2
$$

$$
\begin{aligned}
3 x-3 x+1 & =4 x-3 x \\
1 & =x
\end{aligned}
$$

This example shows how the concept should be explained. For a quick solution, shifting the terms from left to right with opposite signs is also accepted.
If given an equation where a variable with a coefficient is left, then the number is divided to get rid of the coefficient, so as to get the value of the variable.

$$
\begin{aligned}
4 x+2 & =2 x+6 \\
4 x-2 x & =6-2 \\
2 x & =4 \\
\frac{2 x}{2} & =\frac{4}{2}=>x=2
\end{aligned}
$$

In the same way if there is a fractional equation, the LCM is calculated and cross multiplication is done so as to get the value of the variable. Refer to the example at the end of page 100.

Class exercise (15 minutes)

Ask the students to read pages 98 to 101 to review what has been explained. Then ask them to solve Exercise 9.2a, questions 5, 6, 9, and 10. Giving them a margin of 5 minutes to work, solve these sums on the board so the students may tally their working.

Homework

Exercise 9.2a will be completed as homework.

2. LESSON PLAN

Problems involving linear equations (25 minutes)

Go through pages 101 to 103, examples 1 to 4 , to explain how equations are formed, the concept and working of problem sums in linear equations. Once the students have grasped the method, sums can be given for practice.

Class exercise (15 minutes)

The students, with your help, will make the equations for the problems and solve Exercise 9.2b, questions 1, 5, 8, and 9 in class.

Homework

The remaining questions of exercise 9.2 b will be completed as homework.

3-4 LESSON PLAN: Summary and Review Exercises

 - ك

$$
\begin{aligned}
4 x+2 & =2 x+6 \\
4 x-2 x & =6-2 \\
2 x & =4 \\
\frac{2 x}{2} & =\frac{4}{2}=>x=2
\end{aligned}
$$

2
خطى مساواتول شُشْنّل سوالات (25 منط)

كاّ بیّ هثت (15 ثنـ)

،وم ورك

UNIT 10 FUNDAMENTALS OF GEOMETRY

OBJECTIVES

The teacher should cover the following concepts:

- Properties of adjacent, complementary, supplementary, and vertically opposite angles
- Calculation of unknown angles
- Calculation of unknown angles of a triangle
- Identification and properties of congruent and similar figures
- Congruency of triangles
- A circle and its parts

LEARNING OUTCOMES

The students will be able to:

- define and identify different kinds of angles
- calculate unknown angles within triangles
- identify congruent and similar triangles and apply properties for similarity and congruency of two figures
- describe a circle and its parts
- show that an angle in a semicircle is a straight angle (180 degrees) and that angles in the same segment are equal.

DURATION: Teaching: 4 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Properties of angles (25 minutes)

Begin with reading the text from page 106 to explain the fundamentals of geometry. A review of previous concepts such as point, line, plane, etc. will be read out from this page and a brief discussion will help the students to remember what they have studied in previous classes.
Move on to the definitions of the different types of angles, beginning with adjacent angles on page 107 and ending at the notes and examples of vertically opposite angles.
i) Adjacent Angles: adjacent means side by side. These are the angles which lie side by side. They may have a common vertex or may just be next to each other. Ask a student to volunteer to draw 2 angles lying next to each other without a common vertex on the board and another student could be asked to draw a second set with a common arm.

$$
\begin{aligned}
& \text { تردريك متاصم }
\end{aligned}
$$

- تمأل اروتثا
届
,

 ثو
 ,

ورانی

1-
زاوي كَضوصيات (25 نتط)

 :

ii) Complementary angles are formed when the sum of 2 angles $=90^{\circ}$.

$$
\begin{aligned}
& 30^{\circ}+60^{\circ}=90 \\
& 50^{\circ}+40^{\circ}=90
\end{aligned}
$$

Any combination of angles whose sum totals 90° are complementary angles.
Draw the angles on the board.

After this the students could be asked to draw different combinations of complementary angles. Show the students how to calculate the measurement of the other complementary angle when one is given. What is the complementary angle of 40° ?
Let the other unknown angle be x.
Both angles add up to 90°;
So $x+40=90 ; x=90-40$; therefore, $x=50$.
iii) Supplementary angles are angles whose sum is 180°;
e.g. $120^{\circ}+60^{\circ}=180^{\circ}$

$$
\begin{aligned}
& 40^{\circ}+140^{\circ}=180^{\circ} \\
& 80^{\circ}+100^{\circ}=180^{\circ}
\end{aligned}
$$

A few supplementary angles could be drawn on the board. Explain that the same procedure will be followed as in the calculation of complementary angles-only the total will be 180° and not 90°.
What is the supplement of 120° ? Let the unknown angle be x. Therefore the equation formed will be:
$x+120^{\circ}=180^{\circ}$; then, $x=180^{\circ}-120^{\circ} ; x=60^{\circ}$. Thus the supplement of 120° is 60°.

$$
120^{\circ}+60^{\circ}=180^{\circ}
$$

$$
40^{\circ}+140^{\circ}=180^{\circ}
$$

$$
80^{\circ}+100^{\circ}=180^{\circ}
$$

 ك.

$$
\begin{aligned}
& 120^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 90^{\circ}=\text { (} \\
& 30^{\circ}+60^{\circ}=90 \\
& 50^{\circ}+40^{\circ}=90 \\
& \text { كَ كمّ مقدار ع زاوي }
\end{aligned}
$$

iv) Vertically opposite angles: Explain that vertically opposite angles are formed when 2 straight lines intersect each other at a point. 4 angles are formed, 2 acute and 2 obtuse angles or all 4 right angles. The sum of the angles at a point is 360°, therefore the sum of the vertically opposite angles will also be 360°. The acute angles will be equal to each other and the obtuse angles will also be equal to each other. In the figure, $\angle \mathrm{a}=\angle \mathrm{b}$.

