International Secondary Maths

Teaching Guide

COLIN WRIGLEY

OXFORD
UNIVERSITY PRESS

Introduction

How to use this Guide

I. Selection of work and pacing

Book 11 is designed for students of class XI (or equivalent), i.e. they would normally be $15+$ years old at the start of the academic year, and intending to appear for O level or IGCSE examinations at the end of the year. Although there are significant new topics presented, there is also much that is revision and teachers should use their professional judgement about how much of that is needed. The chapter-by-chapter recommendations regarding pacing should be used as a rough guide only.

II. Integrated mathematics

This textbook series deliberately exploits links between the different branches of mathematics. It lists such links chapter by chapter and teachers are advised to make these explicit in lessons.

III. Lesson planning

This guide does not attempt to provide perfect lesson plans. Schools have their own requirements, and good teachers will always experiment. The intention of the guide notes is to assist teachers at the planning stage, and to make a few pedagogical suggestions. The headings used in the guide are as follows:

Objectives

General - an overview/summary.
Specific - detailed learning objectives, stated from the students' point of view Pacing and links also come under this heading. (See I and II.)

Method

Here there are ideas of the teaching strategies to use, written from the teacher's point of view.

Resources

Lists of any vital equipment, worksheets, special paper or other items useful for the lesson.

Assignments

Suitable homework assignments suggested

Vocabulary

Key words essential for understanding

IV. Bloom's Taxonomy

A detailed discussion of this may be found in the Teaching Guides 6, 7, and 8. It should always be a teacher's goal to challenge students to use higher level problem-solving skills, and to avoid teaching "recipes".

V. The Exercises

The exercises follow a pattern:
Exercise A, B, etc. follow each section of a chapter
Exercises \mathbf{X} are challenging questions, beyond the main course, for students of higher ability in order to provoke curiosity and enable them to see ahead just a little.
Revision Exercises These are banks of questions on all previous topics. They are not graded: there is a mixture of routine practice and thought-provoking material. Non-calculator questions have been separated from questions where calculators may be required.
Specimen Examination Papers, a feature of earlier texts in the series, are not provided in this guide. Teachers are advised to use readily available past papers of the relevant syllabus as a model for internal school examinations at this stage.

VI. Useful sheets

Graph paper (photocopiable) is provided in this guide, of a size that is more useful than large sheets.

Contents

Page
Chapter
1 Vectors
2 Transformations of the Plane
3 Functions
4 Equations and Expressions
17
5 Matrices 21
6 Revision Exercises [Non-calculator] 27
7 Revision Exercises $\mathbf{3 3}$
8 Trigonometric Functions
9 Miscellaneous Calculations and Proofs

10 Surds 51

11 Revision Exercises [Non-calculator]
54
12 Revision Exercises

2 Worksheets (photocopiable)
8 EX 11A, question $8 \quad \mathbf{6 4}$
13 EX 11A, question $10 \quad \mathbf{6 5}$
EX 11B, question 366
EX 11B, question 6 66

EX 11C, question $5 \quad 67$
EX 11E, question $2 \quad 68$
EX 12A, question 179
EX 12A, question $7 \quad \mathbf{8 0}$
EX 12B, question $8 \quad \mathbf{8 1}$
EX 12C, question $7 \mathbf{8 2}$
EX 12D, question $1 \quad 83$
EX 12E, question $2 \quad 84$
Useful Sheet (photocopiable)
Squared Paper (2 mm) 12

Although vectors have been introduced previously (Book 8, Chapter 17), they have been used only as a way of describing translations. In this chapter we move to a more formal treatment leading to problem solving using vector algebra.

LESSON PLANNING

Objectives

General
To use vectors (in two dimensions) related to geometrical diagrams, with the correct notation

Specific 1. To understand that vectors represent translations, or any other concept that has magnitude and direction
2. To know how to state the components of a vector when it is drawn on a squared grid; to distinguish between the components of a vector and the coordinates of a point
3. To recognise and use scalar multiples of vectors, their geometrical representation, and the different notation for vectors and scalars
4. to understand the triangle law of combination of vectors; to use it in problems
5. To know that the negative of a vector reverses its direction and changes the signs of both of its components; to use this fact in problems
6. To use Pythagoras' theorem to obtain the length of any vector, with correct notation
7. To distinguish between free vectors and position vectors; to use equal and parallel free vectors in problems
8. To use position vectors to find the vector between two given points
9. To switch between fractions of a vector and ratios of line segments as required to solve problems
10. To use simple geometric properties of shapes and parallel lines to assist in solving problems of vector geometry

Pacing	4 lessons, 2 homeworks
Links	Transformations (translations), coordinates, basic geometry especially of quadrilaterals

Method - Although vectors in component form describing translations have been used before, this whole topic is quite unlike any previous mathematics in a number of respects. It cannot be rushed. Be patient. Explain clearly the vector notation
(underlining) to distinguish arrows from numbers (scalars). Vector geometry is a "geometry of shifting".

- Components are quite easy. Use the text examples orally and invent similar. This is easily grasped (and is revision).
- Scalar multiples are also quite easy to explain. Diagrams are essential here. It is helpful if you have a ready-made panel of squares on your whiteboard/ blackboard.
- The combination law follows. This is a vital fact of vector algebra that must be clearly assimilated. The text indicates one approach, i.e. travelling. For example you could say that if you start here (A), go to the moon (B), and back to here (C, on the other side of the classroom), the combined vector is just $\overrightarrow{A B}$. This emphasizes that it is the net shift, not the distance travelled, that is relevant in vector combination. It also confirms that vector notation is essential:

$$
\text { but } \quad \begin{aligned}
& \overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C} \\
& A B+B C>A C
\end{aligned}
$$

Follow the notes (1) to (4) in the text.

- Negative vectors can be introduced by asking the students to guess what -a or $-\overrightarrow{A B}$ could mean. The definition is quite intuitive. Again, follow the text and show how negatives can be used to combine vectors "pointing the wrong way".
- For length of a vector, again elicit solutions from a specific example, e.g. "How long is $\binom{4}{3}$?" Do not just quote a formula at the start. The formula in the text may be given once the fact that Pythagoras is always applicable becomes apparent.
Use EX 1A. There is a lot of theory covered, so allow and encourage students to look back at the text definitions and examples.
- In problem solving, students will need to be aware that the usual geometry conventions (arrows on parallel lines, etc.) are usually not followed in vector geometry. The question needs to be read carefully to identify useful information. The geometric properties of quadrilaterals are often especially useful. The text examples are worth using to demonstrate this.
- Position vectors are to be defined as vectors attached to the origin of coordinates. When the "tail" is attached the "nose" point has the same coordinates as the components of the vector. Ability to switch between points and position vector can be practised. Students are often careless about notation: a point is not a vector.
- Revise ratios and fractions. It is simple work but mistakes are often made. For example,

If $A B: B C=5: 2$
then $A B=\frac{5}{7}$ of $A C$
and $B C=\frac{2}{7}$ of $A C$
Students need to be able to switch from ratios to fractions and vice-versa.
For the vector context follow the text.

Set EX 1 B which uses all the above systematically.
In EX 1X for fast-working students, question 2 and question 3 should be solvable by the majority.
Resources If possible, obtain a blackboard/whiteboard with permanent squares. Every
mathematics classroom should have one.

Assignments Easy homework: EX 1A, questions 1-6. Also EX 1B, questions 1-5
Vocabulary vector, component, coordinate, scalar, free vector, position vector

ANSWERS

Exercises

EX 1A

1. $\mathbf{a}=\binom{5}{1}$
$\mathbf{b}=\binom{2}{0}$
$\mathbf{c}=\binom{2}{-3}$
$\mathbf{d}=\binom{-1}{4}$
$\mathbf{e}=\binom{0}{-3}$
$\mathbf{f}=\binom{-4}{-3}$
$\mathbf{g}=\binom{4}{-2}$
$\mathbf{h}=\binom{-2}{3}$
2.

a) $\overrightarrow{A B}=\binom{1}{4}$
b) $\overrightarrow{B C}=\binom{10}{-6}$
c) $\overrightarrow{B M}=\binom{5}{-3}$
d) $\overrightarrow{A M}=\binom{6}{1}$
3.
a) true
b) true
c) true
d) false
4. $k=-1, \quad l=3, \quad m=4, \quad n=2$
5.
a) $\overrightarrow{B D}=\mathbf{u}-\mathbf{v}$
b) $\overrightarrow{B C}=\mathbf{u}-\mathbf{v}+\mathbf{w}$
c) $\overrightarrow{A C}=\mathbf{u}+\mathbf{w}$
d) $\overrightarrow{C A}=-\mathbf{u}-\mathbf{w}$
6.
a) $\binom{0}{1}$
b) $\binom{2}{-5}$
c) $\binom{-1}{5}$
d) $\binom{3}{-8}$
7. $k=-1, n=6$
8.
a) $\binom{0}{5}$
b) $\binom{-5}{5}$
c) $\binom{4}{-3}$
d) $\binom{0}{5}$
9.
a) $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$
b) $\quad \overrightarrow{A P}=\frac{1}{3}(\mathbf{b}-\mathbf{a})$
c) $\overrightarrow{O P}=\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}$
d) $\overrightarrow{O Q}=\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$
10.
a) $\mathbf{a}-2 \mathbf{b}=\binom{9}{-10}$
b) $n=52$
C) $t=-\frac{1}{2}, \quad s=-2$

EX 1B

1. a) $\mathbf{w}=-\mathbf{u}-\mathbf{v}$
b) $\mathbf{w}=\mathbf{u}+\mathbf{v}$
C) $\mathbf{w}=2 \mathbf{u}-\mathbf{v}$
d) $\mathbf{w}=\frac{3}{2} \mathbf{u}-\mathbf{v}$
2.

a) $\overrightarrow{A C}=\binom{10}{-1}$
b) $\overrightarrow{B D}=\binom{2}{-3}$
c) $|\overrightarrow{A C}|=\sqrt{101}$
d) $|\overrightarrow{B D}|=\sqrt{13}$
3.
a) $\mathbf{a}=\binom{-1}{2}$
b) $B(5,3)$
c) $\overrightarrow{A B}=\binom{6}{1}$
d) $D(-4,0)$
4.
a) $\overrightarrow{A B}=\binom{-3}{2}$
b) $\overrightarrow{A C}=\binom{-1}{3}$
c) $\overrightarrow{C B}=\binom{-2}{-1}$
d) $|\overrightarrow{C A}|=\sqrt{10}$
5. $\quad B(6,2.5)$
6.
a) $\overrightarrow{A B}=\binom{2}{-6}$
b) $\overrightarrow{A C}=\binom{4}{-12}$
c) $\mathbf{c}=\binom{6}{-7}$
d) $D(12,-3)$
7.
a) $\overrightarrow{A P}=\binom{-1}{-3}$
b) $\overrightarrow{A B}=\binom{-3}{-9}$
C) $k=3$
d) $A P: P B=1: 2$
8.

$$
\text { a) } \begin{aligned}
\overrightarrow{A G} & =\frac{2}{7} \overrightarrow{A B}=\frac{2}{7}(\mathbf{b}-\mathbf{a}) \\
\mathbf{g} & =\overrightarrow{O G}=\overrightarrow{O A}+\overrightarrow{A G} \\
& =\mathbf{a}+\frac{2}{7}(\mathbf{b}-\mathbf{a}) \\
& =\frac{5}{7} \mathbf{a}+\frac{2}{7} \mathbf{b}
\end{aligned}
$$

b) $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$

$$
\begin{aligned}
\overrightarrow{A G} & =\mathbf{g}-\mathbf{a} \\
& =\frac{4}{9} \mathbf{a}+\frac{5}{9} \mathbf{b}-\mathbf{a} \\
& =\frac{-5}{9} \mathbf{a}+\frac{5}{9} \mathbf{b} \\
& =\frac{5}{9} \overrightarrow{A B}
\end{aligned}
$$

$$
\begin{equation*}
\therefore A G: G B=5: 4 \quad \text { as required } \tag{9.}
\end{equation*}
$$

a) $\mathbf{b}=\mathbf{a}+\mathbf{c}$
b) $\mathbf{f}=\mathbf{c}-\mathbf{a}$
c) $\mathbf{m}=\frac{1}{2}(\mathbf{a}+\mathbf{c})$
d) $\mathbf{n}=-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{c}$
10.
a) $\overrightarrow{M N}=\frac{-3}{5} \mathbf{a}+\frac{1}{2} \mathbf{b}$
b) $\mathbf{r}=\frac{7}{10} \mathbf{a}+\frac{3}{4} \mathbf{b}$

EX 1X

1. $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\binom{b_{1}}{b_{2}}-\binom{a_{1}}{a_{2}}=\binom{b_{1}-a_{1}}{b_{2}-a_{2}}$
$\operatorname{gdt} A B=\frac{b_{2}-a_{2}}{b_{1}-a_{1}}$
Equation $A B$ is $y=\left(\frac{b_{2}-a_{2}}{b_{1}-a_{1}}\right) x+c$

$$
\begin{aligned}
\text { At } A\left(a_{1}, a_{2}\right): \quad & a_{2}
\end{aligned}=\left(\frac{b_{2}-a_{2}}{b_{1}-a_{1}}\right) a_{1}+c .
$$

Substituting for c, equation $A B$ is:

$$
y=\left(\frac{b_{2}-a_{2}}{b_{1}-a_{1}}\right) x+a_{2}-\left(\frac{b_{2}-a_{2}}{b_{1}-a_{1}}\right) a_{1}
$$

Mult. by $\left(b_{1}-a_{1}\right)$;

$$
\begin{aligned}
& \quad\left(b_{1}-a_{1}\right) y=\left(b_{2}-a_{2}\right) x+a_{2}\left(b_{1}-a_{1}\right)-\left(b_{2}-a_{2}\right) a_{1} \\
& \left(a_{2}-b_{2}\right) x-\left(a_{1}-b_{1}\right) y=a_{2} b_{1}-a_{1} a_{2}-a_{1} b_{2}+a_{1} a_{2} \\
& \left(a_{2}-b_{2}\right) x-\left(a_{1}-b_{1}\right) y=a_{2} b_{1}-a_{1} b_{2} \quad \text { as required }
\end{aligned}
$$

2. $\overrightarrow{O P}=2 \mathbf{a}, \quad \mathbf{q}=4 \mathbf{b}$

$$
\begin{aligned}
\overrightarrow{A B} & =\mathbf{b}-\mathbf{a} \\
\overrightarrow{B R} & =3(\mathbf{b}-\mathbf{a}) \\
\mathbf{r} & =\overrightarrow{O B}+\overrightarrow{B R} \\
& =\mathbf{b}+3(\mathbf{b}-\mathbf{a}) \\
& =4 \mathbf{b}-3 \mathbf{a}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{R Q} & =\mathbf{q}-\mathbf{r} \\
& =4 \mathbf{b}-(4 \mathbf{b}-3 \mathbf{a}) \\
& =3 \mathbf{a} \\
& =\frac{3}{2} \overrightarrow{O P}
\end{aligned}
$$

$R Q$ is parallel to $O P$ and $R Q=\frac{3}{2} O P$.
$\therefore O P Q R$ is a trapezium and $O P: R Q=2: 3$.
3.
a) $\angle O A B=\angle D A E \quad$ (vert opp $\angle \mathrm{s}$)
$O A=A D$
$\angle O B A=\angle A E D \quad($ alt $\angle \mathrm{s})$
$\triangle A O B$ is congruent to $\triangle A D E$ (AA corr S)
b) $\mathbf{e}=2 \mathbf{a}-\mathbf{b}$
c) X is at the centre of the parallelogram, i.e. at the intersection of its diagonals $O C$ and $B D$.
d) $\overrightarrow{X E}=\mathbf{a}-\frac{3}{2} \mathbf{b}$.

Chapter
 Transformations of the Plane

This chapter extends the concept of transformation of a shape to transformation of the whole $x-y$ plane. Emphasis is placed on those transformations that can be represented by a square matrix in preparation for later work.

LESSON PLANNING

Objectives

General	To recognise standard transformations of the plane from diagrams; to describe them fully; to represent them using mapping statements

1. To give accurate full descriptions of reflections, rotations, translations, and enlargements
2. To use functional notation correctly, i.e. M, R, T, and E, individually and in combinations
3. To write and interpret general mapping statements for transformations of the plane
4. To identify invariant points or lines under the various transformations of the plane

Pacing	4 lessons, 2 homeworks
Links	Coordinates, mappings
Method	• Quickly revise transformations already taught. Ensure that the students know
	how to describe each transformation fully and know their symbols: M, R, T, and E.

- The new word to introduce is invariant. This is related to transforming the whole plane, not just one shape. Go through M,R,T, and E transformations finding invariant lines and points when the plane is transformed.
- Mapping statement examples may be given for simple cases, e.g. enlargement with negative scale factor.
- Set EX 2A without too much prior explanation. The text may be used for reference rather than worked through in detail. The key concept at this stage is the transformation of the whole plane: shapes drawn on the plane illustrate the transformation, but all points on the plane are transformed, not just the shape, unless of course they are invariant.

Rresources	Squared paper or graph paper (photocopiable sheets available in this guide)
Assignments	Suitable homework EX 2A, questions 5 and 6
Vocabulary	transformation, invariant, mapping statement

ANSWERS

Exercises

EX 2A

1. a) translation $\binom{-1}{7}$ b) rotation $+90^{\circ}$ about $(0,0)$
c) enlargement, scale factor -2 , centre $(0,0)$ d) reflection about the line $x=-4$
2.

a) none
b) $(0,0)$
c) $(0,0)$
d) $x=-4$
3. a) reflection in line $y=x$
b) rotation -90° about $(-2,4)$
c) translation $\binom{6}{-4}$
d) enlargement, scale factor 1.5 , centre $(-7,-2)$
4.
a) $y=x$
b) $(-2,4)$
c) none
d) $(-7,-2)$
5. a)
)

d) enlargement, scale factor 3 , centre $(0,2)$
6. a) $(0,0)$
b) none
c) y-axis
d) $(0,2)$
7. a)
b)
c)

d) rotation of 180° about $(0,-1)$
8. a)
b)
c)
d)

9. $x^{\prime}=x+1, y^{\prime}=-y-2$
10. $x^{\prime}=x, y^{\prime}=-y$

EX 2X

1. a) S
b) P
c) Q
d) R
2.

a) $\mathbf{i} \rightarrow \mathbf{i}, \quad \mathbf{j} \rightarrow-\mathbf{j}$
b) $\mathbf{i} \rightarrow \mathbf{j}, \quad \mathbf{j} \rightarrow-\mathbf{i}$
c) $\mathbf{i} \rightarrow 2 \mathbf{i}, \quad \mathbf{j} \rightarrow 2 \mathbf{j}$
d) $\mathbf{i} \rightarrow-\mathbf{i}, \quad \mathbf{j} \rightarrow \mathbf{j}$
3. a) rotation of $\pm 120^{\circ}$ about the origin
b) $n=2$

Squared paper (2 mm)

This chapter introduces more formal ideas about functions with particular emphasis on algebraic functions.

LESSON PLANNING

Objectives

General	To solve simple problems involving algebraic functions, their inverses, and composites
Specific	1. To interpret both methods of specifying an algebraic function
	2. To find the image of a number under a specified function
	3. To find a general statement specifying the inverse of a given function
	4. To know that the variable in a function specification may be changed at will; to use this fact to find inverse functions and composite functions
	5. To draw and interpret graphs of functions
	6. To solve equations involving functions
Pacing	4 lessons, 2 homeworks
Links	General algebraic techniques, arrow diagrams, transformations, trigonometric functions, graphs
Method	- "What are letters used for in mathematics?" Begin with this open-ended question and see what responses you obtain, e.g.
	numbers (algebra)
	vectors (underlined, for vector algebra)
	sin, cos, tan (trigonometry)
	M,E,R,T (transformations)
	n (A) (set language)
	Some of these are functions, i.e. they describe an action/process/proceduresomething done.
	Algebraic functions do something to numbers.
	Then follow the text example.
	Give other examples, lead up to how we write functions correctly, both methods.

vectors (underlined, for vector algebra)
sin, cos, tan (trigonometry)
M,E,R,T (transformations)
$\mathrm{n}(\mathrm{A})$ (set language)

Some of these are functions, i.e. they describe an action/process/proceduresomething done.
Algebraic functions do something to numbers.
Then follow the text example.
Give other examples, lead up to how we write functions correctly, both methods.

Take time over the notation. There is a difference between $3(x+2)$ and $f(x+2)$ but they look similar.
$\mathrm{f}(x+2) \neq \mathrm{f} x+2 \mathrm{f}$
if f is a function.

- Follow the text examples 1 to 3 , and make up similar.
- Set EX 3A, questions 1-5.
- Arrow diagrams are really helpful for explaining the concept of inverse functions. The variable change causes much confusion. Students need to grasp that x in $f(x)$ and x in $f^{-1}(x)$ are "not the same x ". The text method of changing one of them immediately is highly recommended. This seems to work better than changing it at the end, which seems like cheating.
- Use Examples 1 and 2 given under Dummy Variables and similar.
- Set EX 3B, questions 6-10.
- Do not move on to composites until students are confident with inverses. Then arrow diagrams are again a helpful aid to understanding. The order of application of $\mathrm{fg}(x)$ is analogous to the rule used for combining transformations. This link should be exploited.
- Example 1 given under composite functions should be sufficient to go through in detail. Leave Examples 2, 3, 4 and the note on graphs for reference.
- Set EX 3B.

Resources	Graph paper (photocopiable) for EX 3B, question 6
Assignments	Suitable homework EX 3A, questions 9 and 10 and EX 3B, questions 7 and 8
Vocabulary	functions, maps, image inverse functions, composite function dummy variable

ANSWERS

14 Exercises

EX 3A

1. a) 1
b) -0.4
c) -2
d) 4
2.

a) 26
b) 37
c) 96
d) 0
3.
a) $\mathrm{f}(n)=3 n-2$
b) $f(y)=3 y-2$
c) $f(t)=3 t-2$
d) $f(x)=3 x-2$
4.
a) $x=6$
a) $x=4$
a) -6
b) $x=-1$
b) $x=\frac{70}{3}$
c) $x=1$
d) $x=-29$
C) $x= \pm 1$
b) 2
c) $f^{-1}(x)=\frac{x+5}{3}$
d) $x=1.5$
d) $\quad g^{-1}(x)=\frac{1-x}{4}$
5.
6.
7.
a) 6
b) 1.5
c) $f^{-1}(x)=\frac{2 x}{x-5}$
d) $\mathrm{g}^{-1}(x)=\frac{5 x}{x-2}$
8.
a) 2
b) -14
c) 0
d) $1-\frac{x}{2}$
9.
a) 7
b) $x=8$
c) $f^{-1}(x)=\frac{3 x+7}{2}$
d) $\frac{1}{2}$
10.
a) $\frac{-11}{4}$
b) $\quad \mathrm{f}^{-1}(x)=\frac{x}{2}, \quad \mathrm{~g}^{-1}(x)=\frac{x+1}{3}, \quad \mathrm{~h}^{-1}(x)=\frac{1}{x}$
C) $\frac{1}{2}$
d) $x=1$

EX 3B

1.

a) $\operatorname{fg}(x)=2 x+3$
b) $f g(3)=9$
c) $\mathrm{gf}(x)=2 x+6$
d) $g f(3)=12$
2.
a) $f g(x)=2 x^{2}+1$
b) $g f(x)=(2 x+1)^{2}$
c) $f^{2}(x)=4 x+3$
d) $f^{2}(5)=23$
3.
a) $f g(1)=-2$
b) $g f(2)=1$
C) $f^{2}(3)=7$
d) $\quad g^{2}(4)=4$
4. a)

b) $\quad x=1.79, \quad x=-2.79$ (3 s.f.)
5. a) $f^{2}(-1)=11$
b) $g f(x)=\frac{x^{2}+5}{2}$
c) $\mathrm{g}^{-1}(x)=2 x-3$
d) $\operatorname{fg}^{-1}(x)=4 x^{2}-6 x+11$
6. a)
$\left\{\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline x & -1 & -0.5 & 0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 \\ \hline 2^{x} & 0.5 & 0.71 & 1 & 1.41 & 2 & 2.83 & 4 & 5.66 \\ \hline+1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline g(x) & 1.50 & 1.71 & 2.00 & 2.41 & 3.00 & 3.83 & 5.00 & 6.66 \\ \hline\end{array}\right.$
b)
C)

d) i) $x=1.6$ (1 d.p.)
ii) $x=2.5$
iii) $x=1$
a) $\mathrm{g}^{-1}(x)=\frac{x+1}{4}$
b) $\mathrm{h}^{2}(x)=x$
c) $\operatorname{gh}(0.2)=3$
d) $x=-3$
8.
a) $h(-2)=2$
b) $\operatorname{gh}(4)=\frac{1}{3}$
C) $f^{-1}(x)=\frac{x-1}{3}$
d) $\mathrm{g}^{-1}(x)=\frac{7-x}{x}$
9. $A=\frac{1}{2}, B=-2$
10. $A=5, B=\frac{2}{3}$

EX 3X

1.

a) 717
a) $\operatorname{fgh}(x)=\frac{7-2 x}{5}$
b) $x=3, x=4, x=5$
b) $\operatorname{fhg}(x)=\frac{11 x-1}{x-1}$
c) $x=4.5$
c) $\operatorname{ghf}(x)=\frac{-2 x}{5}$
d) $x=-1,-2,-3$
d) $\operatorname{hgf}(x)=\frac{10 x+5}{2 x}$
2.
3. i)

ii)

Each value of y has two possible associated values of x. The function is not reversible.