Draw a figure of vertical angles on the board and use coloured marker or chalk (if available), to shade the opposite angles in 2 separate colours so that they may be identified clearly. The students should be asked to look at the figure carefully and see if they notice anything familiar. (Supplementary angles). Refer to pages 109 and 111 of the textbook to explain the calculation of vertically opposite angles.
Ask the students to read through pages 109, 110, and 111 and ask questions if they have any. They will then be informed that all the properties of the angles listed above, are used to help calculate the unknown angles.
Now move on to the calculation of the unknown angle of a triangle. Ask the students what the sum of the angles of a triangle is $\left(180^{\circ}\right)$.

In the above figure, one angle $=90^{\circ}$ and the other $=30^{\circ}$, the $3^{\text {rd }}$ angle is unknown.
Solution:

$$
\begin{aligned}
30^{\circ}+90^{\circ}+x & =180^{\circ} \\
120^{\circ}+x & =180^{\circ} \\
x & =180^{\circ}-120^{\circ} \\
x & =60^{\circ}
\end{aligned}
$$

Go through a few more examples until the students are able to calculate the unknown angle/s of a triangle.
Using the examples given on pages 110 and 111, explain how to find out the other angles. A complete revolution is 360°. So it can be solved to get the measure of any angle.

 مث

$$
\begin{aligned}
30^{\circ}+90^{\circ}+x & =180^{\circ} \quad: \\
120^{\circ}+x & =180^{\circ} \\
x & =180^{\circ}-120^{\circ} \\
x & =60^{\circ}
\end{aligned}
$$

Class exercise (15 minutes)

The students will be asked to solve Exercise 10.1 questions 1 to 4 'b' as you move around the class to check if they are able to solve these sums, extending help where needed.

Homework:

Exercise 10.1 will be completed as homework.

2. LESSON PLAN

Congruent and similar figures (20 minutes)

Show the students 2 rectangular boxes and 2 glasses that are exactly the same.
For example, 2 tissue boxes and 2 glasses from the same set.
Set 1:

Explain that there are some figures which are exactly the same in measurement, shape, and size. Such figures are called congruent figures.

Set 2:

12 cm

Then there are figures that are similar in shape but the measurements are different. Such figures are called similar figures.
First discuss the properties of similar figures. Consider the measurements of the figures in set 2. If the figures are the same then the ratio of the corresponding sides are also the same.

$$
\begin{aligned}
& \frac{3}{6}=\frac{6}{12} \\
& \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Therefore when the ratios are equal, the figures are similar. This fact may be stated as a result of observation and is proved by mathematical calculations.

Class exercise ($\mathbf{2 0}$ minutes)

The students will read pages 112 to 116 so as to review concepts taught. The students may ask questions at this point of the lesson. Ask the students to work with their partners to solve Exercise 10.2, questions 1 and questions 2 c and d .

كان هیّ ثپت (15 بنط)

، ،وم ورك

2
بتماثل اور تتناب اشكال (20 هنط)

بيط 1:

 بي 2:

$$
3 / 6=6 / 12
$$

$$
1 / 2=1 / 2
$$

Homework

The students will solve Exercise 10.2, questions $2 a$ and b and questions $3 a, b$, and c.

3. LESSON PLAN

Congruent triangles (25 minutes)

Explain that \equiv congruent figures, especially triangles, are the ones which have all equal measurements of corresponding sides. In simple words, they should be exactly the same in shape and size, unlike similar figures which may have the same shape but differ in sizes.
For triangles to be congruent, they must have certain properties. These properties are given specific names, and the symbol for congruency is \equiv. The properties are: SSS, SAS, ASA, and RHS.
Draw diagrams for each property on the board before explaining them.
i) The first property is SSS which stands for side, side, side meaning that if 3 corresponding sides of any triangle are equal to those of another triangle, then the two triangles are congruent by the property of SSS.
ii) The second property is SAS, which states that if two sides and an included angle of one of the triangles is the same as the second triangle, then these two are congruent triangles.
iii) The third property is ASA, which states that if two angles and an included side of one triangle are equal to that of the other triangle, then they are said to be congruent.
iv) The fourth property is RHS, according to which, in a right-angled triangle, if the hypotenuse and the length of one of the sides of one triangle are equal to the hypotenuse and the other corresponding side of the second triangle, then the two triangles are said to be congruent.

Class exercise (15 minutes)

The students will read pages 117 to 120 to reinforce the explanation given. They will then be asked to copy the properties as written under the heading 'Remember' accompanied by a figure for each property in their exercise books.

Homework

The students will solve Exercise 10.3 as homework.

روبرى خوريت ضـزن

(iii

(iv

 1*

،وم ورك

4. LESSON PLAN

Circles (25 minutes)

Begin by drawing a circle on the board and then ask the class to name the figure. The students will be asked to recall the various parts of a circle and mark them on the figure drawn. The class will then read page 122 as a review of concepts covered in previous grades.
Take the students through the text and examples on page 123 to 124 which deal with the concepts of 'the angle in a semicircle is a right angle' and proof of this fact. Once the students have understood, the lesson will proceed to proving that 'angles in the same segment are equal' (pages 124 and 125).

Class exercise (15 minutes)
The students will be asked to draw the figures and write down the steps to prove the following:
i) An angle in a semicircle is a right angle.
ii) Angles in the same segment are equal.

Homework

The students will solve Exercise 10.4.
5-6 LESSON PLAN: Summary and Review Exercises

 - ₹

 -(125

 (i اi
 ،وم ورك

UNIT 11 PRACTICAL GEOMETRY

OBJECTIVES

The teacher should cover the following concepts:

- Line segment
- Construction of triangles
- Construction of parallelograms

LEARNING OUTCOMES

The students should be able to:

- divide a line segment into equal segments and given ratios
- construct triangles of given perimeters; equilateral triangle given base and altitude, isosceles triangle given base and base angles
- construct parallelograms.