Parts of this function have 2 or 3 possible values of x associated with the y value. The function is not reversible.

Chapter
 Equations and Expressions

This chapter provides considerable practice in algebraic techniques. Not all students may need to attempt all of it.

LESSON PLANNING

Objectives

General | To be expert in solving linear and quadratic equations and manipulating algebraic |
| :--- |
| fractions |

Specific 1. To solve word problems leading to linear or quadratic equations
2. To solve simultaneous linear equations by elimination or substitution, selecting the more appropriate method
3. To deal with equations involving fractions or decimals, including algebraic fractions
4. To remove brackets correctly, especially when there are negative multipliers
5. To solve quadratic equations by factorisation, and by formula with accurate data entry into calculators
6. To combine two algebraic fractions into a single fraction
7. To apply the cross-multiplication technique, and to know when it is not applicable

Pacing	At least 4 lessons, with 2 homeworks
Links	Graphs, use of calculator

Method . Use the material diagnostically, i.e. set work, and circulate, trouble-shooting, after the briefest of introductions. This is the last opportunity in this course to sort out any difficulties with algebra. It may be helpful to use the Reminders section in the text initially, giving examples, but at this stage time is best spent in practice. Set EX 4A.

- The section covering combining algebraic fractions and cross-multiplication needs some care. A lot of errors are made with algebraic fractions. Do plenty of examples similar to Examples 4 and 5 in the text-it is easy to make them up. Cross-multiplication is a "recipe" and the problem with recipes is that students can misapply them. If must be hammered home that it works only when
fraction = fraction

Set EX 4B.

Resources	Calculators essential
Assignments	Any of the exercises are suitable for homework. One strategy is to omit parts d) in class and set those for homework, e.g. EX 4A, questions 1-5 parts d) only, or EX 4B, questions 1-5 parts d) only.
Vocabulary	equation, expression algebraic fraction cross-multiplication

Note: The method of completing the square for solving quadratic equations is explained as a postscript to the chapter. It is recommended that this be used only for the most able students.

ANSWERS

Exercises

EX 4A

1.

a) $x=1, \quad y=-2$
b) $x=-2, \quad y=5$
c) $x=3, y=-4$
d) $x=4, \quad y=5$
2.
a) $x=\frac{-10}{43}$
a) $x=\frac{8}{7}$
b) $x=\frac{21}{20}$
b) $x=\frac{19}{3}$
c) $x=2$
c) $x=\frac{-31}{14}$
d) $x=0.5$
d) $x=3$
3.
4.
a) $x=1, x=17$
b) $x=\frac{1}{3}, \quad x=\frac{1}{2}$
c) $x=2, \quad x=-13$
d) $x=-1, \quad x=-5$
5.
a) $x=2.18, \quad x=0.153$
b) $x=4.56, \quad x=0.438$
C) $x=3.64, x=0.137$
d) $x=0.175, \quad x=-1.43$
6.
a) $x= \pm 4.61$
b) $x^{2}=3^{2}+3.5^{2}, \quad x= \pm 4.61$
c) 4.61 cm (3 s.f.)
d) A length cannot be negative.
7. 17 apples, 19 bananas
8. a) 24.49 m by 48.99 m
b) 10 m by 120 m
C) 15 m by 80 m
d) 24 m by 50 m
9.
a) $x=\frac{117}{31}$
b) $x=\frac{91}{55}$
c) $x=\frac{-57}{58}$
d) $x=2.57, \quad x=-0.907$ (3 s.f.)
10.
a) $x=-1, \quad y=-2$
b) $x=0, \quad y=-2$
c) $x=\frac{13}{5}, y=\frac{-2}{5}$
d) $x=\frac{12}{5}, y=\frac{-8}{5}$

EX 4B
1.
a) $\frac{5 x+7}{x^{2}+3 x+2}$
b) $\frac{3 x+5}{x^{2}+x}$
c) $\frac{6 x+1}{2 x^{2}+x}$
d) $\frac{-x+11}{x^{2}-4 x-5}$
2.
a) $t=2$
b) $\quad v=-2, \quad v=-3$
c) $x=3$
d) $y=3, \quad y=-5$
3.
a) $\frac{-1}{12 x}$
b) $\frac{5 y-9}{y^{2}-3 y}$
C) $\frac{13}{10 p}$
d) $\frac{-1}{14 q}$
4.
a) $\frac{7 x+4}{x^{2}+2 x}$
b) $\frac{x+8}{x^{2}+x-2}$
c) $\frac{4 x+5}{x^{2}+13 x+30}$
d) $\frac{7 x-11}{x^{2}-4 x-5}$
5.
a) $\frac{1}{x^{2}+x-2}$
b) $\frac{-8 x+9}{x^{2}-3 x}$
c) $\frac{-3 x^{2}+8 x+4}{4 x^{2}+8 x}$
d) $\frac{5 x+14}{x^{2}+6 x+8}$
6. Multiply through by scale factor below, and simplify:
a) $x(x-1)$
b) $x(x+2)$
C) $x(2 x-1)$
d) $3 x$
7. a) $(2.1,7.1)$ and (-7.1, -2.1)
b) $(7.3,0.3)$ and (-0.3, -7.3)
c) $(1.4,1.8)$ and ($-0.4,-1.8$)
d) $(0.6,1.7)$ and (-0.6, -1.7)
8.
a) $x \leq 14$
b) $x>6.25$
c) $x<0.7$
d) $x \geq 6$
9.
a) $x=0.5, \quad x=-1$
b) $x=1, \quad x=-1.5$
10.
a) $x=1$
b) $x=0$

EX 4C
1.
a) $y=3 x-1$
b) $y=-4 x+3$
C) $y=\frac{2}{3} x-14$
d) $y=-x+11$
2.
a) $y=-2 x+8$
b) $y=\frac{1}{3} x+4$
C) $y=3 x+5$
d) $y=-6 x-20$
3.
a) $y=5 x+2$
b) $y=7 x+18$
c) $y=\frac{8}{5} x-\frac{9}{5}$
d) $y=\frac{-9}{2} x$
4.
a) $y=-x-4$
b) $y=-9 x+47$
C) $y=17 x+71$
d) $y=-3 x+12$
5.
a) $y=-5 x+25$
b) $y=-5 x+51$
C) $y=-5 x+77$
d) $y=-5 x+103$
6.
a) $y=\frac{5}{4} x-\frac{15}{4}$
b) $y=\frac{4}{3} x+\frac{38}{3}$
C) $y=9 x+56$
d) $y=x-4$
7. gdt $A B=1.5$, gdt $C D=1.5, \therefore A B \| C D$
8. a) $\operatorname{gdt} R P=\frac{-1}{7}, \mathrm{gdt} P Q=7$
b) 90°
c) $O(1,2)$
d) $y=\frac{3}{4} x+\frac{5}{4}$
9. \quad trapezium $[g d t ~ A B=\operatorname{gdt} C D]$
10.
a) $y=-6 x+7$
b) $\left(\frac{54}{37}, \frac{-65}{37}\right)$

EX 4X

1. Apply scale factor $x(x+1)(x+2)$ and simplify.
2.

a) $x=6, \quad x=-4$
b) $x=8, \quad x=-4$
C) $x=10, \quad x=-4$
d) $\frac{8}{x-4}=\frac{x-4}{8}, \quad x=12, \quad x=-4$
3. a) $(0.5,-4)$ and $(2,-1)$
b) $(-1,-3.5)$ and $\left(\frac{7}{6}, 3\right)$

Matrices are introduced here with reasonably rigorous definitions and formality. Once students gain freedom in the arithmetic and algebra of matrices, applications are brought in, especially the use of 2×2 square matrices to represent transformations of the plane.

LESSON PLANNING

Objectives

General
To represent and interpret data expressed in matrix form; to manipulate matrices; to solve problems involving 2×2 matrices representing transformations of the plane

Specific

1. To know the definition of a matrix and its order
2. To add and subtract matrices and scalar multiples of matrices
3. To multiply two matrices; to know when such multiplication is possible; to be aware of the non-commutative nature of matrix products
4. To find the determinant and inverse of a 2×2 square matrix; to know when an inverse is not possible
5. To know that the product of a matrix and its inverse is the identity matrix; to use this fact to solve simple matrix equations
6. To represent data expressed in rectangular tables of values as matrices; to interpret such matrices and the products of such matrices
7. To use 2×2 square matrices to represent transformations of the plane; to use matrices to calculate the coordinates of points on a diagram under transformation
8. To use the unit vectors in the x and y directions to find the transformation represented by a given matrix
9. To use the mapping statement of a general point under transformation as an aid to finding the matrix that represents it

Pacing	5 lessons, 2 homeworks, maybe more
Links	vectors, transformations
Method	- Start by finding examples of data presented in rectangular array-there are many. Introduce matrices as mathematical objects inspired by this fact. Follow the text, which gives vectors as a simple matrix example, defines order, and establishes the capital letter notation.

Some students are confused by rows and columns.
Rows go across. $\quad(x$ direction)
Columns go up/down. $\quad(y$ direction $)$
x comes before y in the order.
rows \times columns

Pronunciation may need to be given:

matrix	"may - tricks"
matrices	"may - tri-seas"

Proceed, following the text, to define addition, subtraction, and scalar multiples. Mention the zero matrix. (It is not in the text but should be mentioned.)
$\mathbf{A}-\mathbf{A}=\mathbf{Z} \quad$ "a box of zeroes"
At this point, use EX 5A, questions 1-5.

- For products of matrices, establish from the start that we do not just multiply corresponding entries: we have a somewhat bizarre definition that provides more practical uses for matrices. (more later)
Follow the text. The non-commutative nature of matrix products is important. We have to take care to write $\mathbf{A B}$ or $\mathbf{B A}$: they are not interchangeable. Follow the text method to determine whether a product is even possible.
Explain how to calculate the product elements. The text method twist and slide is highly recommended. Students need to practise the techniques.
Set EX 5A, questions 4 and 5 .
- Division of matrices may be contemplated. It cannot be done, but we can multiply by the inverse.
Analogy with numbers: $5 \div 3=5 \times \frac{1}{3}=5 \times 3^{-1}$
(Multiplying by an inverse is equivalent to division)
What is the inverse of a matrix?
Move bizarre work! They don't all have inverses.
Follow the text for finding determinants and inverses, and establish the properties of the identity matrix.
Here is another routine technique that requires practice.
Set EX 5 A, questions 6 and 7 .
- Matrix algebra follows, with very simple equations.

Use text examples on identity square matrix, pre-multiplication and postmultiplication, and applications of matrices, and set EX 5A, questions 8 and 9.

- EX 5A, question 10 is just commonsense, but gives practice in close reading.
- The real meat of this chapter, the major application of matrices to represent transformation of the plane, follows. This is a heavy dose of theory. It is recommended to do it all in one lesson, so it connects together. Use all five text examples.
The common transformations are listed for reference but memorization is not recommended. Students should be able to describe fully a transformation from its matrix and vice-versa by using the methods described.

Time spent on this section will depend upon how well students have grasped the Chapter 2 work on transformations.
Set EX 5B. Students should work through systematically. Be available for individual trouble-shooting. This is not an easy topic.
Resources When explaining the unit vector method two rulers on the board can be helpful.

Assignments	Possible homework EX 5A, question 9; EX 5B, questions 9 and 10.
Vocabulary	Matrix, matrices, order (of a matrix)
	determinant, inverse (of a matrix)
	identity matrix, zero matrix
	pre-multiply, post-multiply
	transformations: reflection, rotation, enlargement, invariant, unit vector

ANSWERS

Exercises

EX 5A
1.
a) 2×1
b) 2×2
C) 1×4
d) 3×2
2.
a) $\binom{5}{0}$
b) not possible
c) $\left(\begin{array}{rrr}3 & 1 & -1 \\ 4 & -1 & 13\end{array}\right)$
d) $\left(\begin{array}{c}4 \\ 3 \\ 14\end{array}\right)$
3.
a) $\left(\begin{array}{cc}2 & 6 \\ 14 & -4\end{array}\right)$
b) $\left(\begin{array}{ll}0 & \frac{1}{2} \\ 1 & 2\end{array}\right)$
c) $\left(\begin{array}{cc}1 & 1 \\ 3 & -10\end{array}\right)$
d) $\left(\begin{array}{cc}1 & 12 \\ 28 & -11\end{array}\right)$
4.
a) $\binom{2}{-2}$
b) not possible
c) $\left(\begin{array}{lll}-15 & 28 & 23 \\ -15 & 30 & 20\end{array}\right)$
d) $\left(\begin{array}{cc}7 & -41 \\ -28 & 17\end{array}\right)$
5.
a) not possible
b) $\left(\begin{array}{cc}4 & 20 \\ -6 & -3\end{array}\right)$
c) $\left(\begin{array}{ccc}60 & 0 & -38 \\ -20 & 0 & 36\end{array}\right)$
d) $\left(\begin{array}{cccc}-27 & -88 & -52 & 17 \\ 12 & 48 & 30 & -12\end{array}\right)$
6.
a) $\quad|\mathbf{A}|=2, \quad \mathbf{A}^{\mathbf{1}}=\left(\begin{array}{ll}1.5 & 0.5 \\ 3.5 & 1.5\end{array}\right)$
b) $\quad|\mathbf{B}|=7, \quad \mathbf{B}^{-1}=\left(\begin{array}{cc}\frac{1}{7} & 0 \\ \frac{-8}{7} & 1\end{array}\right)$
c) $\quad|\mathbf{C}|=-1, \quad \mathbf{C}^{-1}=\left(\begin{array}{cc}5 & 4 \\ -1 & -1\end{array}\right)$
d) $\quad|\mathbf{D}|=-2, \quad \mathbf{D}^{\mathbf{- 1}}=\left(\begin{array}{cc}0.5 & -1.5 \\ 1 & -4\end{array}\right)$
7. $\quad \mathbf{E}^{-1}=\left(\begin{array}{cc}\frac{1}{7} & 0 \\ \frac{6}{7} & -1\end{array}\right)$
$\mathbf{F}^{-1}=\left(\begin{array}{cc}-0.5 & -1.5 \\ 1.5 & 3.5\end{array}\right)$
$|\mathbf{G}|-0$, no inverse
$\mathbf{H}^{-1}=\left(\begin{array}{cc}0.5 & 0.5 \\ 1 & 0\end{array}\right)$
8.
a) $\mathbf{X}=\left(\begin{array}{cc}4 & 0 \\ -8 & 18\end{array}\right)$
b) $\quad \mathbf{X}=\left(\begin{array}{cc}4 & 0 \\ -4 & 11\end{array}\right)$
c) $\mathbf{X}=\left(\begin{array}{cc}-0.5 & 0 \\ 2 & -4\end{array}\right)$
d) $\mathbf{X}=\left(\begin{array}{ll}-1 & 0 \\ -4 & 6\end{array}\right)$
9.
a) $\quad \mathbf{A}^{-1}=\left(\begin{array}{ll}-1 & -2 \\ -2 & -3\end{array}\right)$
b) $\mathbf{P}=\left(\begin{array}{cc}0 & -3 \\ -1 & -3\end{array}\right)$
c) $\mathbf{Q}=\left(\begin{array}{ll}-12 & 5 \\ -21 & 9\end{array}\right)$
d) $\mathbf{R}=\left(\begin{array}{ll}-23 & 12 \\ -40 & 21\end{array}\right)$
10. a) $\mathbf{P W}=\binom{117}{152}$; total points scores of the divers; Babar won.
b) $\quad \mathbf{P S}=\left(\begin{array}{ll}5400 & 5295 \\ 3680\end{array}\right)$; total sale value of all the shoes, sandals, and boots, respectively

EX 5B

1.

a) reflection in the y-axis
b) y-axis
c) $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
d) $\mathbf{A}^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\mathbf{I}$; reflection repeated returns all points to their original positions.
2. a) $(1,-2),(1,-4),(2,-4),(2,-2)$
b)

c) rotation of -90° about the origin
d) origin
3. a) reflection in the x-axis
b) rotation of 180° about the origin
c) enlargement, centre the origin, scale factor 5
d) rotation of $+90^{\circ}$ about the origin
4. a) reflection in the line $y=x$
b) reflection in the line $y=-x$
c) rotation of -90° about the origin
d) reflection in the y-axis
5.
a) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
b) $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
c) $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
d) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
6.
a) $(-1,1),(-5,1),(-5,3)$
b) $(-2,-2),(-10,-2),(-10,-6)$
c) $(1,1),(1,5),(3,5)$
d) $(-1,-1),(-5,-1),(-5,-3)$
7.
a) enlargement, centre the origin, scale factor 3
b) $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$
8. a) $\left(\begin{array}{lll}-3 & -6 & -6 \\ -1 & -1 & -3\end{array}\right)$
b)

c) reflection in the line $y=-x$
9.
a) rotation about the origin, -90°
b) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
10. a) reflection in the x-axis
b) i) $(-1,-2),(-1,-3),(-3,-3)$
ii) reflection in the y-axis
iii) y-axis

EX 5X

1. a)

$$
\text { a) } \begin{aligned}
\mathbf{A} \mathbf{I} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\mathbf{A} \\
\mathbf{I} \mathbf{A} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\mathbf{A} \\
\mathbf{A} \mathbf{I} & =\mathbf{I} \mathbf{A}=\mathbf{A}
\end{aligned}
$$

b) $|\mathbf{A}|=a d-b c$

$$
\begin{aligned}
& \mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{ll}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{a d-b c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right) \\
& \mathbf{A A}^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\frac{d}{a d-b c} & \frac{-b}{a d-c} \\
\frac{a d-b c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{a d-b c}{a d-b c} \\
\frac{c d-c d}{a d-b c} & \frac{-b b+b a}{a d-b c} \\
a d-b c
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\mathbf{I} \\
& \mathbf{A}^{-1} \mathbf{A}=\left(\begin{array}{ll}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{a d-b c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{ll}
\frac{a d-b c}{a d-b c} & \frac{b d-b d}{a d-b c} \\
\frac{a c+a c}{a d-b c} & \frac{b c c+b d}{a d-b c}
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\mathbf{I}
\end{aligned}
$$

$$
\therefore \mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \quad \text { as required }
$$

2.

a) no change
b) no change
c) 4 times greater
d) 9 times greater
3. MATHS

ROCKS [Decode using inverse; message uses $A=1, B=2$, etc]

Revision Exercises
[Non-calculator]

ANSWERS

Exercises

EX 6A
1.
a) 0.05
b) 10
c) 100000
d) 20
2.

a) | f | CF |
| :---: | :---: |
| 32 | 32 |
| 43 | 75 |
| 22 | 97 |
| 12 | 109 |
| 11 | 120 |

b) 16 vehicles

3. a)

4. a) $A=\{2,3,5,7\}, B=\{2,4,6,8\}$
b)

c) $A \cap B^{\prime}=\{3,5,7\}$
d) $\mathrm{n}(A \cup B)^{\prime}=1$
5.
a) $n \propto \frac{1}{m}$
b) $n=\frac{1200}{m}$
b) 120
6. $x=70, y=40$
7.
a) 4
b) 9
C) 4
d) infinite
8.
a) $\mathbf{u}+\mathbf{v}$
b) $\mathbf{u}+\mathbf{v}+\mathbf{w}$
C) $\mathbf{v}+\mathbf{w}$
d) $-\mathbf{w}-\mathbf{v}$
9.
a) 2.64
b) 0.378
C) 16.64
d) 35.65
10.
a) true
b) false

EX 6B
1.
a) $\frac{12}{17}$
b) $\frac{12}{5}$
C) $\frac{12}{13}$
d) $\frac{5}{13}$
2. In general the boys' results were worse than the girls' (lower median). However, there is a greater spread in the boys' results. ($\mathrm{IQR}=60.2$ boys, $\mathrm{IQR}=58.4$ girls $)$
3.
a) $x-2$
b) $2 x-3$
C) $x+4$
d) $2 x+3$
4.
a) $x= \pm 5$
b) $x= \pm 8$
c) $x= \pm \frac{7}{3}$
d) $x= \pm \frac{7}{4}$
5.
a) 4
b) 2
c) $2 \frac{1}{2}$
d) 0.05
6. lines 1 and 3 ; lines 2 and 4
7.
a) 13
b) 1
C) 4
d) 3
a) false
b) true
c) true
d) false
8.
9. $a=26, b=64, c=32, d=32, e=148, f=58$
10. a)

b)

c)
d)

EX 6C

1.

a) $\binom{2}{-1}$
b) $B(5,3)$
2.
a) 100
b) 11.8
c) -8
d) 122
3.
a) $1 \times 3, \quad 2 \times 4, \quad 3 \times 6, \ldots$
b) 440
c) $n(n+2)$
d) design 100
4.
a) x^{10}
b) x^{-3}
C) $\frac{1}{3} x^{-2}$ or $\frac{1}{3 x^{2}}$
d) $\frac{1}{4} x^{-4}$ or $\frac{1}{4 x^{4}}$
5. 3
6.
a) $-\frac{2}{7}$
b) $-\frac{7}{2}$
C) $\frac{7}{2}$
d) $-\frac{2}{7}$
7.

8.
a) 17.5% increase
b) $\mathbf{1 2 . 5 \%}$ increase
c) 7% decrease
d) 12.5% decrease
9.
a)

b) i) $\frac{1}{15}$
ii) $\frac{2}{15}$
iii) $\frac{4}{5}$
10. $x=116, y=60$

EX 6D

1. $x=62$ (\angle at centre $)$
$y=118$ (opp $\angle \mathrm{s}$ of cyclic quad)
2.

a) -3
a) $p \propto \frac{1}{q}$
b) $\frac{3}{5}$
b) $p=\frac{c}{q}$
c) $-\frac{2}{3}$
d) 0
C) $p=24$
d) $q=-4$
3.
4.
a) $\frac{x^{2}-5 x+1}{x^{2}+x-6}$
b) $\frac{4 x+9}{x^{2}+3 x}$
c) $\frac{-3 x^{2}+11 x+10}{4 x^{2}+8 x}$
d) $\frac{2 x^{2}+17 x+37}{x^{2}+8 x+15}$
5.

18 m

6.
a) 2
b) $4 x^{2}+5$
C) $\frac{x-5}{2}$
d) 50
7.
a) $8 x^{12}$
b) $\frac{1}{16} x^{-10}$ or $\frac{1}{16 x^{10}}$
C) $25 x^{4}$
d) $\frac{1}{9} x^{-12}$ or $\frac{1}{9 x^{12}}$
8.
a) 62 kg
b) 13 kg
c) 3000
d) 3000
9. 17
10.
a) $x=\frac{11}{5}$
b) $x=\frac{5}{7}$

EX 6E
1.
a) 0.0541
b) 8780
c) 0.00085
d) 630000000
2. At the time of the survey the boys were generally taller (higher median and quartiles) although the spread of heights was greater for the boys. (IQR 8 cm boys, 6 cm girls)
3. a) rotation of -90° about the origin
b) $(0,0)$ is invariant.
c) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
4.
a) true
b) true
c) false
d) false
5. $\angle C B D=20^{\circ}(\operatorname{adj} \angle$ s on st line $)$
$\angle B D E=20^{\circ}$ (alt $\angle \mathrm{s}$)
$\angle B E D=20^{\circ}$ (angle-sum of \triangle)
Since $\angle B D E=\angle B E D$
$\triangle B D E$ is isosceles. (base angles equal)
6.
a) 4.7×10^{7}
b) 5.3×10^{-1}
c) 8.0×10^{-3}
d) 7.1×10^{7}
7. a) 342
b) 1910
C) 110
d) 600
8. a)
b)

d) enlargement scale factor 1.5 , centre $(2,8)$
9.
a) $y=3$
b) $x=-5$
C) $y=-\frac{x}{3}$
d) $y=5 x+3$
10.
a) $\left(\begin{array}{cc}1 & 0 \\ 0 & 2.5\end{array}\right)$
b) $\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$
c) $\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$
d) $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$