DURATION: Teaching: 5 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Line segment (20 minutes)

Discuss with the students how to construct different figures with the given measurements. The first will be to divide a line into 5 equal parts. This will be done with the help of a ruler, pencil, and compass. Refer to pages 132, 133, and 134 of the textbook and go through the steps one at a time simultaneously drawing the figure on the board. Once the students have understood, ask them to copy the steps and figures in their exercise books. Then explain how to divide a line into parts in a given ratio. The line is divided in the same way as shown in the example on page 134. The division of the line segment will be the same. But as the example suggests, the ratio is $3: 2$, so the upper line that is drawn is labeled as A1, A2, A3, A4, ard A5, and the other line is labeled $B 1, B 2, B 3, B 4$, and $B 5$ at the intersected parts. Then the point marked A3 is joined to B2 as per the ratio. Follow through the steps of construction given in the book drawing a diagram to match the step.

Class exercise (20 minutes)

The students will be asked to solve Exercise 11.1, question 1 and question 3 b in class.

Homework

Assign Exercise 11.1, question 2 and question 3 a as homework.

تر تيكى مقاصم
 تطحْ خط

"توازى الاضلاع عنا
نتا
! !

 - توازى الاضلاع بنا كيكـ

ووراني
 1-

خ大

 كوایى

 كاب يّ

،وم ورك

2.LESSON PLAN

Construction of triangles (20 minutes)

Before discussing the topic, ask the students to define the three different types of triangles-equibteral, isoscales, and scalene.
The first type of triangle to be constructed is when the perimeter of the triangle and the ratio of the sides are given. Use the example on page 135 and explain to the students how to calculate the measure of the sides. Work out the construction calculations on the board and also draw the figure step by step. Once the measures are calculated, explain how to construct the required triangle. The measures acquired are: $12 \mathrm{~cm}, 15 \mathrm{~cm}$, and 9 cm . The students will be asked to take 15 cm as the base line PQ. Place the compass at Q, and with a radius of 12 cm draw an arc. With the compass placed at P and a radius of 9 cm draw an arc to cut the previous arc at R. Join PR and QR. PQR is the required triangle.

Class exercise ($\mathbf{2 0}$ minutes)

Ask the students to copy the figure and steps of construction in their exercise books.

Homework

Exercise 11.1, question 1 will be given as homework.

3. LESSON PLAN

Parts 1 and 2: (The 40 minutes may be divided as required as there are 2 parts here.)
Explain the next construction which will be of an equilateral triangle with a given base.
The second construction will be to a given altitude.

Part 1. Construction with a given base (10 minutes)

Use the steps given at the bottom of page 135 to explain and draw diagrams on the board.

Class exercise (10 minutes)

Ask the students to solve Exercise 11.2, question 2.

Part 2. Construction with a given altitude (10 minutes)

Explain how to construct an equilateral triangle when the altitude is given. Using example b, given on page 136, explain the step by step construction of such a triangle.

Class exercise (10 minutes)

The students will solve Exercise 11.1, question 3 following the explanation given.
 س كا

،وم ورك

كالى یיى ثتّ (10 ثنط)

x

Homework

The students will review the unit done so far and note down any problems/questions.

4. LESSON PLAN

Construction of isosceles triangles ($\mathbf{2 5}$ minutes)

The next construction will be that of an isosceles triangle when different measurements are given, namely: i) the base and one of the base angles given as shown in the example on page 137 ii) the altitude and vertical angle are given iii) the altitude and a base angle given.
Begin by explaining the first type is where the base and one of the base angles are given. The base angles are equal in an isosceles triangle. Draw the base line and then simply draw the two angles of equal measurements, the two arms intersect at a point, thus forming the required triangle. This should be done on the board.
The second type is where the altitude is given and a vertical angle is given. According to the steps of construction of example b , on page 136, draw and explain what is to be done. Where a base is given and a vertical angle is given, the measurement of the vertical angle is divided into two which will help the students to draw the vertical angle.
The third type is when the altitude and a base angle are given. This type of construction requires that the angles be calculated before the construction is done. Since one of the base angles is given, the other will be of the same measurement. This sum is subtracted from 180° to get the third angle of the triangle. You may use the example on page 138 to explain the concept. Diagrams must be drawn according to the steps of construction.

Class exercise (15 minutes)

The students will solve Exercise 11.2, question 4 a.

Homework

Exercise 11.2, question will be completed at home.

5. LESSON PLAN

Construction of parallelograms (20 minutes)

Explain how to construct a parallelogram, which is a quadrilateral that has opposite sides parallel.

،وم ورك

4~~
تـارى الث قين شثلث :با (25 من)

كآ يّ ثت (15 هن)

،و ورك

5
-توازى الاضناع ع با

This construction is done when:
(i) two adjacent sides and their included angle are given. Refer to the example on pages 139 and 140 drawing each figure step-wise so that the students can actually see how it is to be done.
(ii) two adjacent sides and a diagonal are given. Take the students through the steps and figures given on pages 141 and 142 to help them understand this type of construction.

Class exercise (20 minutes)

The students will do Exercise 11.3, question 1 in class.

Homework

The students will complete Exercise 11.3 as homework.

6-7 LESSON PLAN: Summary and Review Exercise

 , كي
(ii) 142

كاك يّ
 هوم ورك

UNIT 12 CIRCUMFERENCE, AREA, AND VOLUME

OBJECTIVES

The teacher should cover the following topics:

- Circumference and area of a circle
- Calculation of the circumference of a circle
- Calculation of the area of a circle
- Surface area and volume of a cylinder

LEARNING OUTCOMES

The students should be able to:

- express π as the ratio between the circumference and the diameter of a circle
- calculate the circumference and area of a circle
- calculate the volume and the surface area of a cylinder
- solve real-life problems related to the topic.