Chapter
 Revision Exercises

ANSWERS

Exercises

EX 7A

1. a) hosepipe; greater gradient
b) i) $h=\frac{10}{3} t$
ii) $h=20$
iii) $h=10 t-60$
c) $0.00056 \mathrm{~m} / \mathrm{s}(2 \mathrm{s.f}$.)
2. a)

y| x | -3 | -1 | 1 | 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x^{2} | 9 | 1 | 1 | 9 | 25 | 49 | 81 |
| x^{3} | -27 | -1 | 1 | 27 | 125 | 343 | 729 |
| $-9 x^{2}$ | -81 | -9 | -9 | -81 | -225 | -441 | -729 |
| $+11 x$ | -33 | -11 | 11 | 33 | 55 | 77 | 99 |
| +21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
| y | -120 | 0 | 24 | 0 | -24 | 0 | 120 |

b)

c) i) $x=-1,3,7$
ii) $x=8.1$
3. a) $6570 \mathrm{~cm}^{2}$
b) $7230 \mathrm{~cm}^{2}$
4. $\angle P=31.5^{\circ}, \angle R=46.5^{\circ}, p=33.1 \mathrm{~cm}$
5. $745 \mathrm{~cm}^{2}$ (3 s.f.)
6. a) $\$ 550$
b) $\$ 800$
7. $a=44.6 \mathrm{~cm}, b=166 \mathrm{~cm}$
8.
a) -60.5
b) $\quad f^{-1}(x)=\frac{x+3}{5}$
c) 0.68
9. Many proofs possible. The following are all true:
$Q P=Q R$ (equal tangents)
$Q S$ is common (given)
$\angle P Q S=\angle R Q S$ (symmetry property)
$\angle Q P S=\angle Q R S=90^{\circ}$ (radius \perp tangent)
$P S=R S$ (radii)
Selecting three of these makes congruence possible by (SSS), (SAS), (RHS) or (AA corr S)
10.
a) $x=27.7$
b) $y=15.9$

EX 7B

1. a)

b) $-2 \mathrm{~m} / \mathrm{s}^{2}$
c) $144 \mathrm{~km} / \mathrm{h}$
d) 2.4 km
2.

a) 0.04
b) 0.32
c) 0.36
3. $2100 \mathrm{~cm}^{2}$
4. $x=7, y=11.5$ (1 d.p.)
5. a) no
b) no
c) yes
d) yes
6. $\quad 143 \mathrm{~km}$
7. $x=9.5 \mathrm{~cm}, y=32 \mathrm{~cm}, z=57.6 \mathrm{~cm}$
8. $a=3.2$
(perp through centre P bisects the chord)
$b=4.5$
(equal chords are equidistant from centre P)
$c=90$
(bisector of chord through centre Q is perp.)
$d=4$
(chords equidistant from centre Q are equal.)
9. a) (ext angle-sum of polygon)
b) (adj $\angle \mathrm{s}$ on st line)
c) (angle-sum of quad)
d) (int $\angle \mathrm{s}$)
10. a)
a)
b)

Mean is (4.2, 3.3)
c) $y=4.4[$ Allow $\pm 0.1]$
d) strong negative

EX 7C

1. a) $x=\frac{3-y}{2}$
b) $x=\frac{2 p}{a+b}$
c) $x= \pm \sqrt{\frac{q}{7}}$
d) $x=1 \pm n$
2.

a) $x=1.3, x=0.3$
b) $x= \pm 0.7$
c) $x= \pm 1.2$
d) $x=0.8, x=0.4$
3. a) equiangular
b) 6.5
4. $a=90, b=7, c=6.2$
5.
a) 1.3×10^{17}
b) 1.9×10^{-1}
C) 4.2×10^{-2}
d) 1.6×10^{-2}
6. $\$ 344000$
7.
a) not possible
b) $\left(\begin{array}{cc}27 & -4 \\ -18 & 3\end{array}\right)$
c) $\left(\begin{array}{ccc}4 & 8 & 24 \\ -2 & -1 & -6\end{array}\right)$
d) $\left(\begin{array}{cccc}-6 & -32 & -28 & 26 \\ 30 & 28 & 20 & 2\end{array}\right)$
8. 79 cm
9. $x=-0.4, y=0.9$
10.
a) $R Q=8.76 \mathrm{~cm}$
b) $\angle R=73.3^{\circ}$
c) Area $=34.6 \mathrm{~cm}^{2}$

EX 7D

1. $3: 1$
2. $11.415 \leq d<11.425$
3.

a) $0.471 \mathrm{~m}^{2}$
b) 1.27 m
c) 40.3°
4.
a) 6 cm
b) $\frac{6}{6.5^{\prime}}, 22.6^{\circ}$
c) $\frac{6}{2.5^{\prime}} 67.4^{\circ}$
d) $\angle B$ and $\angle C$ are complementary.
5. a) $80 \mathrm{~cm}^{2}$
b) $386 \mathrm{~cm}^{2}$ (3 s.f.)
6. $x=90, y=68, z=44$
7.
a) $\$ 320$
b) 4%
c) $\$ 98$
8.
a) $\angle B=93.1^{\circ}$
b) $\angle E=104.2^{\circ}$
9. a)

b) i) $\frac{1}{18}$
ii) $\frac{2}{3}$
iii) $\frac{1}{3}$
10.
a) $p=39.6 \mathrm{~cm}$
b) $q=45.1 \mathrm{~cm}$
1.
a) $\frac{7}{25}$
b) $\frac{5}{13}$
C) $\frac{12}{5}$
d) $\frac{24}{25}$
2.
a) 0730
b) 10 min
C) $24 \mathrm{~km} / \mathrm{h}$
d) $13.7 \mathrm{~km} / \mathrm{h}$
3. a) 243
b) 0.125
C) 0.00198
d) 1
4.
a) equiangular
b) $O S=14 \mathrm{~cm}, \quad P Q=13.6 \mathrm{~cm}$
5. a) $0.184 \mathrm{~m}^{3}$
b) $\$ 56.30$
6. $\quad 11^{2}=a^{2}+(x+1)^{2}, \quad 9^{2}=a^{2}+x^{2}, \quad x=19.5$
7.
a) $\overrightarrow{A B}=\binom{3}{-8}$
b) $\overrightarrow{A C}=\binom{6}{-16}$
c) $C(9,-10)$
d) $D(15,-5)$
8.

9.
a) $x=11$
a) $\left(\begin{array}{ll}0.5 & 0.5 \\ 2.5 & 3.5\end{array}\right)$
b) $x=0$
b) $\left(\begin{array}{ll}2.5 & 3.5 \\ 9.5 & 12.5\end{array}\right)$
c) $x=0.5$
c) $\left(\begin{array}{cc}2 & 2 \\ 14 & 13\end{array}\right)$
d) $x=5$
d) $\left(\begin{array}{rr}10 & -1 \\ -5 & 4\end{array}\right)$
10.

Chapter
 8
 Trigonometric Functions

This chapter is not strictly necessary at this stage. However, it provides an opportunity to give meaning to trig ratios of angles not possible in right-angled triangles, and to show that these functions have far wider applications. Having said that, most of the exercise is to reinforce the sine rule, cosine rule and the two area formulas of a triangle.

LESSON PLANNING

Objectives

General	To provide a context for trig ratios of obtuse angles and introduce graphs of these functions
Specific	1. To understand that sine, cosine, and tangent can be defined for any angle 2. To solve simple trig equations where the solutions are acute or obtuse 3. To know that the trig functions have graphs that are infinite and possess symmetries (details not required)
	4. To solve problems of trigonometry involving sine rule, cosine rule, area formulas, and Pythagoras' theorem
5. To be aware that a triangle can have only one possible obtuse angle and that it	
would be opposite the longest side (if it exists at all)	
6. To know that the cosine distinguishes between acute and obtuse angles (by	
sign) but the sine does not	

- From the graphs, focus on acute and obtuse angles, because that is immediately relevant. Show how the sine curve is ambiguous ($\sin 30=\sin 150$, etc.), but that the cosine curve distinguishes by sign. This explains why the cosine rule is safe, but the sine rule has to be handled with care.
- Use the text examples and similar.

Set EX 8A. Most of this revises standard techniques.

Resources	Calculators essential
Assignments	Draw the graph of $y=\sin x^{\circ}$ for $0 \leq x \leq 720$ at intervals of 15° (prior to lesson)
	EX 8 A, questions 9 and 10
Vocabulary	trig functions

ANSWERS

Exercises

EX 8A

1.

a) $x=40$
b) $x=20$
c) $x=30$
d) $x=10$
2.
a) $x=129.1$
b) $x=78.0$
c) $x=47.7, x=132.3$
d) $x=63.3$
3.
a) $x=42.3$
b) $x=144.7$
c) $x=40$
d) $x=80$
4.
a) 36.3°
b) 4.08 km
c) 058°
d) 80.9°
5.
a) 27.0°
b) 12.2 cm
6.
a) 52.3 m
b) 75.0 m
c) $1750 \mathrm{~m}^{2}$
d) 24.55 m
7.
a) 76.1 cm
b) 50.2 cm
c) $2140 \mathrm{~cm}^{2}$
d) $\quad 64.9 \mathrm{~cm}$
8. a) $Q S^{2}=1.2^{2}+0.5^{2}=1.69 \Rightarrow Q S=1.3$ as required
b) $\angle Q$, because it is opposite the longest side.
c) 90.9°
d) $6 \mathrm{~m}^{3}$
9.
a) $A C=91.580 \mathrm{~m}$ (5 s.f.), area $=2980 \mathrm{~m}^{2}$
b) 95.4 m
10.
a) 30°
b) 16.1 cm
C) 10 cm
d) 68.3°, acute because $30^{2}>20^{2}+A C^{2}$, or from cosine rule.

EX 8X

1. $a=16.6 \mathrm{~cm}, \quad b=16.0 \mathrm{~cm}, \quad c=13.8 \mathrm{~cm}$
2.

a) $x=30, x=150$
b) $x=78.5, \quad x=-78.5$
c) $x=71.6, \quad x=251.6$
d) $x=-45, \quad x=-135$
3. Proof: We have $a^{2}=b^{2}+c^{2}-2 b c \cos A$

and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
From (2), $b=a \frac{\sin B}{\sin A}$ and $c=\frac{a \sin C}{\sin A}$
Substituting in (1):
$a^{2}=\left(a \frac{\sin B}{\sin A}\right)^{2}+\left(a \frac{\sin C}{\sin A}\right)^{2}-2\left(a \frac{\sin B}{\sin A}\right) \times\left(a \frac{\sin C}{\sin A}\right) \cos A$
Multiplying by $(\sin A)^{2}$:
$a^{2}(\sin A)^{2}=a^{2}(\sin B)^{2}+a^{2}(\sin C)^{2}-2 a^{2} \sin B \sin C \cos A$

Dividing by a^{2} :
$(\sin A)^{2}=(\sin B)^{2}+(\sin C)^{2}-2 \sin B \sin C \cos A \quad$ as required

Chapter

 Miscellaneous Calculations and Proofs

As Important examinations approach, this chapter gives some attention to the importance of communication. Clarity in explanation is good mathematics, and it has the added benefit of assisting students to maximize marks in examinations.

LESSON PLANNING

Objectives

General	To practise giving clear, concise explanations of calculations; to provide reasoned arguments in simple proofs
Specific	1. To specify calculations on paper before working them out in order to assist the reader to understand the methods used
2. To define any terms not given in the question	
	3. To reject solutions when the numbers are not of the specified type
4. To solve simple linear inequalities	

Pacing	3 or 4 lessons
Links	Many previous topics in all branches of mathematics
Method	. Students will be looking for examination

Method - Students will be looking for examination assistance at this point in the year. Although much of this may have been taught before, it is a time when students may be more receptive to honing their skills in being kind to examiners! "Is mathematics a language?" Opening question of class discussion. Elicit some features of language. For example,

(sentences)
This leads on to the need to communicate clearly with anyone reading your work.
"Examiners cannot guess your thoughts. You must communicate your thought process".
Write the keyword communicate on the board during this discussion.

It is also good mathematics. Communicating clearly clarifies your own thinking too, and avoids guessing and confusion.
Examples 1 and 2 in the text are models: one of arithmetic, one of algebra. Go through these. Explain inequalities, especially the negative multiplier feature. Use examples 3 and 4 . Students who do not see why $-x>9$ becomes $x<-9$ may use test data to work out what is happening.

Test $x=\quad$\begin{tabular}{llllll}

-12 \& | $-x>9$ |
| :--- |
| -11 | \& -10 \& 10 \& 11 \& 12

true \& | true |
| :--- |
| $x<-9$ | \& true \& false \& false \& false

\end{tabular}

- Set EX 9A. These are calculations. Emphasize the communication aspect. Many of these are very simple questions so that students can concentrate on their explanatory skills.
- For proofs, explain that really rigorous proofs are necessary in higher mathematics, but at this stage we just expect some reasoning prompted by "Show that"

Go through the examples: three very different types of problems to illustrate the variety of responses required.
Point out that the final line is always exactly what had to be proved.
Set EX 9B and 9C. Model answers are provided in the answers section in the text, but challenge students to write out full and complete answers without looking there first.
Set EX 9D.

Assignments	EX 9A and 9C are not suitable for homework as full model answers are given.
Vocabulary	communicate prove, show that, explain

ANSWERS

Exercises

EX 9A

1.

a) $\$ \frac{6.64}{0.83}$
b) $\$ 8$
2. lower bound $=83.5 \times 56.5=4717.75 \mathrm{~cm}^{2}$
upper bound $=84.5 \times 57.5=4858.75 \mathrm{~cm}^{2}$
3. Let the width of the glass be $x \mathrm{~cm}$, and the cost $\$ C$.

| Then | $C x^{2}$ |
| :--- | :--- | :--- |
| | $C=k x^{2}$ |
| When $x=30$, | $C=90$ |
| | $90=k(900)$ |

$$
\begin{aligned}
& k=0.1 \\
& C=0.1 x^{2}
\end{aligned}
$$

When $x=40$,

$$
\begin{aligned}
C & =0.1 \times 40^{2} \\
& =160
\end{aligned}
$$

The cost is $\$ 160$.
4. Petrol angle $=\frac{480}{720} \times 360=240^{\circ}$

Diesel angle $=\frac{90}{720} \times 360=45^{\circ}$
LPG angle $=\frac{148}{720} \times 360=74^{\circ}$
Electricity angle $=\frac{2}{720} \times 360=1^{\circ}$
5. Let n be my original number.

Then $\quad \sqrt{n} \sqrt{n+7}=12$
Square:

$$
n(n+7) \quad=144
$$

$$
n^{2}+7 n-144=0
$$

Factorise:

$$
\begin{aligned}
& (n+16)(n-9)=0 \\
& n=-16 \text { or } n=9
\end{aligned}
$$

Since \sqrt{n} exists, we reject $n=-16$.

The original number is 9 .

a) $\frac{2 x-1}{3}<3$
$2 x-1<9$
$2 x<10$
$x<5$
b) $\frac{x}{2}<x+1$
$x<2(x+1)$
$x<2 x+2$
$-x<2$
$\underline{x>-2}$$\quad\left[\begin{array}{rr}\text { or, } & -2<x \\ & x>-2\end{array}\right]$
C) $\frac{2 x-5}{4} \leq 6$
d) $\frac{1-x}{2} \geq 3$
$2 x-5 \leq 24$
$2 x \leq 29$
$x \leq 14.5$

$$
\begin{aligned}
1-x & \geq 6 \\
-x & \geq 5 \\
x & \leq-5
\end{aligned} \quad\left[\begin{array}{rr}
\text { or, } & -5 \geq x \\
x \leq-5
\end{array}\right]
$$

7. \quad Sequence A nth term $=3 n-2$

Sequence B nth term $=-n+5$
Sequence $C n$th term $=(3 n-2)(-n+5)$

$$
=-\underline{3 n^{2}+17 n-10}
$$

$$
\text { 9th term }=-3(81)+17(9)-10=-100
$$

$$
\left[\begin{array}{rl}
\text { or, use the factorised form } \\
& (27-2)(-9+5) \\
= & 25 \times(-4) \\
= & -100
\end{array}\right]
$$

8. $\angle B E D=64^{\circ}($ isos $\triangle)$
$a=180-2 \times 64 \quad$ (angle-sum of \triangle)
$a=52$
$\underline{b}=52 \quad($ alt $\angle \mathrm{s})$
9. $a=128 \quad$ (int $\angle \mathrm{s})$

Sum of angles in pentagon $=180(5-2)=540^{\circ}$

$$
\begin{aligned}
52+a+3 b & =540 \\
180+3 b & =540 \\
3 b & =360 \\
b & =120
\end{aligned}
$$

10. Ratio of volumes large : small

$$
\begin{aligned}
& =250: 16 \\
& =125: 8
\end{aligned}
$$

Ratio of lengths $=5: 2$
Ratio of areas $=25: 4$

$$
=6.25: 1
$$

Surface area of larger glass $=31 \times 6.25$

$$
=193.75 \mathrm{~cm}^{2}
$$

EX 9B

1. a) Q
b) S
c) R
d) P
2.

a) $\$ 90$
b) 350 km
c) 150 litres
d) 3 h 10 min
3.
a) JPY 17734.05
b) GBP 140.50
c) $\$ 281.16$
d) $\$ 6.79$
4. equilateral (All the sides are now 7.5 cm .)
$\begin{array}{llllll}5 . & 3 & 3.3 & 3.63 & 3.993 & 4.3923\end{array}$
6.
a) $\$ 230.80$
b) $\$ 45.20$
c) $R s 4578$
7.
a) $\operatorname{AED} 5.24$
b) JPY 32.09
c) $\$ 1.42$
d) JPY 3324.10 (to 2 d.p.)
8.
a) $3: 2$
b) $4: 5$
c) $8: 7$
d) $10: 9$
9.
a) $a \quad a r \quad a r^{2} \quad a r^{3} \quad a r^{4}$
b) $a r^{n-1}$
c) 128000
10.
a) $\$ 50$
b) Rs 3000 approx; Rs 2970 exactly
c) 110 . The value of $\$ 1$ in rupees

EX 9C

1. $\quad P($ first ball red $)=\frac{n}{10}$

This leaves 9 balls in the bag, of which $n-1$ are red.
$P($ second ball red $)=\frac{n-1}{9}$
These are independent events.
$P($ two consecutive reds $)=\frac{n}{10} \times \frac{n-1}{9}=\frac{1}{15}$
$\therefore \quad \frac{n(n-1)}{90}=\frac{1}{15}$
Mult by 90 :

$$
n(n-1)=6
$$

$$
\underline{n^{2}-n-6=0} \quad \text { as required }
$$

Factorising

$$
\begin{aligned}
& (n-3)(n+2)=0 \\
& n=3 \text { or } n=-2(\text { reject as } n>0)
\end{aligned}
$$

There are 3 red balls in the bag at the start. as required
2. nth term $=3 n+4$

If 200 is a term in the sequence, then

$$
\begin{aligned}
3 n+4 & =200 \\
3 n & =196 \\
n & =65.33
\end{aligned}
$$

But n must be a positive integer.
Hence, 200 is not a term in the sequence.
3. The red sector is $\frac{1}{4}$ of the pie chart circle.

$$
\frac{1}{4} \text { of } 200=50
$$

$\therefore \quad 50$ people stated red. as required
4. a) $\angle A O B=\frac{360}{8}=45^{\circ}$ as the octagon is regular.

Area sector $A O B=\frac{1}{2}(6)^{2} \sin 45^{\circ} \quad$ (SAS formula)

$$
=18 \sin 45^{\circ}
$$

Total area of octagon $=8 \times 18 \sin 45^{\circ}=101.82$

$$
=\underline{102 \mathrm{~cm}^{\underline{2}}} \underline{(3 \text { s.f. })} \quad \text { as required }
$$

b) \quad Area of circle $=\pi(6)^{2}$

$$
=113.1 \mathrm{~cm}^{2}
$$

Shaded area $=$ area of circle - area of octagon
$=113.1-101.8=11.3$
$\approx 11 \mathrm{~cm}^{2}$ as required
5. Scratch card, $P(6)=\frac{3}{21}=\frac{1}{7}$

Dice, $P(6)=\frac{1}{6}$
$\frac{1}{7}<\frac{1}{6}$, so Maliha is more likely to win.
6. $a+1=2(b+1)$
$a+1=2 b+2$
$a=2 b+1 \quad$ as required
$a+9=1.5(b+9)$
$2 a+18=3(b+9)$
$2 a+18=3 b+27$
$\underline{2 a}-3 \underline{b}=9 \quad$ as required
Substituting from (1) into (2):

$$
\begin{array}{r}
2(2 b+1)-3 b=9 \\
4 b+2-3 b=9 \\
b=7
\end{array}
$$

Sub in (1)

$$
a=15
$$

Adil is 15 and Bashir is 7 years old now.
7. $V=\frac{2}{3} \pi r^{3}$

$A=2 \pi r^{2}$
From (1):

$$
\begin{align*}
& 3 V=2 \pi r^{3} \tag{2}\\
& 3 V=\left(2 \pi r^{2}\right) r
\end{align*}
$$

Sub from (2):
$\underline{3} V=A r \quad$ as required
8. As the polygon is regular, exterior angles are equal.

$$
\begin{array}{rlr}
\text { ext } \angle=\frac{360}{18}=20^{\circ} & \text { (ext angle sum of polygon) } \\
\text { interior } \angle=180-20 & \text { (adj } \angle \text { s on st line) } \\
& =160^{\circ} &
\end{array}
$$

\therefore Sum of interior angles $=18 \times 160$

$$
=2880^{\circ} \quad \text { as required }
$$

$\left[\begin{array}{rl}\text { OR Sum of interior angles } & =180(18-2) \\ & =180 \times 16 \\ & =\underline{2880^{\circ}}\end{array}\right]$
9. a) $\mathrm{LHS}=\frac{3 \frac{1}{2}+\frac{1}{4}}{\frac{1}{7}+\frac{1}{8}}$
$=\frac{3 \frac{3}{4}}{\frac{15}{56}}$
$=\frac{15}{4} \times \frac{56}{15}$
$=14$
$=$ RHS as required
b) $\mathrm{LHS}=\left(4-\frac{1}{4}\right)\left(\frac{3}{5}-\frac{1}{15}\right)$
$=\left(3 \frac{3}{4}\right)\left(\frac{8}{15}\right)$
$=\frac{15}{4} \times \frac{8}{15}$

$$
\begin{aligned}
& =2 \\
& =R H S \quad \text { as required }
\end{aligned}
$$

10.

$$
\begin{aligned}
& \frac{2400}{x}=\frac{1500}{x+2}+150 \\
& 2400(x+2)=1500+150 x(x+2) \\
& 240 x+480=150 x+15 x^{2}+30 x \\
& 0=15 x^{2}-60 x-480 \\
& 0=x^{2}-4 x-32 \\
& x^{2}-4 x-32=0 \\
&(x-8)(x+4)=0 \\
&x=8 \text { or } x=-4 \text { (reject as }- \text { ve })
\end{aligned} \quad \text { as required }
$$

The speeds of the cars are $8 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$, as required

EX 9D

1. 1
2. 4 years
3. 35 years
4. $k=0.8, q=1.65888$
5. a) $450000=k(1.0618)^{1947}$ and $y=k(1.0618)^{2013}$

Dividing gives
$y=450000 \times 1.0618^{66} \approx 23$ million as required
b) over 65 million
6. $\$ 16324$
7. $\quad a=2, k=1 ; \quad 1248163264128$
8.
a) $\quad 1.25^{\circ} \mathrm{C}$
b) $\quad 80^{\circ} \mathrm{C}$
9. $x=3$
10. a)

a) | x | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 16 | 8 | 4 | 2 | 1 | 0.5 | 0.25 | 0.13 | 0.06 | (2 d.p)

b)

c) $y=0.5^{x}=\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}=2^{-x}$
d) reflection in the y-axis

EX 9X

1. Let the lower integer be n.

Then $n(n+1)+2(n+n+1)=376$

$$
\begin{aligned}
& n^{2}+n+4 n+2=376 \\
& n^{2}+5 n-374=0 \\
& (n-17)(n+22)=0 \\
& n=17 \text { or } n=-22
\end{aligned}
$$

The integers are 17 and 18 , or -22 and -21 as required
2. A conjecture is something that seems to be true but has not yet been proved. A famous conjecture is Fermat's Last Theorem. He stated that he had a proof that $a^{n}=b^{n}+c^{n}$ is not possible for positive integers if $n>2$. But then he died in 1665 before showing anyone his proof. For hundreds of years, mathematicians tried to prove it and failed, but nobody could find an example to show that it was false. Eventually, Andrew Wiles prove it in 1995 to great acclaim.
3. The flaw lies in the cancellation of $(a-b)$. Since $a=b$ the value of this factor is zero. Cancellation of zero is not allowed, but the algebra disguises the zero.
e.g. $\quad 3 \times 0=4 \times 0 \quad$ is true
but $\quad 3=4 \quad$ is false.
We cannot divide through by a zero.

Chapter
 Surds

Surds are introduced as a subset of the irrationals, and a formal approach is avoided. Their role as exact solutions is highlighted in various familiar contexts. The text material may go somewhat beyond immediate examination requirements and teachers may wish to be selective.