DURATION: Teaching: 4 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Circumference of a circle ($\mathbf{2 5}$ minutes)

Begin with a recap on the parts of the circle, e.g. radius, diameter, chord, etc. This will be followed by the explanation of what the area of a circle and its circumference with the help of the diagram drawn on the board.
Introduce π as the ratio between the circumference of the circle and the diameter of the circle.

$$
\frac{\text { circumference }}{\text { diameter }}=\pi
$$

Explain that the circumference can be calculated when the radius is given by a formula,
$\mathrm{C}=\pi \mathrm{d} \quad$ or $\mathrm{C}=2 \pi \mathrm{r} \quad$ where $\mathrm{C}=$ circumference, $\mathrm{d}=$ diameter, $\mathrm{r}=$ radius.
The value of π is $\frac{22}{7}$ or 3.142 .
Example: If the circumference of a circle is 44 cm , find the radius.
$C=2 \pi r, C$ is given in the question, so substitute 44 in place of C. $44=2 \times \frac{22}{7} \times r$

$$
\begin{aligned}
& \text { ب!12: تيط، رتباور. } \\
& \text { تاربيك تمامد }
\end{aligned}
$$

 ,
,

 ?
! ! ת π

بيا 6. 6 .

ووراني

1- 1
وارُ 6 كيط (25 هن (2

 *寿 $\pi=\frac{b}{b s}$

 - 3.142 ! $\frac{22}{7}$

 $44=2 \times \frac{22}{7} \times r$
$\frac{44 \times 7}{2 \times 22}=r$
$7=r$
The value of ' r ' has been calculated in this way. And if ' r ' is given, then the circumference can also be calculated. Let 14 cm be the radius ' r ', calculate the circumference.
$C=2 \pi r$
C $=2 \times \frac{22}{7} \times 14$
C $=88 \mathrm{~cm}$
If the diameter is given then it may be calculated as follows:
If the diameter is 4 cm find the circumference. (Take π as 3.142 .)
$\mathrm{C}=\pi \mathrm{d}$
$C=3.142 \times 4 \mathrm{~cm}$
C $=12.568 \mathrm{~cm}$

Class exercise (15 minutes)

The students will be asked to solve Exercise 12.1a, questions a, b, and c, and Exercise 12.1b, questions a, b, and c.

Homework

The students will solve Exercise 12.1 a and Exercise 12.1b, questions d, e and f.

3. LESSON PLAN

Area of a circle (20 minutes)

Explain how to calculate the area of the circle once more. Then tell the students that the area of a circle is calculated by a formula which is given below.
$A=\pi r^{2}$ (where A is for area, r is the radius and π can be taken as 3.142 or $\frac{22}{7}$ as the question requires).
Example: If the radius is given as 21 cm , find the area. (Take $\pi=3.142$.)
$\mathrm{A}=\pi \mathrm{r}^{2}$
$A=3.142 \times 7 \times 7$
A $=153.958 \mathrm{~cm}^{2}$
Using this formula, any of the quantities of the formula can be calculated when the other is given.

Class exercise (20 minutes)

Ask the students to do Exercise 12.1c, question 2 in class.
$\frac{44 \times 7}{2 \times 22}=r$
7 = r

$$
C=2 \pi r
$$

$$
\mathrm{C}=2 \times \frac{22}{7} \times 14
$$

$$
C=88 \mathrm{~cm}
$$

$C=\pi d$
C $=3.142 \times 4$
$C=12.568 \mathrm{~cm}$

 ،وم ورك

3

 جا با جوك

$$
\mathrm{A}=\pi \mathrm{r}^{2}
$$

$$
A=3.142 \times 7 \times 7
$$

$$
A=153.958 \mathrm{~cm}^{2}
$$

كان يّث"ت (20 ثن)

Homework

Exercise 12.1c, question 1 will be assigned as homework.

4. LESSON PLAN

Surface area and volume of a cylinder (20 minutes)

The lesson will begin with a discussion on shapes of various cylindrical objects, e.g. cans of drinks, etc. It is a common shape that we see around in the form of flasks, bottles, etc. These are the figures in which we need to find the volume which also means its capacity. The total material used to make the cylinder is the surface area. 7 cm (radius of the circle on top of cylinder)
height of cylinder 10 cm

In the above diagram, the circle is the crosssection, i.e. the two similar surfaces of the top and bottom of a cylinder. The distance between the two similar surfaces is the height of the cylinder as shown in the diagram above.

This diagram shows that 10 cm is the height and 7 cm is the radius of the circular base of the cylinder.
The formula to calculate the volume of a cylinder is: Volume $=\pi r^{2 h}$ \{pi (π) can be taken as 3.142 or $\frac{22}{7}$, h means the height, r means the radius $\}$
Surface Area $=2\left(\pi r^{2}\right)+(2 \pi r) h$ or $2 \pi r(h+r)$ is the formula to calculate the surface area of a cylinder.
Work out the examples given in the book on pages 148 to 150 .

Class exercise (20 minutes)

The students will solve Exercise 12.2a, question 6 and Exercise 12.2b, question 2.

Homework

Exercise 12.2 a and 12.2 b will be solved at home by the students.

5-6 Lesson Plan: Summary and Review Exercises

 (
 كاّ هيّثت (20 هنط)
 ،وم ورك

UNIT 13 INFORMATION HANDLING

OBJECTIVES

The teacher should cover the following topics:

- Data presentation
- Frequency distribution
- Interpreting and drawing pie graphs
- Construction of pie graphs/charts

LEARNING OUTCOMES

The students will be able to:

- demonstrate data presentation
- define frequency distribution
- interpret and draw pie graphs.

DURATION: Teaching: 2 periods; Summary and Review Exercises: 2 periods

1. LESSON PLAN

Frequency distribution (25 minutes)

Begin by discussing any match, cricket, hockey, football, etc. The discussion could be about the World Cup of 1992, the scores of which are given accurately in the illustration on page 154.
The lesson will continue with the students following the text and examples on pages 155 to 157 as you explain the various concepts to be taught. Emphasis should be laid on tally marks and the frequency of 5 marked with 4 lines and crossed off by the fifth.

Class exercise (15 minutes)

Ask the students to solve Exercise 13.1, question 1 in class. Answer any questions and help students who need it. This work may be completed at home for lack of time.

Homework

The students will solve Exercise 13.1, question 2 as homework.