LESSON PLANNING

Objectives

General	To use surds in familiar types of problems where exact answers are
Specific	1. To know the definition of a surd 2. To recognise that the requirement for an "exact answer" dema number or surd in response 3. To rationalise the denominator of a fraction involving surds 4. To estimate values of expressions involving surds 5. To locate a given surd between two consecutive integers
Pacing	1 lesson, 1 homework
Links	vectors, estimation, 3-D geometry, prime factorisation, difference similar figures, Pythagoras' theorem
Method	The main purpose of this chapter is to handle surds in various con number of listed links is indicative of the variety. First define a surd and establish basic operational rules in a comm way, using factors, e.g.
	$25=5^{2}$
	$\therefore \quad \sqrt{25}=5$
	$100=4 \times 25$
	$=2^{2} \times 5^{2}$
	$\therefore \quad \sqrt{100}=2 \times 5=10 \quad$ taking "half the factors"
	But $\quad 75=3 \times 25$
	$=3 \times 5^{2}$
	$\therefore \quad \sqrt{75} \quad=\sqrt{3} \times 5=5 \sqrt{3}$
	Similarly, $45=9 \times 5$
	$=3^{2} \times 5$
	So $\quad \sqrt{45}=3 \sqrt{5}$ and similar examples.

Then follow the text for squaring surds and "rationalising the denominator". It is an opportunity to revise number types: naturals, integers, rationals, and irrationals. Also, to revise the difference of two squares identity. $A^{2}-B^{2}=(A+B)(A-B)$. Set EX 10A fairly quickly. Students should be prompted to expect surds to appear in a variety of contexts.
Assignments EX 10A, questions 9 and 10 suitable for homework
Vocabulary surd, rationalise, exact length (or magnitude), prime factorisation, difference of two squares factorisation

ANSWERS

Exercises

EX 10A

1.

a) $\sqrt{13}$
b) $\sqrt{17}$
c) $\sqrt{20}$
d) $\sqrt{61}$
2. $\frac{30-4^{2}}{\sqrt{100}}=1.4$
3. $\sqrt{152} \mathrm{~cm}$
4.
a) $\sqrt{37}$
b) $\sqrt{53}$
c) $\sqrt{2}$
5.
a) $M(1,-1)$
b) $\quad \mathbf{m}=\binom{1}{-1} \quad|\mathbf{m}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \quad$ as required
c) $n=5$
6.
a) 8
b) 9
C) 5
d) 10
7.
a) 0.3780
b) 0.6076
C) 0.5486
d) 0.6458
8.
a) $2<\sqrt{5}<3$
b) $3<\sqrt{10}<4$
c) $3<\sqrt{15}<4$
d) $12<\sqrt{150}<13$
9. a) $300=2^{2} \times 3 \times 5^{2}$
b) $2 \sqrt{75}, 5 \sqrt{12}, 10 \sqrt{3}$
C) 13
10.
a) $A C=2 \mathrm{~cm}$
b) $D E=5 \sqrt{3} \mathrm{~cm}, E F=\sqrt{87} \mathrm{~cm}$
c) $81<87<100$
$=>9^{2}<87<10^{2}$
$=>9<\sqrt{87}<10 \quad$ as required

EX 10B

1. a) true
b) false
c) true
d) true
2.

a) false
b) false
c) false
d) true
3.
a) false
b) false
c) false
d) true
4.
a) false
b) false
c) true
d) true
5.
a) false
b) true
c) true
d) true
6. $\quad \mathbb{N}$
7. All false; no real solutions
8.
a) 10
b) 1
c) 3430
d) $42 \frac{2}{3}\left(\right.$ or $\left.\frac{128}{3}\right)$
9. $\mathrm{LHS}=(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})+1$

$$
\begin{aligned}
& =\sqrt{2}^{2}-\sqrt{3}^{2}+1 \text { using diff of two squares } \\
& =2-3+1 \\
& =0 \\
& =\text { RHS, as required }
\end{aligned}
$$

10. $9^{3}-9^{2}$
$=9^{2}(9-1)$
$=9^{2}(8)$ which is a multiple of 8 , as required

EX 10X

1. a) -0.707
b) 0.172
C) 4.414
d) 1.121
2. $x=\sqrt{2} ; \quad y=\sqrt{3}$
3. $x=4 \sqrt{2} ; \quad y=3$

Revision Exercises [Non-calculator]

ANSWERS

Exercises

EX 11A

1.

a) $4 n-2$
b) design 25
2.
a) 0.3015
b) 0.4317
c) 0.4633
d) 12.6332
3.
a) $x \leq \frac{9}{7}$
b) $x>\frac{15}{4}$
C) $x<\frac{9}{8}$
d) $x \geq 5$
4. $k=-4, n=1$
5. a) $x-2$
b) $L B=M C=D N=A K=2$ (given)
$B M=N C=D K=A L=x-2$ from (a)
$\angle A=\angle B=\angle C=\angle D=90^{\circ}$ (given square)
\therefore shaded triangles congruent (SAS)
c) total area $=x^{2} \quad$ area of one shaded triangle $=\frac{1}{2} \times 2(x-2)=x-2$
shaded area $=4(x-2)$
\therefore unshaded area $=$ total area - shaded area

$$
\begin{aligned}
& =x^{2}-4(x-2) \\
& =x^{2}-4 x+8 \quad \text { as required }
\end{aligned}
$$

d) $x=6$
6. $50 \mathrm{~cm}^{2}$
7.
a) $33 \mathrm{~km} / \mathrm{h}$
b) 250 g
C) 14 min 2.16 s
d) 3.48 m
8. a)

TEST B
CF
:---:
32
70
80

b) Test B results were better than test A's results in general (higher median and quartiles); the spread of results is unchanged. (same IQR of 32 marks)
9. 90 ml
10. a)
$y\left\{\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline x & -12 & -10 & -6 & -4 & -2 & 2 & 4 & 6 & 10 & 12 \\ \hline \frac{60}{x} & -5 & -6 & -10 & -15 & -30 & 30 & 15 & 10 & 6 & 5 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\ \hline y & 5 & 4 & 0 & -5 & -20 & 40 & 25 & 20 & 16 & 15 \\ \hline\end{array}\right\} y$

International Secondary Maths $\mathbf{1 1}$ | Teaching Guide
56

b) rotational symmetry of order 2 about $(0,10)$
C) $x=-4, \quad x=14$

EX 11B
1.
a) $\binom{3}{-2}$
b) $\binom{9}{-6}$
c) $k=\frac{1}{3}$
d) $\sqrt{205}$
2. $\quad \mathbf{A}^{-1}=\left(\begin{array}{cc}2 & -1 \\ -5 & 3\end{array}\right)$
\mathbf{B}^{-1} not possible
$\mathbf{C}^{\mathbf{- 1}}=\left(\begin{array}{cc}1 & 1 \\ 1 & 1.5\end{array}\right) \quad \mathbf{D}^{\mathbf{1}}=\left(\begin{array}{cc}-0.2 & -0.1 \\ 0.2 & 0.6\end{array}\right)$
3. \mathscr{E}

4. The weights of the boys are greater than the girls in general (higher median); the boys' weights are more diverse. (IQR of 21 kg compared with 16 kg for the girls.)
5.

6. a)

b) $\quad P(6$, not ace $)=\frac{1}{24}$
c) $P($ not $6, a c e)=\frac{5}{8}$
d) $P($ not 6, not ace $)=\frac{5}{24}$
7.
a) $2(x-6)(x-4)$
b) $3(x-7)(x+1)$
C) $4(x+1)^{2}$
d) $5(x-3)^{2}$
8. a) rotation of 180° about the origin
b) $(0,0)$
c) $P(x, y) \rightarrow P^{\prime}(-x,-y)$
d) $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
9.
a) 80° (opp $\angle \mathrm{s}$ of cyclic quad)
b) 40° (opp $\angle \mathrm{s}$ of cyclic quad)
c) 60° (angle-sum of Δ)
d) 120° (opp \angle s of cyclic quad)
10.
a) 456
b) $4.5 \quad 6.75$
10.125

EX 11C
1.
a) 3 stations
b) 2 min
c) $40 \mathrm{~km} / \mathrm{h}$
d) area under slowing phase $=\frac{1}{2}(2 \mathrm{~min})(40 \mathrm{~km} / \mathrm{h})$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{2}{60} \times 40 \mathrm{~km} \\
& =\frac{2}{3} \mathrm{~km} \text { as required }
\end{aligned}
$$

2. a)

6 people visited both.
3.
a) $x \propto y$
b) $x=105 y$
c) $\$ 200$
d) Rs 2100
4.

Weight $w \mathrm{~kg}$	f	Frequency Density
$50<w \leq 55$	1	0.2
$55<w \leq 60$	1	0.2
$60<w \leq 65$	0	0
$65<w \leq 70$	5	1.0
$70<w \leq 75$	4	0.8
$75<w \leq 80$	4	0.8
$80<w \leq 85$	3	0.6
$85<w \leq 90$	3	0.6
$90<w \leq 95$	1	0.2

5. a)
b)

c) rotation 180° about $(-1,0)$
6. a) base circumference = curved sector boundary

$$
=\frac{3}{4} \times 2 \pi(8)
$$

$$
=12 \pi \mathrm{~cm}, \quad \text { as required }
$$

b) $r=6$
c) $\sqrt{28} \mathrm{~cm}$
d) volume $=\frac{1}{3} \pi r^{2} h \quad=\frac{1}{3} \pi 6^{2} \sqrt{28}$
$=\frac{1}{Z} \pi 33^{12} \sqrt{7 \times 4}$
$=24 \sqrt{7} \pi \mathrm{~cm}^{3}, \quad$ as required
7. a) $h(-2)=8, h g(6)=-1$
b) $\quad f^{-1}(x)=\frac{x-4}{3}$
C) $x=5$
d) $x=-1, x=3$
8.
a) 1
b) $y=x+4$
c) $\binom{10}{10}$
d) $\sqrt{200}$
9. $3 x+x+x+x+90=360$ (ext angle-sum of polygon)

$$
x=45
$$

$90^{\circ}, 135^{\circ}, 135^{\circ}, 135^{\circ}, 45^{\circ}$ interior angles
10.
a) 11
b) 22
C) $\frac{11}{42}$
d) $\frac{11}{31}$

EX 11D
1.
a) $n=3$
b) $n=-1$
c) $n=-\frac{3}{4}$
d) $n=-\frac{1}{6}$
2.
a) -1
b) -8
c) $f^{1}(x)=\frac{4 x}{x-3}$
d) ${f g^{-1}}^{-1}(3)=5.4$
3. $560 \mathrm{~cm}^{2}$
4.
a) 288
b) $\frac{1}{12}$
c) 24
d) 112
a) $\frac{48}{x}$
b) $\frac{48}{x-1}$
c) $\frac{48}{x-1}-\frac{48}{x}=4$
$48 x-48(x-1)=4 x(x-1)$
$48 x-48 x+48=4 x^{2}-4 x$

$$
\begin{aligned}
12 & =x^{2}-x \\
x^{2}-x-12 & =0 \quad \text { as required }
\end{aligned}
$$

5.

d) $12 \mathrm{~km} / \mathrm{h}$
6.
a) $u_{n}=3 n-1$
b) $v_{n}=-2 n+12$
C) 501 st term
7. $P R=\sqrt{52} \mathrm{~cm}$, area $=12 \mathrm{~cm}^{2}$
8.
a) 3.01×10^{-2}
a) $\mathrm{g}^{-1}(x)=\frac{x+1}{3}$
b) 1.69×10^{2}
b) $\mathrm{h}^{2}(x)=x$
c) 2×10^{-10}
c) $\mathrm{hg}\left(\frac{2}{3}\right)=1$
d) 1.7×10^{5}
d) $x=-4$
9.
10.
a) $25 \sqrt{3} \mathrm{~cm}^{2}$
b) $\angle M P C=\angle M Q C=90^{\circ}$ (symmetry)

$$
\begin{aligned}
\angle Q C P=60^{\circ} & \text { (equilateral } \triangle \text {) } \\
\therefore \angle Q M P=120^{\circ} & \text { (angle-sum of quad) } \\
& P M Q C \text { is cyclic. }
\end{aligned}
$$

EX 11E

1.

a) $x=-9, \quad x=-8$
b) $x=5, \quad x=-3$
c) $x= \pm 4.5$
d) $x=\frac{1}{4}$
2. a)

	x	-2	-1	0	1	2	3	4
	x^{2}	4	1	0	1	4	9	16
	8	8	8	8	8	8	8	8
y	$2 x$	-4	-2	0	2	4	6	8
	$-x^{2}$	-4	-1	0	-1	-4	-9	-16
	y	0	5	8	9	8	5	0

b)

c) symmetry line $x=1$
d) $x=3.4, x=-1.4$
3.
a) $468 \quad 8 \quad 10$

$$
2 n+2
$$

b) $4 \quad 7 \quad 10 \quad 13$

$$
3 n+1
$$

c) $n-1$
d) $(3 n+1)(2 n+2)=2(3 n+1)(n+1)$
multiple of $2 \Rightarrow$ even
4. $V=\frac{1}{3} \pi r^{2} h$
(1) $C=2 \pi r$
$6 V=6 \times \frac{1}{3} \pi r^{2} h$
from (1)
$=2 \pi r^{2} h$
$=(2 \pi r)(r h)$
$=C r h \quad$ from (2) as required
5. $O M \neq O N$
6. 8
7.

8. a) $\angle Q=100^{\circ}$ (int $\angle \mathrm{s}$)
b) $\angle S R T=100^{\circ} \quad($ corr $\angle \mathrm{s})$
$\angle T=48^{\circ} \quad$ (angle-sum of Δ)
c) parallelogram
d) trapezium
9.
a) $x=-\frac{-3}{2}$
b) $x=\frac{7}{8}$
C) $x=\frac{4}{9}$
a) $(2,3)$
b) $(6,3)$
c) $(-4.5,-1)$
d) $x=-2$
d) $(-1,2)$
10.

EX 11A, question 8 (worksheet)

Marks $m \%$	Test A		Test B	
	f	CF	f	CF
$0<m \leq 20$	20	20	0	
$0<m \leq 40$	40	60	10	
$0<m \leq 60$	10	70	22	
$0<m \leq 80$	8	78	38	
$0<m \leq 100$	2	80	10	

Comparison Statement:
\qquad
\qquad
\qquad
\qquad

EX 11A, question 10 (worksheet)

a)
$y\left\{\begin{array}{c|c|c|c|c|c|c|c|c|c|c|}\hline x & -12 & -10 & -6 & -4 & -2 & 2 & 4 & 6 & 10 & 12 \\ \hline \frac{60}{x} & -5 & & & -15 & & 30 & 15 & 10 & 6 & 5 \\ 10 & 10 & & 10 & & & 10 & 10 & 10 & 10 & 10 \\ \hline y & & & & & & 40 & 25 & 20 & 16 & 15 \\ \hline\end{array}\right.$

b) Symmetry
\qquad
\qquad
c) The solutions of $x^{2}-10 x-60=0$ are
and
(nearest whole number)

EX 11B, question 3 (worksheet)

EX 11B, question 6 (worksheet)

a)

b) $P(6$, not ace $)=$
c) $\quad P($ not $6, a c e)=$
d) $P($ not 6, not ace $)=$
[Use fractions throughout.]

EX 11C, question 5 (worksheet)

a)
b)

c) $C \rightarrow B$ by the transformation

EX 11E, question 2 (worksheet)

a)
$y\left\{\begin{array}{|c|c|c|c|c|c|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline x^{2} & & 1 & & 1 & & 9 & \\ 8 & & & & 8 & & & 8 \\ 2 x & -4 & & & 2 & & & \\ -x^{2} & & & 0 & -1 & -4 & & \\ \hline y & & & & 9 & & & \\ \hline\end{array}\right.$
b)

c) The line of symmetry is
d) Solutions are

$$
x=
$$

$$
\text { and } x=
$$

\qquad

Chapter

Revision Exercises

ANSWERS

Exercises

EX 12A

1. a)

Length $l \mathrm{~mm}$	Frequency	Frequency density		
$47<l \leq 49$	8	4		
$49<l \leq 50$	6	6		
$50<l \leq 51$	8	8		
$51<l \leq 54$	6	2		
	28			

b)

c) 54 mm , grouped data
d) 50.0 mm
2.
a) $\binom{6}{0}$
b) $\binom{-5}{6}$
c) $\binom{4}{-1}$
d) $\binom{1}{-11}$
a)

b) i) $A^{\prime}=[4,5,6,7\}$
ii) $A \cap B^{\prime}=\{1\}$
iii) $B \cup A^{\prime}=\{2,3,4,5,6,7\}$
iv) $(A \cup B)^{\prime}=\{5,6,7\}$
3.
4.

a) $\frac{1}{4}$
b) $\frac{3}{4}$
C) $\frac{7}{12}$
a) $n=\frac{11}{2}$
b) $n=\frac{10}{3}$
c) $n=-3$
d) $\frac{1}{12}$
d) $n=\frac{-7}{2}$
5.
6. $12.25 \leq t<12.35$

7. a) | Persons in $\operatorname{car}(n)$ | Frequency | CF |
| :---: | :---: | :---: |
| $0.5 \leq n<2.5$ | 24 | 24 |
| $2.5 \leq n<4.5$ | 38 | 62 |
| $4.5 \leq n<6.5$ | 10 | 72 |
| $6.5 \leq n<8.5$ | 8 | 80 |

b)

c) median estimate 3.0 d) mean estimate 3.6
8. a) $t \propto \frac{1}{v}$
b) $t=\frac{2100}{v}$
c) 5 min
d) $8.75 \mathrm{~m} / \mathrm{s}$
9. a) 8
b) -5
c) 0
d) $x-4-\frac{x}{4}$
10. 140 cm

EX 12B

1. 48 cm long, 24 cm wide, 12 cm high
2. a)

C) $28.8 \mathrm{~cm}^{2}$
d) $28.8 \mathrm{~cm}^{2}$ (3 s.f.) using SAS formula.
3.

4. $\quad \$ 577.50$
5. $267 \mathrm{~km}(3 \mathrm{s.f}$.
6.
a) $x=2$ (nearest integer)
b) $x=3.63$ (2 d.p.)
c) $74.5 \leq x<75.5$
d) $4.355 \leq x<4.365$
7.
a) 0.76
b) 0.06
C) 0.44
d) 0.56
8. a)
b)

c) translation $\binom{3}{1}$
d) $P \rightarrow Q$ none
$P \rightarrow R \quad y=5$ invariant
$P \rightarrow S \quad(7,4)$ invariant
9. 40.7°
10. $\$ 8689.68$

EX 12C

1. a) $35^{\circ} \mathrm{C}$
b) $32 \mathrm{C}^{\circ}$ and $39^{\circ} \mathrm{C}$
c) 13 days
d) 18 days $[\pm 1]$
2. a) $3(x+1)$
b) $4(x+2)$
C) $5(x+1)$
d) $5(x+4)$
3. 1435 beads
4. a) 1.89
b) 1.16
C) 3.76
d) 1.87
5. Sum of interior angles of n-gon $=180(n-2)$

$$
3960=180(n-2)
$$

$22=n-2$
$n \quad=24 \quad$ as required
6. 6 cm
7. a)
b)
c)

d) rotation of 180° about $(1,-0.5)$
8. $x=2.5$
9. $\angle Q T R=65^{\circ}$
(isos Δ)
$x=50$
$y=50$
(angle-sum of Δ)
(alt $\angle \mathrm{s}$)
10. $x=10$

EX 12D

1. a)

x	-6	-4	-3	-2	2	3	4	6
$\frac{48}{x}$	-8	-12	-16	-24	24	16	12	8
y	-14	-16	-19	-26	26	19	16	14

b)
C)

C) intersect at $x= \pm 3.5$
d) $\left.y=\frac{48}{x}+x\right\}$ $y=5 x \quad \int$
intersect when

$$
\begin{aligned}
\frac{48}{x}+x & =5 x \\
\frac{48}{x} & =4 x \\
48 & =4 x^{2} \\
12 & =x^{2} \\
x & = \pm \sqrt{12}
\end{aligned}
$$

as required.
2.
a) $x+22$
b) $x+28$
c) $(x+22)+(x+28)=180($ opp \angle s of cyclic quad)

$$
2 x+50=180
$$

$$
2 x=130
$$

$$
x=65
$$

as required.
d) $65^{\circ}, 115^{\circ}, 87^{\circ}, 93^{\circ}$
3. $\angle C=111.1^{\circ}$
4.
a) $5: 1$
b) Ayesha \$ 55000 , Bilal $\$ 11000$
c) $\$ 65505.88$
d) 2750 shares
5.
a) $x=1, x=-\frac{2}{3}$
b) $x=1.18, x=-0.847$
6.
a) i) $3 n+1$
ii) n^{2}
iii) 4^{n-1}
b) i) 61
ii) 400
iii) 2.75×10^{11} (3 s.f.)
7. a) 30 sides (ext angle-sum of polygon)
b) 5040
c) $180(30-2)=5040$
8.
a) 86400
b) 6000000000000000000000000
c) 3470000
d) 299800000

International Secondary Maths 11 |Teaching Guide
76
9.

10. 27.2°

EX 12E

1. $A=\frac{3}{4}, \quad B=-\frac{1}{4}$
2. a) c)

b) strong positive correlation
d) $\$ 143(\pm 2)$
3. $\quad 73.7 \mathrm{~km}(3 \mathrm{s.f}$.)
4. a) $4^{-5} \quad 3^{-6} \quad 5^{-4} \quad 6^{-3} \quad$ b) $70+\sqrt{6} \quad 7^{\sqrt{6}} \quad 70 \sqrt{6} \quad \frac{7000}{\sqrt{6}}$
5. a) yes
b) no
C) yes
d) no
6. $30 \mathrm{~cm}^{2}$
7.

a) $2 \times 3^{2} \times 5^{2}$
b) $15 \sqrt{2}, 3 \sqrt{50}, 5 \sqrt{18}$
c) 53
8. a) $\mathbf{g}=\overrightarrow{O G}$

$$
\begin{aligned}
& =\overrightarrow{O A}+\overrightarrow{A C} \\
& =\mathbf{a}+\frac{1}{5} \overrightarrow{A B} \\
& =\mathbf{a}+\frac{1}{5}(\mathbf{b}-\mathbf{a}) \\
& =\mathbf{a}+\frac{1}{5} \mathbf{b}-\frac{1}{5} \mathbf{a} \\
& =\frac{4}{5} \mathbf{a}+\frac{1}{5} \mathbf{b} \quad \text { as required. }
\end{aligned}
$$

$$
\text { b) } \overrightarrow{A G}=\mathbf{g}-\mathbf{a}
$$

$$
\begin{aligned}
& =\left(\frac{3}{4} \mathbf{a}+\frac{1}{4} \mathbf{b}\right)-\mathbf{a} \\
& =\frac{1}{4} \mathbf{b}-\frac{1}{4} \mathbf{a} \\
& =\frac{1}{4}(\mathbf{b}-\mathbf{a}) \\
& =\frac{1}{4} \overrightarrow{\mathrm{AB}} \\
& \therefore \overrightarrow{G B}=\frac{3}{4} \overrightarrow{A B} \\
& A G: A B \\
& =\frac{1}{4}: \frac{3}{4}
\end{aligned}
$$

$$
=1: 3 \quad \text { as required }
$$

a) $x \geq-\frac{-11}{5}$
b) $x>\frac{3}{2}$
c) $x<-\frac{56}{15}$
d) $x \geq 14$
10.
a) $\left(\begin{array}{rr}3 & 18 \\ 0 & -6\end{array}\right)$
b) $\left(\begin{array}{ll}5 & 6 \\ 0 & 2\end{array}\right)$
c) $\left(\begin{array}{cc}-1 & -9 \\ 0 & 3.5\end{array}\right)$
d) $\left(\begin{array}{ll}4 & 6 \\ 0 & 1\end{array}\right)$

EX 12A, question 1 (worksheet)

a) | Length $l \mathrm{~mm}$ | Frequency | Frequency density | |
| :---: | :---: | :---: | :---: |
| $47<l \leq 49$ | 8 | 4 | |
| $49<l \leq 50$ | 6 | | |
| $50<l \leq 51$ | 8 | | |
| $51<l \leq 54$ | | | |
| Total | 28 | | |

b)

c) Upper bound \qquad
d) Mean of l (estimate)

EX 12A, question 7 (worksheet)

a) | Persons in car (n) | Frequency | $C F$ |
| :---: | :---: | :---: |
| $0.5 \leq n<2.5$ | 24 | |
| $2.5 \leq n<4.5$ | 38 | |
| | 10 | |
| | 8 | 80 |

b

c) Median estimate:
d) Mean estimate:

EX 12B, question 8 (worksheet)

a)
b)

c) $\quad P \rightarrow Q$ is the transformation \qquad
\qquad
\qquad
d) The invariant points and lines of the following transformations are
$P \rightarrow Q$
$P \rightarrow R$
$P \rightarrow S$

EX 12C, question 7 (worksheet)

a)
b)
c)

d) The transformation $S \rightarrow Q$ is

EX 12D, question 1 (worksheet)
a)

x	-6	-4	-3	-2	2	3	4	6
$\frac{48}{x}$	-8			-24		16		
y	-14					19		

b)

c) Intersection values
$x=$ \qquad and $x=$ (1 d.p.)
d)

EX 12E, question 2 (worksheet)

Time spent (min)	15	20	30	35	40	40	45	55	55	60	65	70
Money spent (\$)	24	51	98	100	104	123	125	155	172	206	200	252

a)
c)

b) The correlation shown is
d) Estimated customer spending is \$