ب!13: معلوات وارى
تر ديك متاصم

،وم ورك

2. LESSON PLAN

Pie graphs (25 minutes)

Read or ask the students to read page 158 using the diagram to help visualize what is being read out. The next diagram on page 159 will be discussed and then the related text will be explained by a volunteer student. (Do not force students to explain as this will contribute to a negative attitude towards the subject and the teacher.)
Then demonstrate on the board how a pie chart/graph is to be drawn with the help of a table. The students may be called upon to make a pie chart on the board with the data given in the example. The steps from 1 to 6 will guide them on how to go about it. The next example should also be discussed to promote further understanding.

Class exercise (15 minutes)

The students will do Exercise 13.2, question 1 in class.

Homework

Exercise 13.2 will be completed as homework.

3-4 LESSON PLAN: Summary and Review Exercises

 -

،وم ورك

Extra Exercises

Sharpening Skills

I. 1. Solve $\frac{-8}{9} \times\left[\frac{7}{6} \times\left(\frac{-4}{5}\right)\right]$.
2. Convert $24 \mathrm{~m} / \mathrm{s}$ to km / h.
3. Which of the following has the largest prime factor. $39,51,77,91,121$?
4. Round off 30.156 to 1 decimal place.
5. Write $\frac{33}{160}$ as a decimal.
6. Zain can run 2 km in 7 minutes. How long does he take to run a distance of 5.5 m ?
7. $\sqrt{100}+4^{2}$
8. Expand $(a+3)^{2}$.
9. At a sale, all items were given a discount of 15%. Find the original price of a book, if it is bought for Rs 90 .
10. Factorize $x^{3}+6 x^{2}$.
II. 1. Express $\frac{5}{7}$ as a decimal.
2. Convert $96 \mathrm{~km} / \mathrm{hr}$ to m / s.
3. 15% of a number is 60 . Find the number.
4. Solve $6^{-5} \times 6^{4}$.
5. Factorize $9-16 x^{2}$.
6. The perimeter of a rectangle is 76 cm . The length is 17 cm more than the width. Find the length and width.
7. Expand $(x+3)(x+1)$.
8. Solve $7 \mathrm{y}-(8-\mathrm{y})=2$.
III. 1. Solve $15^{4} \div 15^{3}+15^{\circ}$.
2. Factorize $100-4 \mathrm{~b}^{2}$.
3. Write 35% in its simplest form.
4. Convert $16 \mathrm{~m} / \mathrm{s}$ to $\mathrm{km} / \mathrm{hr}$.
5. Expand $3 x(2 x+9)$.
6. A shopkeeper sold a pair of socks for Rs 176 . He made a profit of 10%. Calculate the cost price of the socks.
IV 1. Saima earns Rs 650 per hour. If she works for $7 \frac{1}{2}$ hrs per day, how much money does she make in 5 days?
2. Simplify $6^{2} \times 6^{3} \div 6^{2} \times 6^{0}$.
3. Solve $\frac{1}{6}+\left[\frac{3}{7}+\left(\frac{-2}{7}\right)\right]$.
4. A half is a third of it. What is it?
5. $4: x=20: 35$

Find x.
6. Express 165 m as a percentage of 3 km .
7. A car travels 168 km in 2 hours 20 minutes. What is its average speed in $\mathrm{km} / \mathrm{hr}$?
8. $W=\{2,4,6\} \quad X=\{3,5,7,9\}$
$\mathrm{W} \cap \mathrm{X}=$?
v. 1. Solve $3(2 x+1)-2(2 x+1)=10$ Find x.
2. $r=8 \mathrm{~cm}$
$v=1005 \mathrm{~cm}^{3}$
$\mathrm{h}=$?
3. Calculate 45% of 2000 kg .
4. Factorize $121-x^{2} y^{2}$.
5. If half a number, 25% of the number and 0.1 times of the number have a sum of 68 . What is the number?
VI 1. Write the product of $\frac{35}{14}$ and $\frac{3}{125}$ in simpler form.
2. What is the smallest prime number greater than 120 ?
3. Solve $\sqrt{21}+\sqrt{196}+4^{2}$.
4. Name the property to show a pair as congruent triangle.
5. Expand $(3-x)^{2}$.
6. $E=\{1,2,3,4) \quad A=\{2,3,4\}, B=\{3\}$

Represent $A \cap B$ by Venn diagram.
7. Solve $3 x+\frac{2}{7 x}+5-\frac{1}{3}$.
8. At a sale, the cost of a watch was reduced by 12% to Rs 3630 . Calculate the original price.
9. When Ahmed was asked how old he was, he replied, "In 25 years, l'll be three times as old as I was 15 years ago". How old is he?
VII 1. A shopkeeper bought oranges at Rs 69 a dozen and sold them at Rs 6.10 per orange. Find his profit percentage.
2. Solve $3^{7} \div 3^{5} \times 3^{-1}+3^{0}$.
3. Factorize $4 x^{2} y-y$.
4. $A=\{$ Set of vowels $\}$ write A in tabular form.
5. Expand $(x-6)^{2}$. Find x.
6. If $A=\{a, b, c\}$ write subsets of A.

VIII 1. Solve $5 x+\frac{1}{3 x}-5=\frac{1}{7}$.
2. Solve $\frac{1}{4} \times\left(\frac{3}{7} \times \frac{6}{9}\right)$.
3. If 3 pens can be bought for Rs 240, find how many can be purchased for Rs 720.
4. Solve $\sqrt{9}+\frac{1}{4} \times 2^{2}$.
5. Calculate 2.5% of 5000 people.
6. Write $\frac{2}{9}$ as a decimal.
7. Convert $192 \mathrm{~km} / \mathrm{hr}$ to m / s.
8. Factorize $2 \mathrm{n}^{2}+2 x \mathrm{y}+\mathrm{y}^{2}+x \mathrm{y}$.
9. List all the divisors of 65 .
$X \quad$ 1. In a class of 30 pupils, 20% own a bicycle. How many pupils do not own a bicycle?
2. Expand $(4-y)^{2}$.
3. $A=\{a, b, c, d\}$ $B=\{1,2, c, d\}$
$\mathrm{A}-\mathrm{B}=$?
4. Expand $(x-1)(x+y-3)$.
5. Solve $\left[\frac{1}{2} \times\left(\frac{1}{3}+\frac{1}{4}\right)\right] \div \frac{1}{5}$.
6. Solve $3^{2}-4^{3} \times 4^{-2}+\left(4^{2}\right)^{2}$.
7. If a compositor types 72 words per minute, what will his speed be per hour?
8. At a sale, the prices are down by 20%. The price of a watch in the sale is Rs 2400 . Find its original price.

XI 1. A motorist travelled 189 km at $54 \mathrm{~km} / \mathrm{hr}$. Find the time taken to cover the distance.
2. Solve $\frac{3^{3}}{3^{2}} \times 3^{0}$.
3. The number of magazines sold by a newsagent is $2 \frac{1}{4}$ times the number of books sold. If 549 magazines are sold, how many books are sold?
4. Express $\frac{7}{20}$ as a decimal fraction.
5. $4: x=20: 35$, find x.
6. Calculate 6.4% of Rs 1595 .
7. Solve $\frac{\sqrt{25}+\sqrt{16}+\sqrt{81}}{3^{1} \times 3^{2}}$.
8. Expand $2(6 x-5 y)-4(x-2 y)$.
9. Calculate the amount of zakat payable on Rs 2,50,000/-.

Just for fun

1. Consider the pattern.
$1^{2}-0^{2}=1$
$2^{2}-1^{2}=3$
$3^{2}-2^{2}=5$
$4^{2}-3^{2}=7$
$x^{2}+y^{2}=161$
i. Write down the eighth line in the pattern.
ii. Find the value of 1832-1872.
iii. Find values of $x+y$ in $x^{2}-y^{2}=161$.
2. Consider a set of three consecutive numbers, for example 7, 8, 9. Compare the square of the middle number with the product of the outer pair.
Product of outer number $7 \times 9=63$
Square of middle number $8 \times 8=64$
The answer 63, 64 are also consecutive. Does it work with other sets of consecutive numbers. Try 10, 11 and 12.
Find the digit represented by each different letter.

$A B C$
$A B C$
$+\quad A B C$
$B B B$

3. Take any number from 1 to 9 , and do as directed below.

Multiply by 37.
Multiply by 13.
Multiply by 11.
Multiply by 7.
Multiply by 3.
What happens?
Why does it happen?
4. A number triangle

					1					
			1	1	2	1				
			1	2	3	2	1			
		1	2	3	4	3	2	1		
		2	4	5	4	3	2	1		
	2	3	4	5	6	5	4	3	2	1

Add up the numbers in each row. What do you notice?
5. Write a three digit number.

Multiply by 7.
Multiply by 11.
Multiply by 13.
What do you notice?
6. A water lily doubles everyday and fills a pond in 28 days. How long will it take to fill $1 / 4$ of the pond?
7. If each of these three operation signs,,+- and \times is used exactly once in the blanks in the expression, then find the prime number value of the result.
5 \qquad 4 \qquad 6 \qquad 3
8. Solve

$$
\begin{aligned}
& (10-1 \times 8) \div 2= \\
& (20-2 \times 7) \div 2= \\
& (30-3 \times 6) \div 2= \\
& (40-4 \times 5) \div 2=
\end{aligned}
$$

What do you notice?
9. How many paths from A to B pass through exactly four other vertices?
10. How many miles per hour is 100 inches per second? How many kilometres per hour is 10 metres per second.
11. Find the diameter of the circle whose area and circumference have the same numerical value.
12. If $\mathrm{a}=23, \mathrm{~b}=x^{2}, \mathrm{c}=x, \mathrm{~d}=14$ and $2 \mathrm{~b}-3 \mathrm{c}+\mathrm{d}=\mathrm{a}$, what is the value of x ?
13. I am a two digit number. When I am multiplied by the sum of my digits, the result is 70 . What number am I?

Answers

Unit 1

Exercise 1.1a (Page 2)

(a) $\mathrm{A}=$ set of first four letters of the English alphabet
(b) $B=$ set of the sign of the 4 operations in math
(c) $\mathrm{C}=$ set of perfect squares
(d) $\mathrm{D}=$ set of integers greater than -21
(e) $\mathrm{E}=$ set of multiples of 5
(f) $\mathrm{F}=$ set of whole numbers

Exercise 1.1b (Page 2)

(a) $A=\{0,1\}$
(b) $\mathrm{B}=\{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6\}$
(c) $\mathrm{C}=\{1,2,4,7,8,14,28,56\}$
(d) $\mathrm{D}=\{$ Sindh, Punjab, Balochistan, Khyber Pakhtunkhwa\}
(e) $\mathrm{E}=\{2\}$
(f) $F=\{7,14,21,28\}$

Exercise 1.1c (Page 3)

(a) $\mathrm{A}=\left\{\frac{x}{x} \in \mathrm{E}, x<10\right\}$
(b) $\mathrm{B}=\left\{\frac{x}{x} \in \mathrm{O}, 11 \leq x \leq 29\right\}$
(c) $\mathrm{C}=\left\{\frac{x}{x} \in \mathrm{~W}, x<6\right\}$
(d) $\mathrm{D}=\left\{\frac{x}{x} \in \mathrm{P}, 23 \leq x \leq 47\right\}$
(e) $\mathrm{E}=\left\{\frac{x}{x} \in\right.$ multiples, of $\left.9,9 \leq x \leq 108\right\}$
(f) $\mathrm{F}=\left\{\frac{x}{x} \in \mathrm{Z}^{-},-7 \leq x \leq 4\right\}$

Exercise 1.2a (Page 4)

(a) $\mathrm{AUB}=\{1,2,3,4,5,6,7,8,9\}$
(b) $P U Q=\{a, b, c, d, e, f\}$
(c) $\operatorname{RUS}=\{1,2,3,4, \ldots$.
(d) $\mathrm{XUY}=\{-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,9\}$
(e) $\operatorname{MUN}=\{1,2,3$

Exercise 1.2b (Page 6)
(a) $A^{\prime}=U-A=\{25,30,35,40,45,50,55,60\}$
(b) $\mathrm{B}^{\prime}=\mathrm{U}-\mathrm{B}=\{5,10,15,45,50,55,60\}$
(c) $\mathrm{C}^{\prime}=\mathrm{U}-\mathrm{C}=\{5,10,45,50,55,60\}$
(d) $\quad \mathrm{D}^{\prime}=\mathrm{U}-\mathrm{D}=\{5,15,25,35,45,55\}$
(e) $\mathrm{E}^{\prime}=\mathrm{U}-\mathrm{E}=\{5,10,20,30,40,50\}$
(f) $F^{\prime}=U-F=\{5,10,15,20,25,30,35\}$
(g) (a) and (g) are the same.
(h) (d) and (h) are the same.

Exercise 1.3 (Page 11)

Q. 1 (a) AUB

(b) $A \cap B$

(c) $\mathrm{A}-\mathrm{B}$

(d) $\mathrm{B}-\mathrm{A}$

(b) $A \cap B$

(d) $\mathrm{B}-\mathrm{A}$

Q. 3 (a) $A \cup B$

(b) $A \cap B$

(c) $\mathrm{A}-\mathrm{B}$

(d) $\mathrm{B}-\mathrm{A}$

Review exercises (Page 12)

Unit 1

Q. 1 (a) G = set of quadrilaterals
(b) $\mathrm{H}=$ set of all integers
(c) I = set of composite n numbers less than 30
(d) $\mathrm{J}=$ set of prime numbers less than 20
Q. 2 (a) $G=\{12,14,15,16,18\}$
(b) $\mathrm{H}=\{1,2,3,4, \ldots .$.
(c) $\mathrm{I}=\{$ right angle, acute angle, obtuse angle, reflex angle $\}$
(d) $\mathrm{J}=\{$ February $\}$
(e) $\mathrm{K}=\{$ isosceles triangle $\}$
(f) $\mathrm{L}=\{5,10,15,20,25,30,35,40\}$
Q. 3 (a) $\mathrm{F}=\left\{\frac{x}{x} \in \mathrm{I},-7 \leq x \leq 4\right\}$
(b) $\mathrm{G}=\left\{\frac{x}{x} \in \mathrm{~N}, x<100\right\}$
(c) $\mathrm{H}=\left\{\frac{x}{x} \in\right.$ multiples of $\left.3, x \leq 12\right\}$
(d) $\quad \mathrm{I}=\left\{\frac{x}{x} \mathrm{I}, x \leq-1\right\}$
Q. 4 (a) $\operatorname{QUR}=\{1,2,3,4,5,6,7,8,9,10\}$
(b) $\mathrm{R} \cap \mathrm{S}=\{2\}$
(c) $\operatorname{SUT}=\{1,2,3,5,6,7,9\}$
(d) QUT $=\{1,2,3,4,5,6,7,8,9,10\}$
(e) $\mathrm{Q} \cap \mathrm{R}=\{2,4,6,8\}$
(f) $\mathrm{R} \cap \mathrm{T}=\{6\}$

$$
\begin{aligned}
\text { Q. } 5 \text { (a) } & R^{\prime}=\{1,3,4,5,6,8,10\} \\
& \text { (b) } \mathrm{T}^{\prime}=\{1,2,3,4,5,9\} \\
& \text { (c) } P^{\prime} \cup Q^{\prime} \\
& P^{\prime}=\{1,3,5,7,9,10\} \\
& Q^{\prime}=\{2,4,6,8,10\} \\
& P^{\prime} \cup Q^{\prime}=\{1,2,3,4,5,6,7,8,9,10\}
\end{aligned}
$$

(d) Q' \cap '

$$
\begin{aligned}
& S^{\prime}=\{1,2,3,8,9,10\} \\
& Q^{\prime} \cap S^{\prime}=\{2,8,10\}
\end{aligned}
$$

(e) $T^{\prime}-P^{\prime}=\{2,4,5\}$
(f) $\quad \mathrm{R}^{\prime}-\mathrm{R}=\{1,3,4,5,6,8,10\}$
(g) $(P \cap Q)^{\prime}=\{0,1,2,3,4,5,6,7,8,9,10\}$
(h) $\quad(\mathrm{QUS})=\{2,8,10\}$
Q. 6 (a)

(c) $\mathrm{A}-\mathrm{C}$

(e) AUC

(b)

(d) $\mathrm{B}-\mathrm{A}$

(f) $B \cap C$

(g) $\quad A \cup A^{\prime}$
(h) $\quad A \cap A^{\prime}$

Unit 2

Exercise 2.8 (Page 25)

Q. 1 (a) No
(b) Yes
(c) Yes
(d) No
(e) No
(f) Yes
Q. 2 (a) $\frac{-2}{3}$
(b) $\frac{2}{3}$
(c) $\frac{5}{2}$
Q. 3 (a) $\frac{-3}{5}, \frac{-2}{5}, \frac{1}{5}$
(b) $-0.428,-1.6,-0.75=\frac{-3}{2}, \frac{-3}{4}, \frac{-3}{2}$
(c) $\frac{-4}{3}, \frac{-2}{7}, \frac{1}{3}$
Q. 4 (a) $\frac{-7}{8}=\frac{-14}{16}$
(b) $\frac{-8}{5}>\frac{-7}{4}$
(c) $0>\frac{-7}{6}$

Unit 5

Square root of positive numbers

Exercise 5.1 (Page 56)

Q. 1 Table

n	3	4	5	6	7	8	9	10	11	12
n^{2}	9	16	25	36	49	64	81	100	121	144

Table

n	13	14	15	16	17	18	19	20
n^{2}	169	196	225	256	289	324	361	400

(a) (i) Multiplying by itself
(ii) odd numbers occur
(iii) even number occurs
Q. 2
(a) 1024
(b) 2025
(c) 52900
(d) $\frac{16}{25}$
(e) 0.49
(f) 3.24

Unit 8

Exercise 8.1 (Page 87)

Q. 1
(a) trinomial
(b) binomial
(c) binomial
Q. 2
(a) $5 x^{4}+x^{3}+3 x^{2}-x+7$
(b) $a^{7}+4 a^{6}+3 a^{5}+4 a^{2}-3$
(c) $8 p^{6}-5 p^{4}+2 p^{2}+3 p$
Q. 3
(a) $591+76+3 b^{2}-9 b^{3}$
(b) $7-a+3 a^{2}-2 a^{3}+3 a^{4}$
(c) $3+m+m^{2}+2 m^{3}+2 m^{6}$
Q. 4 (a) $6 x \mathrm{y}^{5}+4 x^{2} \mathrm{a}+6 x^{3} \mathrm{a}^{4} \mathrm{~b}-3 x^{5} \mathrm{a}^{2} \quad$ (b) $5 x^{2} \mathrm{~b}^{3}+2 x^{3} \mathrm{~b}^{2} \mathrm{c}^{4}+7 x^{4} \mathrm{a}^{4}-3 x^{5} \mathrm{bc}^{2}$

Exercise 8.3 (Page 94)
(a) 2
(b) b
(c) +8
(d) -6
(e) -10
(f) $-5 m+10$

Unit 10
Exercise 10.1 (Page 111)
Q. 1 (a) not complementary
(b) complementary
Q. 2 (a) 75
(b) 27
(c) 12
Q. 3 (a) not supplementary
(b) supplementary
(c) supplementary
Q. 4
(a) 123°
(b) 61°
(c) 148°
Q. 5 (a) $a=45^{\circ}$
(b) $x=101^{\circ}$
Q. 6 (a) $a=81^{\circ}$
(b) $\mathrm{b}=79^{\circ}$

Exercise 10.2 (Page 116)
Q. 1 A and E

D and H (squares)
B and I (circles)
Q. 2 (a) similar
sides are proportional
(b) similar
sides are proportional
(c) not similar
corresponding angles are different
(d) similar
corresponding angles are equal
Q. 3 (a) yes
(b) yes
(c) yes sides are proportional

Exercise 10.3 (Page 121)
Q. 1 (a) not congruent
(b) congruent SAS
(c) congruent
(d) congruent (R.H.S)
(e) congruent
(f) SSS congruent
Q. 2 (a) triangles are congruent $x=118$
(b) OQP is congruent to OPR $x=4$ (SAS)

Exercise 10.4 (Page 126)
Q. 1
(a) $y=45^{\circ}$
(b) $y=45^{\circ}$
(c) $y=60^{\circ}$
(d) $y=60^{\circ}$
(e) $y=54^{\circ}$
(f) $y=18^{\circ}$

Review Exercise (Page 128)

Unit 10

Q. 1

(a) $t=150^{\circ}$
(b) $t=20^{\circ}$
(c) $t=35^{\circ}$
(d) $t=140^{\circ}$
(e) $t=15^{\circ}$
(f) $t=112^{\circ}$
Q. 2
(a) $d=55^{\circ}$
$e=125^{\circ}$
$f=125^{\circ}$
(b) $\mathrm{d}=45^{\circ}$
$e=135^{\circ}$
$\mathrm{f}=135^{\circ}$
(c) $\mathrm{p}=180^{\circ}$
$q=155^{\circ}$
(d) $\mathrm{q}=50^{\circ}$
$\mathrm{p}=180^{\circ}$
(e) $r=100^{\circ}$
$\mathrm{I}=110^{\circ}$
$m=80^{\circ}$
(f) $t=100^{\circ}$
(g) $x=110^{\circ}$
(h) $\mathrm{n}=60^{\circ}$
Q. 3 (a) not congruent (angles are different)
(b) congruent
(c) congruent
(d) congruent (equal corresponding angles)
(e) congruent
(f) congruent (corresponding sides and angles are equal)
(g) not congruent
(h) congruent
(right angle property)
(equal corresponding sides)
(right angles property)
(corresponding angles are different)
(corresponding angles and sides are equal)
Q. 4 (a) given triangles are congruent (SAS)
(b) EHF and EGF are congruent (R.H.S) $\quad x=4$
Q. 5 (a) $\mathrm{y}=101^{\circ}$
(b) $\mathrm{y}=31^{\circ}$
(c) $y=27^{\circ}$
Q. 6 (a) no
(b) no
(c) not similar because corresponding angles are unequal

Unit 13

Exercise 13.1 (Page 157)

Q. 3	Classes	Tally	Frequency
	30-39	/	01
	40-49		0
	50-59		26
	60-69	HIIt HIIt HIIt HIIt HIIH HIN I/	32
	70-79	H+1/ II	6

a) 6
b) $50-59$

Q. 2	Classes	Tally	Frequency
	0-9	/	1
	10-19	III	3
	20-29	III	3
	30-39	HIII	5
	40-49	HIII	5
	50-59	HIIH HIIt HIIt	15
	60-69	IIII III	8
	70-79	H+1/ H+1/	12
	$\begin{aligned} & 89-89 \\ & 90-99 \end{aligned}$		1
	(a) 87		(d) 1

Q. 1

Exercise 13.2 (Page 161)

Total $=1077$
below 12 years

$$
\frac{132}{1077} \times 360^{\circ}=44.1^{\circ}
$$

12-18 $\frac{225}{1077} \times 360^{\circ}=74.2^{\circ}$

18-30 $\frac{300}{1077} \times 360^{\circ}=100.2^{\circ}$

30-50
above 50
$\frac{270}{1077} \times 360^{\circ}=90.2^{\circ}$
$\frac{150}{1077} \times 360^{\circ}=50.2^{\circ}$

Q. 3

farmers	$\frac{12.5}{100} \times 360^{\circ}=45^{\circ}$
factory	$\frac{25}{100} \times 360^{\circ}=90^{\circ}$
shopkeepers	$\frac{40}{100} \times 360^{\circ}=144^{\circ}$
service	$\frac{10}{360} \times 360^{\circ}=36^{\circ}$
others	$\frac{12.5}{360} \times 360^{\circ}=45^{\circ}$

Notes
\qquad

